1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
|
/* Iterator routines for GIMPLE statements.
Copyright (C) 2007-2022 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldy@quesejoda.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "ssa.h"
#include "cgraph.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa.h"
#include "value-prof.h"
/* Mark the statement STMT as modified, and update it. */
static inline void
update_modified_stmt (gimple *stmt)
{
if (!ssa_operands_active (cfun))
return;
update_stmt_if_modified (stmt);
}
/* Mark the statements in SEQ as modified, and update them. */
void
update_modified_stmts (gimple_seq seq)
{
gimple_stmt_iterator gsi;
if (!ssa_operands_active (cfun))
return;
for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
update_stmt_if_modified (gsi_stmt (gsi));
}
/* Set BB to be the basic block for all the statements in the list
starting at FIRST and LAST. */
static void
update_bb_for_stmts (gimple_seq_node first, gimple_seq_node last,
basic_block bb)
{
gimple_seq_node n;
for (n = first; n; n = n->next)
{
gimple_set_bb (n, bb);
if (n == last)
break;
}
}
/* Set the frequencies for the cgraph_edges for each of the calls
starting at FIRST for their new position within BB. */
static void
update_call_edge_frequencies (gimple_seq_node first, basic_block bb)
{
struct cgraph_node *cfun_node = NULL;
gimple_seq_node n;
for (n = first; n ; n = n->next)
if (is_gimple_call (n))
{
struct cgraph_edge *e;
/* These function calls are expensive enough that we want
to avoid calling them if we never see any calls. */
if (cfun_node == NULL)
cfun_node = cgraph_node::get (current_function_decl);
e = cfun_node->get_edge (n);
if (e != NULL)
e->count = bb->count;
}
}
/* Insert the sequence delimited by nodes FIRST and LAST before
iterator I. M specifies how to update iterator I after insertion
(see enum gsi_iterator_update).
This routine assumes that there is a forward and backward path
between FIRST and LAST (i.e., they are linked in a doubly-linked
list). Additionally, if FIRST == LAST, this routine will properly
insert a single node. */
static void
gsi_insert_seq_nodes_before (gimple_stmt_iterator *i,
gimple_seq_node first,
gimple_seq_node last,
enum gsi_iterator_update mode)
{
basic_block bb;
gimple_seq_node cur = i->ptr;
gcc_assert (!cur || cur->prev);
if ((bb = gsi_bb (*i)) != NULL)
update_bb_for_stmts (first, last, bb);
/* Link SEQ before CUR in the sequence. */
if (cur)
{
first->prev = cur->prev;
if (first->prev->next)
first->prev->next = first;
else
gimple_seq_set_first (i->seq, first);
last->next = cur;
cur->prev = last;
}
else
{
gimple_seq_node itlast = gimple_seq_last (*i->seq);
/* If CUR is NULL, we link at the end of the sequence (this case happens
when gsi_after_labels is called for a basic block that contains only
labels, so it returns an iterator after the end of the block, and
we need to insert before it; it might be cleaner to add a flag to the
iterator saying whether we are at the start or end of the list). */
last->next = NULL;
if (itlast)
{
first->prev = itlast;
itlast->next = first;
}
else
gimple_seq_set_first (i->seq, first);
gimple_seq_set_last (i->seq, last);
}
/* Update the iterator, if requested. */
switch (mode)
{
case GSI_NEW_STMT:
case GSI_CONTINUE_LINKING:
i->ptr = first;
break;
case GSI_LAST_NEW_STMT:
i->ptr = last;
break;
case GSI_SAME_STMT:
break;
default:
gcc_unreachable ();
}
}
/* Inserts the sequence of statements SEQ before the statement pointed
by iterator I. MODE indicates what to do with the iterator after
insertion (see enum gsi_iterator_update).
