1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
|
/* Gimple range GORI functions.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
and Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-range.h"
// Calculate what we can determine of the range of this unary
// statement's operand if the lhs of the expression has the range
// LHS_RANGE. Return false if nothing can be determined.
bool
gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
{
gcc_checking_assert (gimple_num_ops (stmt) < 3);
// Give up on empty ranges.
if (lhs_range.undefined_p ())
return false;
// Unary operations require the type of the first operand in the
// second range position.
tree type = TREE_TYPE (gimple_range_operand1 (stmt));
int_range<2> type_range (type);
return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
type_range);
}
// Calculate what we can determine of the range of this statement's
// first operand if the lhs of the expression has the range LHS_RANGE
// and the second operand has the range OP2_RANGE. Return false if
// nothing can be determined.
bool
gimple_range_calc_op1 (irange &r, const gimple *stmt,
const irange &lhs_range, const irange &op2_range)
{
// Give up on empty ranges.
if (lhs_range.undefined_p ())
return false;
// Unary operation are allowed to pass a range in for second operand
// as there are often additional restrictions beyond the type which
// can be imposed. See operator_cast::op1_range().
tree type = TREE_TYPE (gimple_range_operand1 (stmt));
// If op2 is undefined, solve as if it is varying.
if (op2_range.undefined_p ())
{
// This is sometimes invoked on single operand stmts.
if (gimple_num_ops (stmt) < 3)
return false;
int_range<2> trange (TREE_TYPE (gimple_range_operand2 (stmt)));
return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
trange);
}
return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
op2_range);
}
// Calculate what we can determine of the range of this statement's
// second operand if the lhs of the expression has the range LHS_RANGE
// and the first operand has the range OP1_RANGE. Return false if
// nothing can be determined.
bool
gimple_range_calc_op2 (irange &r, const gimple *stmt,
const irange &lhs_range, const irange &op1_range)
{
// Give up on empty ranges.
if (lhs_range.undefined_p ())
return false;
tree type = TREE_TYPE (gimple_range_operand2 (stmt));
// If op1 is undefined, solve as if it is varying.
if (op1_range.undefined_p ())
{
int_range<2> trange (TREE_TYPE (gimple_range_operand1 (stmt)));
return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
trange);
}
return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
op1_range);
}
// Return TRUE if GS is a logical && or || expression.
static inline bool
is_gimple_logical_p (const gimple *gs)
{
// Look for boolean and/or condition.
if (is_gimple_assign (gs))
switch (gimple_expr_code (gs))
{
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
return true;
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
// Bitwise operations on single bits are logical too.
if (types_compatible_p (TREE_TYPE (gimple_assign_rhs1 (gs)),
boolean_type_node))
return true;
break;
default:
break;
}
return false;
}
/* RANGE_DEF_CHAIN is used to determine which SSA names in a block can
have range information calculated for them, and what the
dependencies on each other are.
Information for a basic block is calculated once and stored. It is
only calculated the first time a query is made, so if no queries
are made, there is little overhead.
The def_chain bitmap is indexed by SSA_NAME_VERSION. Bits are set
within this bitmap to indicate SSA names that are defined in the
SAME block and used to calculate this SSA name.
<bb 2> :
_1 = x_4(D) + -2;
_2 = _1 * 4;
j_7 = foo ();
q_5 = _2 + 3;
if (q_5 <= 13)
_1 : x_4(D)
_2 : 1 x_4(D)
q_5 : _1 _2 x_4(D)
This dump indicates the bits set in the def_chain vector.
as well as demonstrates the def_chain bits for the related ssa_names.
Checking the chain for _2 indicates that _1 and x_4 are used in
its evaluation.
Def chains also only include statements which are valid gimple
so a def chain will only span statements for which the range
engine implements operations for. */
// Construct a range_def_chain.
range_def_chain::range_def_chain ()
{
bitmap_obstack_initialize (&m_bitmaps);
m_def_chain.create (0);
m_def_chain.safe_grow_cleared (num_ssa_names);
m_logical_depth = 0;
}
// Destruct a range_def_chain.
range_def_chain::~range_def_chain ()
{
m_def_chain.release ();
bitmap_obstack_release (&m_bitmaps);
}
// Return true if NAME is in the def chain of DEF. If BB is provided,
// only return true if the defining statement of DEF is in BB.
bool
range_def_chain::in_chain_p (tree name, tree def)
{
gcc_checking_assert (gimple_range_ssa_p (def));
gcc_checking_assert (gimple_range_ssa_p (name));
// Get the defintion chain for DEF.
bitmap chain = get_def_chain (def);
if (chain == NULL)
return false;
return bitmap_bit_p (chain, SSA_NAME_VERSION (name));
}
// Add either IMP or the import list B to the import set of DATA.
