1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
/* Loop unroll-and-jam.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree-pass.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "fold-const.h"
#include "tree-cfg.h"
#include "tree-ssa.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-ssa-loop-manip.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "gimple-iterator.h"
#include "cfghooks.h"
#include "tree-data-ref.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-vectorizer.h"
#include "tree-ssa-sccvn.h"
/* Unroll and Jam transformation
This is a combination of two transformations, where the second
is not always valid. It's applicable if a loop nest has redundancies
over the iterations of an outer loop while not having that with
an inner loop.
Given this nest:
for (i) {
for (j) {
B(i,j)
}
}
first unroll:
for (i by 2) {
for (j) {
B(i,j)
}
for (j) {
B(i+1,j)
}
}
then fuse the two adjacent inner loops resulting from that:
for (i by 2) {
for (j) {
B(i,j)
B(i+1,j)
}
}
As the order of evaluations of the body B changes this is valid
only in certain situations: all distance vectors need to be forward.
Additionally if there are multiple induction variables than just
a counting control IV (j above) we can also deal with some situations.
The validity is checked by unroll_jam_possible_p, and the data-dep
testing below.
A trivial example where the fusion is wrong would be when
B(i,j) == x[j-1] = x[j];
for (i by 2) {
for (j) {
x[j-1] = x[j];
}
for (j) {
x[j-1] = x[j];
}
} effect: move content to front by two elements
-->
for (i by 2) {
for (j) {
x[j-1] = x[j];
x[j-1] = x[j];
}
} effect: move content to front by one element
*/
/* Modify the loop tree for the fact that all code once belonging
to the OLD loop or the outer loop of OLD now is inside LOOP. */
static void
merge_loop_tree (class loop *loop, class loop *old)
{
basic_block *bbs;
int i, n;
class loop *subloop;
edge e;
edge_iterator ei;
/* Find its nodes. */
bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
for (i = 0; i < n; i++)
{
/* If the block was direct child of OLD loop it's now part
of LOOP. If it was outside OLD, then it moved into LOOP
as well. This avoids changing the loop father for BBs
in inner loops of OLD. */
if (bbs[i]->loop_father == old
|| loop_depth (bbs[i]->loop_father) < loop_depth (old))
{
remove_bb_from_loops (bbs[i]);
add_bb_to_loop (bbs[i], loop);
continue;
}
/* If we find a direct subloop of OLD, move it to LOOP. */
subloop = bbs[i]->loop_father;
if (loop_outer (subloop) == old && subloop->header == bbs[i])
{
flow_loop_tree_node_remove (subloop);
flow_loop_tree_node_add (loop, subloop);
}
}
/* Update the information about loop exit edges. */
for (i = 0; i < n; i++)
{
FOR_EACH_EDGE (e, ei, bbs[i]->succs)
{
rescan_loop_exit (e, false, false);
}
}
loop->num_nodes = n;
free (bbs);
}
/* BB is part of the outer loop of an unroll-and-jam situation.
Check if any statements therein would prevent the transformation. */
static bool
bb_prevents_fusion_p (basic_block bb)
{
gimple_stmt_iterator gsi;
/* BB is duplicated by outer unrolling and then all N-1 first copies
move into the body of the fused inner loop. If BB exits the outer loop
the last copy still does so, and the first N-1 copies are cancelled
by loop unrolling, so also after fusion it's the exit block.
But there might be other reasons that prevent fusion:
* stores or unknown side-effects prevent fusion
* loads don't
* computations into SSA names: these aren't problematic. Their
result will be unused on the exit edges of the first N-1 copies
(those aren't taken after unrolling). If they are used on the
other edge (the one leading to the outer latch block) they are
loop-carried (on the outer loop) and the Nth copy of BB will
compute them again (i.e. the first N-1 copies will be dead). */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *g = gsi_stmt (gsi);
if (gimple_vdef (g) || gimple_has_side_effects (g))
return true;
}
return false;
}
/* Given an inner loop LOOP (of some OUTER loop) determine if
we can safely fuse copies of it (generated by outer unrolling).
If so return true, otherwise return false. */
static bool
unroll_jam_possible_p (class loop *outer, class loop *loop)
{
basic_block *bbs;
int i, n;
class tree_niter_desc niter;
/* When fusing the loops we skip the latch block
of the first one, so it mustn't have any effects to
preserve. */
if (!empty_block_p (loop->latch))
return false;
edge exit;
if (!(exit = single_exit (loop)))
return false;
/* We need a perfect nest. Quick check for adjacent inner loops. */
if (outer->inner != loop || loop->next)
return false;
/* Prevent head-controlled inner loops, that we usually have.