This function does not scan for new operands. It is provided for
the use of the gimplifier, which manipulates statements for which
def/use information has not yet been constructed. Most callers
should use gsi_insert_seq_before. */
void
gsi_insert_seq_before_without_update (gimple_stmt_iterator *i, gimple_seq seq,
enum gsi_iterator_update mode)
{
gimple_seq_node first, last;
if (seq == NULL)
return;
/* Don't allow inserting a sequence into itself. */
gcc_assert (seq != *i->seq);
first = gimple_seq_first (seq);
last = gimple_seq_last (seq);
/* Empty sequences need no work. */
if (!first || !last)
{
gcc_assert (first == last);
return;
}
gsi_insert_seq_nodes_before (i, first, last, mode);
}
/* Inserts the sequence of statements SEQ before the statement pointed
by iterator I. MODE indicates what to do with the iterator after
insertion (see enum gsi_iterator_update). Scan the statements in SEQ
for new operands. */
void
gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq,
enum gsi_iterator_update mode)
{
update_modified_stmts (seq);
gsi_insert_seq_before_without_update (i, seq, mode);
}
/* Insert the sequence delimited by nodes FIRST and LAST after
iterator I. M specifies how to update iterator I after insertion
(see enum gsi_iterator_update).
This routine assumes that there is a forward and backward path
between FIRST and LAST (i.e., they are linked in a doubly-linked
list). Additionally, if FIRST == LAST, this routine will properly
insert a single node. */
static void
gsi_insert_seq_nodes_after (gimple_stmt_iterator *i,
gimple_seq_node first,
gimple_seq_node last,
enum gsi_iterator_update m)
{
basic_block bb;
gimple_seq_node cur = i->ptr;
gcc_assert (!cur || cur->prev);
/* If the iterator is inside a basic block, we need to update the
basic block information for all the nodes between FIRST and LAST. */
if ((bb = gsi_bb (*i)) != NULL)
update_bb_for_stmts (first, last, bb);
/* Link SEQ after CUR. */
if (cur)
{
last->next = cur->next;
if (last->next)
{
last->next->prev = last;
}
else
gimple_seq_set_last (i->seq, last);
first->prev = cur;
cur->next = first;
}
else
{
gcc_assert (!gimple_seq_last (*i->seq));
last->next = NULL;
gimple_seq_set_first (i->seq, first);
gimple_seq_set_last (i->seq, last);
}
/* Update the iterator, if requested. */
switch (m)
{
case GSI_NEW_STMT:
i->ptr = first;
break;
case GSI_LAST_NEW_STMT:
case GSI_CONTINUE_LINKING:
i->ptr = last;
break;
case GSI_SAME_STMT:
gcc_assert (cur);
break;
default:
gcc_unreachable ();
}
}
/* Links sequence SEQ after the statement pointed-to by iterator I.
MODE is as in gsi_insert_after.
This function does not scan for new operands. It is provided for
the use of the gimplifier, which manipulates statements for which
def/use information has not yet been constructed. Most callers
should use gsi_insert_seq_after. */
void
gsi_insert_seq_after_without_update (gimple_stmt_iterator *i, gimple_seq seq,
enum gsi_iterator_update mode)
{
gimple_seq_node first, last;
if (seq == NULL)
return;
/* Don't allow inserting a sequence into itself. */
gcc_assert (seq != *i->seq);
first = gimple_seq_first (seq);
last = gimple_seq_last (seq);
/* Empty sequences need no work. */
if (!first || !last)
{
gcc_assert (first == last);
return;
}
gsi_insert_seq_nodes_after (i, first, last, mode);
}
/* Links sequence SEQ after the statement pointed-to by iterator I.
MODE is as in gsi_insert_after. Scan the statements in SEQ
for new operands. */
void
gsi_insert_seq_after (gimple_stmt_iterator *i, gimple_seq seq,
enum gsi_iterator_update mode)
{
update_modified_stmts (seq);
gsi_insert_seq_after_without_update (i, seq, mode);
}
/* Move all statements in the sequence after I to a new sequence.