void
range_def_chain::set_import (struct rdc &data, tree imp, bitmap b)
{
// If there are no imports, just return
if (imp == NULL_TREE && !b)
return;
if (!data.m_import)
data.m_import = BITMAP_ALLOC (&m_bitmaps);
if (imp != NULL_TREE)
bitmap_set_bit (data.m_import, SSA_NAME_VERSION (imp));
else
bitmap_ior_into (data.m_import, b);
}
// Return the import list for NAME.
bitmap
range_def_chain::get_imports (tree name)
{
if (!has_def_chain (name))
get_def_chain (name);
bitmap i = m_def_chain[SSA_NAME_VERSION (name)].m_import;
return i;
}
// Return true if IMPORT is an import to NAMEs def chain.
bool
range_def_chain::chain_import_p (tree name, tree import)
{
bitmap b = get_imports (name);
if (b)
return bitmap_bit_p (b, SSA_NAME_VERSION (import));
return false;
}
// Build def_chains for NAME if it is in BB. Copy the def chain into RESULT.
void
range_def_chain::register_dependency (tree name, tree dep, basic_block bb)
{
if (!gimple_range_ssa_p (dep))
return;
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_def_chain.length ())
m_def_chain.safe_grow_cleared (num_ssa_names + 1);
struct rdc &src = m_def_chain[v];
gimple *def_stmt = SSA_NAME_DEF_STMT (dep);
unsigned dep_v = SSA_NAME_VERSION (dep);
bitmap b;
// Set the direct dependency cache entries.
if (!src.ssa1)
src.ssa1 = dep;
else if (!src.ssa2 && src.ssa1 != dep)
src.ssa2 = dep;
// Don't calculate imports or export/dep chains if BB is not provided.
// This is usually the case for when the temporal cache wants the direct
// dependencies of a stmt.
if (!bb)
return;
if (!src.bm)
src.bm = BITMAP_ALLOC (&m_bitmaps);
// Add this operand into the result.
bitmap_set_bit (src.bm, dep_v);
if (gimple_bb (def_stmt) == bb && !is_a<gphi *>(def_stmt))
{
// Get the def chain for the operand.
b = get_def_chain (dep);
// If there was one, copy it into result. Access def_chain directly
// as the get_def_chain request above could reallocate the vector.
if (b)
bitmap_ior_into (m_def_chain[v].bm, b);
// And copy the import list.
set_import (m_def_chain[v], NULL_TREE, get_imports (dep));
}
else
// Originated outside the block, so it is an import.
set_import (src, dep, NULL);
}
bool
range_def_chain::def_chain_in_bitmap_p (tree name, bitmap b)
{
bitmap a = get_def_chain (name);
if (a && b)
return bitmap_intersect_p (a, b);
return false;
}
void
range_def_chain::add_def_chain_to_bitmap (bitmap b, tree name)
{
bitmap r = get_def_chain (name);
if (r)
bitmap_ior_into (b, r);
}
// Return TRUE if NAME has been processed for a def_chain.
inline bool
range_def_chain::has_def_chain (tree name)
{
// Ensure there is an entry in the internal vector.
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_def_chain.length ())
m_def_chain.safe_grow_cleared (num_ssa_names + 1);
return (m_def_chain[v].ssa1 != 0);
}
// Calculate the def chain for NAME and all of its dependent
// operands. Only using names in the same BB. Return the bitmap of
// all names in the m_def_chain. This only works for supported range
// statements.
bitmap
range_def_chain::get_def_chain (tree name)
{
tree ssa1, ssa2, ssa3;
unsigned v = SSA_NAME_VERSION (name);
// If it has already been processed, just return the cached value.
if (has_def_chain (name) && m_def_chain[v].bm)
return m_def_chain[v].bm;
// No definition chain for default defs.
if (SSA_NAME_IS_DEFAULT_DEF (name))
{
// A Default def is always an import.
set_import (m_def_chain[v], name, NULL);
return NULL;
}
gimple *stmt = SSA_NAME_DEF_STMT (name);
if (gimple_range_handler (stmt))
{
ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
ssa3 = NULL_TREE;
}
else if (is_a<gassign *> (stmt)
&& gimple_assign_rhs_code (stmt) == COND_EXPR)
{
gassign *st = as_a<gassign *> (stmt);
ssa1 = gimple_range_ssa_p (gimple_assign_rhs1 (st));
ssa2 = gimple_range_ssa_p (gimple_assign_rhs2 (st));
ssa3 = gimple_range_ssa_p (gimple_assign_rhs3 (st));
}
else
{
// Stmts not understood are always imports.
set_import (m_def_chain[v], name, NULL);
return NULL;
}
// Terminate the def chains if we see too many cascading stmts.
if (m_logical_depth == param_ranger_logical_depth)
return NULL;
// Increase the depth if we have a pair of ssa-names.