The guard block would need to be accepted
(invariant condition either entering or skipping the loop),
without also accepting arbitrary control flow. When unswitching
ran before us (as with -O3) this won't be a problem because its
outer loop unswitching will have moved out the invariant condition.
If we do that we need to extend fuse_loops() to cope with this
by threading through the (still invariant) copied condition
between the two loop copies. */
if (!dominated_by_p (CDI_DOMINATORS, outer->latch, loop->header))
return false;
/* The number of iterations of the inner loop must be loop invariant
with respect to the outer loop. */
if (!number_of_iterations_exit (loop, single_exit (loop), &niter,
false, true)
|| niter.cmp == ERROR_MARK
|| !integer_zerop (niter.may_be_zero)
|| !expr_invariant_in_loop_p (outer, niter.niter))
return false;
/* If the inner loop produces any values that are used inside the
outer loop (except the virtual op) then it can flow
back (perhaps indirectly) into the inner loop. This prevents
fusion: without fusion the value at the last iteration is used,
with fusion the value after the initial iteration is used.
If all uses are outside the outer loop this doesn't prevent fusion;
the value of the last iteration is still used (and the values from
all intermediate iterations are dead). */
gphi_iterator psi;
for (psi = gsi_start_phis (single_exit (loop)->dest);
!gsi_end_p (psi); gsi_next (&psi))
{
imm_use_iterator imm_iter;
use_operand_p use_p;
tree op = gimple_phi_result (psi.phi ());
if (virtual_operand_p (op))
continue;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
{
gimple *use_stmt = USE_STMT (use_p);
if (!is_gimple_debug (use_stmt)
&& flow_bb_inside_loop_p (outer, gimple_bb (use_stmt)))
return false;
}
}
/* And check blocks belonging to just outer loop. */
bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
n = get_loop_body_with_size (outer, bbs, n_basic_blocks_for_fn (cfun));
for (i = 0; i < n; i++)
if (bbs[i]->loop_father == outer
&& (bb_prevents_fusion_p (bbs[i])
/* Outer loop exits must come after the inner loop, otherwise
we'll put the outer loop exit into the fused inner loop. */
|| (loop_exits_from_bb_p (outer, bbs[i])
&& !dominated_by_p (CDI_DOMINATORS, bbs[i], exit->src))))
break;
free (bbs);
if (i != n)
return false;
/* For now we can safely fuse copies of LOOP only if all
loop carried variables are inductions (or the virtual op).
We could handle reductions as well (the initial value in the second
body would be the after-iter value of the first body) if it's over
an associative and commutative operation. We wouldn't
be able to handle unknown cycles. */
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
{
affine_iv iv;
tree op = gimple_phi_result (psi.phi ());
if (virtual_operand_p (op))
continue;
if (!simple_iv (loop, loop, op, &iv, true))
return false;
/* The inductions must be regular, loop invariant step and initial
value. */
if (!expr_invariant_in_loop_p (outer, iv.step)
|| !expr_invariant_in_loop_p (outer, iv.base))
return false;
/* XXX With more effort we could also be able to deal with inductions
where the initial value is loop variant but a simple IV in the
outer loop. The initial value for the second body would be
the original initial value plus iv.base.step. The next value
for the fused loop would be the original next value of the first
copy, _not_ the next value of the second body. */
}
return true;
}
/* Fuse LOOP with all further neighbors. The loops are expected to
be in appropriate form. */
static void
fuse_loops (class loop *loop)
{
class loop *next = loop->next;
while (next)
{
edge e;
remove_branch (single_pred_edge (loop->latch));
/* Make delete_basic_block not fiddle with the loop structure. */
basic_block oldlatch = loop->latch;
loop->latch = NULL;
delete_basic_block (oldlatch);
e = redirect_edge_and_branch (loop_latch_edge (next),
loop->header);
loop->latch = e->src;
flush_pending_stmts (e);
gcc_assert (EDGE_COUNT (next->header->preds) == 1);
/* The PHI nodes of the second body (single-argument now)
need adjustments to use the right values: either directly
the value of the corresponding PHI in the first copy or
the one leaving the first body which unrolling did for us.