Return this new sequence. */
gimple_seq
gsi_split_seq_after (gimple_stmt_iterator i)
{
gimple_seq_node cur, next;
gimple_seq *pold_seq, new_seq;
cur = i.ptr;
/* How can we possibly split after the end, or before the beginning? */
gcc_assert (cur && cur->next);
next = cur->next;
pold_seq = i.seq;
gimple_seq_set_first (&new_seq, next);
gimple_seq_set_last (&new_seq, gimple_seq_last (*pold_seq));
gimple_seq_set_last (pold_seq, cur);
cur->next = NULL;
return new_seq;
}
/* Set the statement to which GSI points to STMT. This only updates
the iterator and the gimple sequence, it doesn't do the bookkeeping
of gsi_replace. */
void
gsi_set_stmt (gimple_stmt_iterator *gsi, gimple *stmt)
{
gimple *orig_stmt = gsi_stmt (*gsi);
gimple *prev, *next;
stmt->next = next = orig_stmt->next;
stmt->prev = prev = orig_stmt->prev;
/* Note how we don't clear next/prev of orig_stmt. This is so that
copies of *GSI our callers might still hold (to orig_stmt)
can be advanced as if they too were replaced. */
if (prev->next)
prev->next = stmt;
else
gimple_seq_set_first (gsi->seq, stmt);
if (next)
next->prev = stmt;
else
gimple_seq_set_last (gsi->seq, stmt);
gsi->ptr = stmt;
}
/* Move all statements in the sequence before I to a new sequence.
Return this new sequence. I is set to the head of the new list. */
void
gsi_split_seq_before (gimple_stmt_iterator *i, gimple_seq *pnew_seq)
{
gimple_seq_node cur, prev;
gimple_seq old_seq;
cur = i->ptr;
/* How can we possibly split after the end? */
gcc_assert (cur);
prev = cur->prev;
old_seq = *i->seq;
if (!prev->next)
*i->seq = NULL;
i->seq = pnew_seq;
/* Set the limits on NEW_SEQ. */
gimple_seq_set_first (pnew_seq, cur);
gimple_seq_set_last (pnew_seq, gimple_seq_last (old_seq));
/* Cut OLD_SEQ before I. */
gimple_seq_set_last (&old_seq, prev);
if (prev->next)
prev->next = NULL;
}
/* Replace the statement pointed-to by GSI to STMT. If UPDATE_EH_INFO
is true, the exception handling information of the original
statement is moved to the new statement. Assignments must only be
replaced with assignments to the same LHS. Returns whether EH edge
cleanup is required. */
bool
gsi_replace (gimple_stmt_iterator *gsi, gimple *stmt, bool update_eh_info)
{
gimple *orig_stmt = gsi_stmt (*gsi);
bool require_eh_edge_purge = false;
if (stmt == orig_stmt)
return false;
gcc_assert (!gimple_has_lhs (orig_stmt) || !gimple_has_lhs (stmt)
|| gimple_get_lhs (orig_stmt) == gimple_get_lhs (stmt));
gimple_set_location (stmt, gimple_location (orig_stmt));
gimple_set_bb (stmt, gsi_bb (*gsi));
/* Preserve EH region information from the original statement, if
requested by the caller. */
if (update_eh_info)
require_eh_edge_purge = maybe_clean_or_replace_eh_stmt (orig_stmt, stmt);
gimple_duplicate_stmt_histograms (cfun, stmt, cfun, orig_stmt);
/* Free all the data flow information for ORIG_STMT. */
gimple_set_bb (orig_stmt, NULL);
gimple_remove_stmt_histograms (cfun, orig_stmt);
delink_stmt_imm_use (orig_stmt);
gsi_set_stmt (gsi, stmt);
gimple_set_modified (stmt, true);
update_modified_stmt (stmt);
return require_eh_edge_purge;
}
/* Replace the statement pointed-to by GSI with the sequence SEQ.
If UPDATE_EH_INFO is true, the exception handling information of
the original statement is moved to the last statement of the new
sequence. If the old statement is an assignment, then so must
be the last statement of the new sequence, and they must have the
same LHS. */
void
gsi_replace_with_seq (gimple_stmt_iterator *gsi, gimple_seq seq,
bool update_eh_info)
{
gimple_stmt_iterator seqi;
gimple *last;
if (gimple_seq_empty_p (seq))
{
gsi_remove (gsi, true);
return;
}
seqi = gsi_last (seq);
last = gsi_stmt (seqi);
gsi_remove (&seqi, false);
gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
gsi_replace (gsi, last, update_eh_info);
}
/* Insert statement STMT before the statement pointed-to by iterator I.