if (ssa1 && ssa2)
m_logical_depth++;
register_dependency (name, ssa1, gimple_bb (stmt));
register_dependency (name, ssa2, gimple_bb (stmt));
register_dependency (name, ssa3, gimple_bb (stmt));
// Stmts with no understandable operands are also imports.
if (!ssa1 && !ssa2 & !ssa3)
set_import (m_def_chain[v], name, NULL);
if (ssa1 && ssa2)
m_logical_depth--;
return m_def_chain[v].bm;
}
// Dump what we know for basic block BB to file F.
void
range_def_chain::dump (FILE *f, basic_block bb, const char *prefix)
{
unsigned x, y;
bitmap_iterator bi;
// Dump the def chain for each SSA_NAME defined in BB.
for (x = 1; x < num_ssa_names; x++)
{
tree name = ssa_name (x);
if (!name)
continue;
gimple *stmt = SSA_NAME_DEF_STMT (name);
if (!stmt || (bb && gimple_bb (stmt) != bb))
continue;
bitmap chain = (has_def_chain (name) ? get_def_chain (name) : NULL);
if (chain && !bitmap_empty_p (chain))
{
fprintf (f, prefix);
print_generic_expr (f, name, TDF_SLIM);
fprintf (f, " : ");
bitmap imports = get_imports (name);
EXECUTE_IF_SET_IN_BITMAP (chain, 0, y, bi)
{
print_generic_expr (f, ssa_name (y), TDF_SLIM);
if (imports && bitmap_bit_p (imports, y))
fprintf (f, "(I)");
fprintf (f, " ");
}
fprintf (f, "\n");
}
}
}
// -------------------------------------------------------------------
/* GORI_MAP is used to accumulate what SSA names in a block can
generate range information, and provides tools for the block ranger
to enable it to efficiently calculate these ranges.
GORI stands for "Generates Outgoing Range Information."
It utilizes the range_def_chain class to contruct def_chains.
Information for a basic block is calculated once and stored. It is
only calculated the first time a query is made. If no queries are
made, there is little overhead.
one bitmap is maintained for each basic block:
m_outgoing : a set bit indicates a range can be generated for a name.
Generally speaking, the m_outgoing vector is the union of the
entire def_chain of all SSA names used in the last statement of the
block which generate ranges. */
// Initialize a gori-map structure.
gori_map::gori_map ()
{
m_outgoing.create (0);
m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
m_incoming.create (0);
m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
m_maybe_variant = BITMAP_ALLOC (&m_bitmaps);
}
// Free any memory the GORI map allocated.
gori_map::~gori_map ()
{
m_incoming.release ();
m_outgoing.release ();
}
// Return the bitmap vector of all export from BB. Calculate if necessary.
bitmap
gori_map::exports (basic_block bb)
{
if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
calculate_gori (bb);
return m_outgoing[bb->index];
}
// Return the bitmap vector of all imports to BB. Calculate if necessary.
bitmap
gori_map::imports (basic_block bb)
{
if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
calculate_gori (bb);
return m_incoming[bb->index];
}
// Return true if NAME is can have ranges generated for it from basic
// block BB.
bool
gori_map::is_export_p (tree name, basic_block bb)
{
// If no BB is specified, test if it is exported anywhere in the IL.
if (!bb)
return bitmap_bit_p (m_maybe_variant, SSA_NAME_VERSION (name));
return bitmap_bit_p (exports (bb), SSA_NAME_VERSION (name));
}
// Clear the m_maybe_variant bit so ranges will not be tracked for NAME.
void
gori_map::set_range_invariant (tree name)
{
bitmap_clear_bit (m_maybe_variant, SSA_NAME_VERSION (name));
}
// Return true if NAME is an import to block BB.
bool
gori_map::is_import_p (tree name, basic_block bb)
{
// If no BB is specified, test if it is exported anywhere in the IL.
return bitmap_bit_p (imports (bb), SSA_NAME_VERSION (name));
}
// If NAME is non-NULL and defined in block BB, calculate the def
// chain and add it to m_outgoing.
void
gori_map::maybe_add_gori (tree name, basic_block bb)
{
if (name)
{
// Check if there is a def chain, regardless of the block.
add_def_chain_to_bitmap (m_outgoing[bb->index], name);
// Check for any imports.
bitmap imp = get_imports (name);
// If there were imports, add them so we can recompute
if (imp)
bitmap_ior_into (m_incoming[bb->index], imp);
// This name is always an import.
if (gimple_bb (SSA_NAME_DEF_STMT (name)) != bb)
bitmap_set_bit (m_incoming[bb->index], SSA_NAME_VERSION (name));
// Def chain doesn't include itself, and even if there isn't a
// def chain, this name should be added to exports.
bitmap_set_bit (m_outgoing[bb->index], SSA_NAME_VERSION (name));
}
}
// Calculate all the required information for BB.