See also unroll_jam_possible_p() for further possibilities. */
gphi_iterator psi_first, psi_second;
e = single_pred_edge (next->header);
for (psi_first = gsi_start_phis (loop->header),
psi_second = gsi_start_phis (next->header);
!gsi_end_p (psi_first);
gsi_next (&psi_first), gsi_next (&psi_second))
{
gphi *phi_first = psi_first.phi ();
gphi *phi_second = psi_second.phi ();
tree firstop = gimple_phi_result (phi_first);
/* The virtual operand is correct already as it's
always live at exit, hence has a LCSSA node and outer
loop unrolling updated SSA form. */
if (virtual_operand_p (firstop))
continue;
/* Due to unroll_jam_possible_p() we know that this is
an induction. The second body goes over the same
iteration space. */
add_phi_arg (phi_second, firstop, e,
gimple_location (phi_first));
}
gcc_assert (gsi_end_p (psi_second));
merge_loop_tree (loop, next);
gcc_assert (!next->num_nodes);
class loop *ln = next->next;
delete_loop (next);
next = ln;
}
rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop);
}
/* Return true if any of the access functions for dataref A
isn't invariant with respect to loop LOOP_NEST. */
static bool
any_access_function_variant_p (const struct data_reference *a,
const class loop *loop_nest)
{
vec<tree> fns = DR_ACCESS_FNS (a);
for (tree t : fns)
if (!evolution_function_is_invariant_p (t, loop_nest->num))
return true;
return false;
}
/* Returns true if the distance in DDR can be determined and adjusts
the unroll factor in *UNROLL to make unrolling valid for that distance.
Otherwise return false. DDR is with respect to the outer loop of INNER.
If this data dep can lead to a removed memory reference, increment
*REMOVED and adjust *PROFIT_UNROLL to be the necessary unroll factor
for this to happen. */
static bool
adjust_unroll_factor (class loop *inner, struct data_dependence_relation *ddr,
unsigned *unroll, unsigned *profit_unroll,
unsigned *removed)
{
bool ret = false;
if (DDR_ARE_DEPENDENT (ddr) != chrec_known)
{
if (DDR_NUM_DIST_VECTS (ddr) == 0)
return false;
unsigned i;
lambda_vector dist_v;
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
{
/* A distance (a,b) is at worst transformed into (a/N,b) by the
unrolling (factor N), so the transformation is valid if
a >= N, or b > 0, or b is zero and a > 0. Otherwise the unroll
factor needs to be limited so that the first condition holds.
That may limit the factor down to zero in the worst case. */
lambda_int dist = dist_v[0];
if (dist < 0)
gcc_unreachable ();
else if (dist >= (lambda_int)*unroll)
;
else if (lambda_vector_zerop (dist_v + 1, DDR_NB_LOOPS (ddr) - 1))
{
/* We have (a,0) with a < N, so this will be transformed into
(0,0) after unrolling by N. This might potentially be a
problem, if it's not a read-read dependency. */
if (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr)))
;
else
{
/* So, at least one is a write, and we might reduce the
distance vector to (0,0). This is still no problem
if both data-refs are affine with respect to the inner
loops. But if one of them is invariant with respect
to an inner loop our reordering implicit in loop fusion
corrupts the program, as our data dependences don't
capture this. E.g. for:
for (0 <= i < n)
for (0 <= j < m)
a[i][0] = a[i+1][0] + 2; // (1)
b[i][j] = b[i+1][j] + 2; // (2)
the distance vector for both statements is (-1,0),
but exchanging the order for (2) is okay, while
for (1) it is not. To see this, write out the original
accesses (assume m is 2):
a i j original
0 0 0 r a[1][0] b[1][0]
1 0 0 w a[0][0] b[0][0]
2 0 1 r a[1][0] b[1][1]
3 0 1 w a[0][0] b[0][1]
4 1 0 r a[2][0] b[2][0]
5 1 0 w a[1][0] b[1][0]
after unroll-by-2 and fusion the accesses are done in
this order (from column a): 0,1, 4,5, 2,3, i.e. this:
a i j transformed
0 0 0 r a[1][0] b[1][0]
1 0 0 w a[0][0] b[0][0]
4 1 0 r a[2][0] b[2][0]
5 1 0 w a[1][0] b[1][0]
2 0 1 r a[1][0] b[1][1]
3 0 1 w a[0][0] b[0][1]
Note how access 2 accesses the same element as access 5
for array 'a' but not for array 'b'. */
if (any_access_function_variant_p (DDR_A (ddr), inner)
&& any_access_function_variant_p (DDR_B (ddr), inner))
;
else
/* And if any dataref of this pair is invariant with
respect to the inner loop, we have no chance than
to reduce the unroll factor. */
*unroll = dist;
}
}
else if (lambda_vector_lexico_pos (dist_v + 1, DDR_NB_LOOPS (ddr) - 1))
;
else
*unroll = dist;
/* With a distance (a,0) it's always profitable to unroll-and-jam
(by a+1), because one memory reference will go away. With
(a,b) and b != 0 that's less clear. We will increase the
number of streams without lowering the number of mem refs.