M specifies how to update iterator I after insertion (see enum
gsi_iterator_update).
This function does not scan for new operands. It is provided for
the use of the gimplifier, which manipulates statements for which
def/use information has not yet been constructed. Most callers
should use gsi_insert_before. */
void
gsi_insert_before_without_update (gimple_stmt_iterator *i, gimple *stmt,
enum gsi_iterator_update m)
{
gsi_insert_seq_nodes_before (i, stmt, stmt, m);
}
/* Insert statement STMT before the statement pointed-to by iterator I.
Update STMT's basic block and scan it for new operands. M
specifies how to update iterator I after insertion (see enum
gsi_iterator_update). */
void
gsi_insert_before (gimple_stmt_iterator *i, gimple *stmt,
enum gsi_iterator_update m)
{
update_modified_stmt (stmt);
gsi_insert_before_without_update (i, stmt, m);
}
/* Insert statement STMT after the statement pointed-to by iterator I.
M specifies how to update iterator I after insertion (see enum
gsi_iterator_update).
This function does not scan for new operands. It is provided for
the use of the gimplifier, which manipulates statements for which
def/use information has not yet been constructed. Most callers
should use gsi_insert_after. */
void
gsi_insert_after_without_update (gimple_stmt_iterator *i, gimple *stmt,
enum gsi_iterator_update m)
{
gsi_insert_seq_nodes_after (i, stmt, stmt, m);
}
/* Insert statement STMT after the statement pointed-to by iterator I.
Update STMT's basic block and scan it for new operands. M
specifies how to update iterator I after insertion (see enum
gsi_iterator_update). */
void
gsi_insert_after (gimple_stmt_iterator *i, gimple *stmt,
enum gsi_iterator_update m)
{
update_modified_stmt (stmt);
gsi_insert_after_without_update (i, stmt, m);
}
/* Remove the current stmt from the sequence. The iterator is updated
to point to the next statement.
REMOVE_PERMANENTLY is true when the statement is going to be removed
from the IL and not reinserted elsewhere. In that case we remove the
statement pointed to by iterator I from the EH tables, and free its
operand caches. Otherwise we do not modify this information. Returns
true whether EH edge cleanup is required. */
bool
gsi_remove (gimple_stmt_iterator *i, bool remove_permanently)
{
gimple_seq_node cur, next, prev;
gimple *stmt = gsi_stmt (*i);
bool require_eh_edge_purge = false;
/* ??? Do we want to do this for non-permanent operation? */
if (gimple_code (stmt) != GIMPLE_PHI)
insert_debug_temps_for_defs (i);
gimple_set_bb (stmt, NULL);
if (remove_permanently)
{
/* Free all the data flow information for STMT. */
delink_stmt_imm_use (stmt);
gimple_set_modified (stmt, true);
if (gimple_debug_nonbind_marker_p (stmt))
/* We don't need this to be exact, but try to keep it at least
close. */
cfun->debug_marker_count--;
require_eh_edge_purge = remove_stmt_from_eh_lp (stmt);
gimple_remove_stmt_histograms (cfun, stmt);
}
/* Update the iterator and re-wire the links in I->SEQ. */
cur = i->ptr;
next = cur->next;
prev = cur->prev;
/* See gsi_set_stmt for why we don't reset prev/next of STMT. */
if (next)
/* Cur is not last. */
next->prev = prev;
else if (prev->next)
/* Cur is last but not first. */
gimple_seq_set_last (i->seq, prev);
if (prev->next)
/* Cur is not first. */
prev->next = next;
else
/* Cur is first. */
*i->seq = next;
i->ptr = next;
return require_eh_edge_purge;
}
/* Finds iterator for STMT. */
gimple_stmt_iterator
gsi_for_stmt (gimple *stmt)
{
gimple_stmt_iterator i;
basic_block bb = gimple_bb (stmt);
if (gimple_code (stmt) == GIMPLE_PHI)
i = gsi_start_phis (bb);
else
i = gsi_start_bb (bb);
i.ptr = stmt;
return i;
}
/* Get an iterator for STMT, which is known to belong to SEQ. This is
equivalent to starting at the beginning of SEQ and searching forward
until STMT is found. */
gimple_stmt_iterator