So for now only handle the first situation. */
if (lambda_vector_zerop (dist_v + 1, DDR_NB_LOOPS (ddr) - 1))
{
*profit_unroll = MAX (*profit_unroll, (unsigned)dist + 1);
(*removed)++;
}
ret = true;
}
}
return ret;
}
/* Main entry point for the unroll-and-jam transformation
described above. */
static unsigned int
tree_loop_unroll_and_jam (void)
{
unsigned int todo = 0;
gcc_assert (scev_initialized_p ());
/* Go through all innermost loops. */
for (auto loop : loops_list (cfun, LI_ONLY_INNERMOST))
{
class loop *outer = loop_outer (loop);
if (loop_depth (loop) < 2
|| optimize_loop_nest_for_size_p (outer))
continue;
if (!unroll_jam_possible_p (outer, loop))
continue;
vec<data_reference_p> datarefs = vNULL;
vec<ddr_p> dependences = vNULL;
unsigned unroll_factor, profit_unroll, removed;
class tree_niter_desc desc;
bool unroll = false;
auto_vec<loop_p, 3> loop_nest;
if (!compute_data_dependences_for_loop (outer, true, &loop_nest,
&datarefs, &dependences))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Cannot analyze data dependencies\n");
free_data_refs (datarefs);
free_dependence_relations (dependences);
continue;
}
if (!datarefs.length ())
continue;
if (dump_file && (dump_flags & TDF_DETAILS))
dump_data_dependence_relations (dump_file, dependences);
unroll_factor = (unsigned)-1;
profit_unroll = 1;
removed = 0;
/* Check all dependencies. */
unsigned i;
struct data_dependence_relation *ddr;
FOR_EACH_VEC_ELT (dependences, i, ddr)
{
struct data_reference *dra, *drb;
/* If the refs are independend there's nothing to do. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
continue;
dra = DDR_A (ddr);
drb = DDR_B (ddr);
/* Nothing interesting for the self dependencies. */
if (dra == drb)
continue;
/* Now check the distance vector, for determining a sensible
outer unroll factor, and for validity of merging the inner
loop copies. */
if (!adjust_unroll_factor (loop, ddr, &unroll_factor, &profit_unroll,
&removed))
{
/* Couldn't get the distance vector. For two reads that's
harmless (we assume we should unroll). For at least
one write this means we can't check the dependence direction
and hence can't determine safety. */
if (DR_IS_WRITE (dra) || DR_IS_WRITE (drb))
{
unroll_factor = 0;
break;
}
}
}
/* We regard a user-specified minimum percentage of zero as a request
to ignore all profitability concerns and apply the transformation
always. */
if (!param_unroll_jam_min_percent)
profit_unroll = MAX(2, profit_unroll);
else if (removed * 100 / datarefs.length ()
< (unsigned)param_unroll_jam_min_percent)
profit_unroll = 1;
if (unroll_factor > profit_unroll)
unroll_factor = profit_unroll;
if (unroll_factor > (unsigned)param_unroll_jam_max_unroll)
unroll_factor = param_unroll_jam_max_unroll;
unroll = (unroll_factor > 1
&& can_unroll_loop_p (outer, unroll_factor, &desc));
if (unroll)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS,
find_loop_location (outer),
"applying unroll and jam with factor %d\n",
unroll_factor);
initialize_original_copy_tables ();
tree_unroll_loop (outer, unroll_factor, &desc);
free_original_copy_tables ();
fuse_loops (outer->inner);
todo |= TODO_cleanup_cfg;
auto_bitmap exit_bbs;
bitmap_set_bit (exit_bbs, single_exit (outer)->dest->index);
todo |= do_rpo_vn (cfun, loop_preheader_edge (outer), exit_bbs);
}
loop_nest.release ();
free_dependence_relations (dependences);
free_data_refs (datarefs);
}
if (todo)
{
scev_reset ();
free_dominance_info (CDI_DOMINATORS);
}
return todo;
}
/* Pass boilerplate */
namespace {
const pass_data pass_data_loop_jam =
{
GIMPLE_PASS, /* type */
"unrolljam", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_LOOP_JAM, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_loop_jam : public gimple_opt_pass
{
public:
pass_loop_jam (gcc::context *ctxt)
: gimple_opt_pass (pass_data_loop_jam, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_unroll_jam != 0; }
virtual unsigned int execute (function *);
};
unsigned int
pass_loop_jam::execute (function *fun)
{
if (number_of_loops (fun) <= 1)
return 0;
return tree_loop_unroll_and_jam ();
}
}
gimple_opt_pass *
make_pass_loop_jam (gcc::context *ctxt)
{
return new pass_loop_jam (ctxt);
}
|