gsi_for_stmt (gimple *stmt, gimple_seq *seq)
{
gimple_stmt_iterator i = gsi_start_1 (seq);
i.ptr = stmt;
return i;
}
/* Finds iterator for PHI. */
gphi_iterator
gsi_for_phi (gphi *phi)
{
gphi_iterator i;
basic_block bb = gimple_bb (phi);
i = gsi_start_phis (bb);
i.ptr = phi;
return i;
}
/* Move the statement at FROM so it comes right after the statement at TO. */
void
gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
{
gimple *stmt = gsi_stmt (*from);
gsi_remove (from, false);
/* We must have GSI_NEW_STMT here, as gsi_move_after is sometimes used to
move statements to an empty block. */
gsi_insert_after (to, stmt, GSI_NEW_STMT);
}
/* Move the statement at FROM so it comes right before the statement
at TO. */
void
gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
{
gimple *stmt = gsi_stmt (*from);
gsi_remove (from, false);
/* For consistency with gsi_move_after, it might be better to have
GSI_NEW_STMT here; however, that breaks several places that expect
that TO does not change. */
gsi_insert_before (to, stmt, GSI_SAME_STMT);
}
/* Move the statement at FROM to the end of basic block BB. */
void
gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb)
{
gimple_stmt_iterator last = gsi_last_bb (bb);
gcc_checking_assert (gsi_bb (last) == bb);
/* Have to check gsi_end_p because it could be an empty block. */
if (!gsi_end_p (last) && is_ctrl_stmt (gsi_stmt (last)))
gsi_move_before (from, &last);
else
gsi_move_after (from, &last);
}
/* Add STMT to the pending list of edge E. No actual insertion is
made until a call to gsi_commit_edge_inserts () is made. */
void
gsi_insert_on_edge (edge e, gimple *stmt)
{
gimple_seq_add_stmt (&PENDING_STMT (e), stmt);
}
/* Add the sequence of statements SEQ to the pending list of edge E.
No actual insertion is made until a call to gsi_commit_edge_inserts
is made. */
void
gsi_insert_seq_on_edge (edge e, gimple_seq seq)
{
gimple_seq_add_seq (&PENDING_STMT (e), seq);
}
/* Return a new iterator pointing to the first statement in sequence of
statements on edge E. Such statements need to be subsequently moved into a
basic block by calling gsi_commit_edge_inserts. */
gimple_stmt_iterator
gsi_start_edge (edge e)
{
return gsi_start (PENDING_STMT (e));
}
/* Insert the statement pointed-to by GSI into edge E. Every attempt
is made to place the statement in an existing basic block, but
sometimes that isn't possible. When it isn't possible, the edge is
split and the statement is added to the new block.
In all cases, the returned *GSI points to the correct location. The
return value is true if insertion should be done after the location,
or false if it should be done before the location. If a new basic block
has to be created, it is stored in *NEW_BB. */
static bool
gimple_find_edge_insert_loc (edge e, gimple_stmt_iterator *gsi,
basic_block *new_bb)
{
basic_block dest, src;
gimple *tmp;
dest = e->dest;
/* If the destination has one predecessor which has no PHI nodes,
insert there. Except for the exit block.
The requirement for no PHI nodes could be relaxed. Basically we
would have to examine the PHIs to prove that none of them used
the value set by the statement we want to insert on E. That
hardly seems worth the effort. */
restart:
if (single_pred_p (dest)
&& gimple_seq_empty_p (phi_nodes (dest))
&& dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
{
*gsi = gsi_start_bb (dest);
if (gsi_end_p (*gsi))
return true;
/* Make sure we insert after any leading labels. */
tmp = gsi_stmt (*gsi);
while (gimple_code (tmp) == GIMPLE_LABEL)
{
gsi_next (gsi);
if (gsi_end_p (*gsi))
break;
tmp = gsi_stmt (*gsi);
}
if (gsi_end_p (*gsi))
{
*gsi = gsi_last_bb (dest);
return true;
}
else
return false;
}
/* If the source has one successor, the edge is not abnormal and
the last statement does not end a basic block, insert there.
Except for the entry block. */
src = e->src;
if ((e->flags & EDGE_ABNORMAL) == 0
&& (single_succ_p (src)
/* Do not count a fake edge as successor as added to infinite
loops by connect_infinite_loops_to_exit. */
|| (EDGE_COUNT (src->succs) == 2
&& (EDGE_SUCC (src, 0)->flags & EDGE_FAKE
|| EDGE_SUCC (src, 1)->flags & EDGE_FAKE)))
&& src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
*gsi = gsi_last_bb (src);
if (gsi_end_p (*gsi))
return true;
tmp = gsi_stmt (*gsi);
if (is_gimple_debug (tmp))
{
gimple_stmt_iterator si = *gsi;
gsi_prev_nondebug (&si);
if (!gsi_end_p (si))
tmp = gsi_stmt (si);
/* If we don't have a BB-ending nondebug stmt, we want to
insert after the trailing debug stmts. Otherwise, we may
insert before the BB-ending nondebug stmt, or split the
edge. */
if (!stmt_ends_bb_p (tmp))
return true;
*gsi = si;
}
else if (!stmt_ends_bb_p (tmp))
return true;
switch (gimple_code (tmp))
{
case GIMPLE_RETURN:
case GIMPLE_RESX:
return false;
default:
break;
}
}
/* Otherwise, create a new basic block, and split this edge. */
dest = split_edge (e);
if (new_bb)
*new_bb = dest;
e = single_pred_edge (dest);
goto restart;
}
/* Similar to gsi_insert_on_edge+gsi_commit_edge_inserts. If a new
block has to be created, it is returned. */
basic_block
gsi_insert_on_edge_immediate (edge e, gimple *stmt)
{
gimple_stmt_iterator gsi;
basic_block new_bb = NULL;
bool ins_after;
gcc_assert (!PENDING_STMT (e));
ins_after = gimple_find_edge_insert_loc (e, &gsi, &new_bb);
update_call_edge_frequencies (stmt, gsi.bb);
if (ins_after)
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
else
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
return new_bb;
}
/* Insert STMTS on edge E. If a new block has to be created, it
is returned. */
basic_block
gsi_insert_seq_on_edge_immediate (edge e, gimple_seq stmts)
{
gimple_stmt_iterator gsi;
basic_block new_bb = NULL;
bool ins_after;
gcc_assert (!PENDING_STMT (e));
ins_after = gimple_find_edge_insert_loc (e, &gsi, &new_bb);
update_call_edge_frequencies (gimple_seq_first (stmts), gsi.bb);
if (ins_after)
gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
else
gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
return new_bb;
}
/* This routine will commit all pending edge insertions, creating any new
basic blocks which are necessary. */
void
gsi_commit_edge_inserts (void)
{
basic_block bb;
edge e;
edge_iterator ei;
gsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
NULL);
FOR_EACH_BB_FN (bb, cfun)
FOR_EACH_EDGE (e, ei, bb->succs)
gsi_commit_one_edge_insert (e, NULL);
}
/* Commit insertions pending at edge E. If a new block is created, set NEW_BB
to this block, otherwise set it to NULL. */
void
gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
{
if (new_bb)
*new_bb = NULL;
if (PENDING_STMT (e))
{
gimple_stmt_iterator gsi;
gimple_seq seq = PENDING_STMT (e);
bool ins_after;
PENDING_STMT (e) = NULL;
ins_after = gimple_find_edge_insert_loc (e, &gsi, new_bb);
update_call_edge_frequencies (gimple_seq_first (seq), gsi.bb);
if (ins_after)
gsi_insert_seq_after (&gsi, seq, GSI_NEW_STMT);
else
gsi_insert_seq_before (&gsi, seq, GSI_NEW_STMT);
}
}
/* Returns iterator at the start of the list of phi nodes of BB. */
gphi_iterator
gsi_start_phis (basic_block bb)
{
gimple_seq *pseq = phi_nodes_ptr (bb);
/* Adapted from gsi_start_1. */
gphi_iterator i;
i.ptr = gimple_seq_first (*pseq);
i.seq = pseq;
i.bb = i.ptr ? gimple_bb (i.ptr) : NULL;
return i;
}
|