void
gori_map::calculate_gori (basic_block bb)
{
tree name;
if (bb->index >= (signed int)m_outgoing.length ())
{
m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
}
gcc_checking_assert (m_outgoing[bb->index] == NULL);
m_outgoing[bb->index] = BITMAP_ALLOC (&m_bitmaps);
m_incoming[bb->index] = BITMAP_ALLOC (&m_bitmaps);
if (single_succ_p (bb))
return;
// If this block's last statement may generate range informaiton, go
// calculate it.
gimple *stmt = gimple_outgoing_range_stmt_p (bb);
if (!stmt)
return;
if (is_a<gcond *> (stmt))
{
gcond *gc = as_a<gcond *>(stmt);
name = gimple_range_ssa_p (gimple_cond_lhs (gc));
maybe_add_gori (name, gimple_bb (stmt));
name = gimple_range_ssa_p (gimple_cond_rhs (gc));
maybe_add_gori (name, gimple_bb (stmt));
}
else
{
// Do not process switches if they are too large.
if (EDGE_COUNT (bb->succs) > (unsigned)param_evrp_switch_limit)
return;
gswitch *gs = as_a<gswitch *>(stmt);
name = gimple_range_ssa_p (gimple_switch_index (gs));
maybe_add_gori (name, gimple_bb (stmt));
}
// Add this bitmap to the aggregate list of all outgoing names.
bitmap_ior_into (m_maybe_variant, m_outgoing[bb->index]);
}
// Dump the table information for BB to file F.
void
gori_map::dump (FILE *f, basic_block bb, bool verbose)
{
// BB was not processed.
if (!m_outgoing[bb->index] || bitmap_empty_p (m_outgoing[bb->index]))
return;
tree name;
bitmap imp = imports (bb);
if (!bitmap_empty_p (imp))
{
if (verbose)
fprintf (f, "bb<%u> Imports: ",bb->index);
else
fprintf (f, "Imports: ");
FOR_EACH_GORI_IMPORT_NAME (*this, bb, name)
{
print_generic_expr (f, name, TDF_SLIM);
fprintf (f, " ");
}
fputc ('\n', f);
}
if (verbose)
fprintf (f, "bb<%u> Exports: ",bb->index);
else
fprintf (f, "Exports: ");
// Dump the export vector.
FOR_EACH_GORI_EXPORT_NAME (*this, bb, name)
{
print_generic_expr (f, name, TDF_SLIM);
fprintf (f, " ");
}
fputc ('\n', f);
range_def_chain::dump (f, bb, " ");
}
// Dump the entire GORI map structure to file F.
void
gori_map::dump (FILE *f)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
dump (f, bb);
}
DEBUG_FUNCTION void
debug (gori_map &g)
{
g.dump (stderr);
}
// -------------------------------------------------------------------
// Construct a gori_compute object.
gori_compute::gori_compute (int not_executable_flag)
: outgoing (param_evrp_switch_limit), tracer ("GORI ")
{
m_not_executable_flag = not_executable_flag;
// Create a boolean_type true and false range.
m_bool_zero = int_range<2> (boolean_false_node, boolean_false_node);
m_bool_one = int_range<2> (boolean_true_node, boolean_true_node);
if (dump_file && (param_ranger_debug & RANGER_DEBUG_GORI))
tracer.enable_trace ();
}
// Given the switch S, return an evaluation in R for NAME when the lhs
// evaluates to LHS. Returning false means the name being looked for
// was not resolvable.
bool
gori_compute::compute_operand_range_switch (irange &r, gswitch *s,
const irange &lhs,
tree name, fur_source &src)
{
tree op1 = gimple_switch_index (s);
// If name matches, the range is simply the range from the edge.
// Empty ranges are viral as they are on a path which isn't
// executable.
if (op1 == name || lhs.undefined_p ())
{
r = lhs;
return true;
}
// If op1 is in the defintion chain, pass lhs back.
if (gimple_range_ssa_p (op1) && in_chain_p (name, op1))
return compute_operand_range (r, SSA_NAME_DEF_STMT (op1), lhs, name, src);
return false;
}
// Return an evaluation for NAME as it would appear in STMT when the
// statement's lhs evaluates to LHS. If successful, return TRUE and
// store the evaluation in R, otherwise return FALSE.
bool
gori_compute::compute_operand_range (irange &r, gimple *stmt,
const irange &lhs, tree name,
fur_source &src)
{
// If the lhs doesn't tell us anything, neither will unwinding further.
if (lhs.varying_p ())
return false;
// Empty ranges are viral as they are on an unexecutable path.
if (lhs.undefined_p ())
{
r.set_undefined ();
return true;
}
if (is_a<gswitch *> (stmt))
return compute_operand_range_switch (r, as_a<gswitch *> (stmt), lhs, name,
src);
if (!gimple_range_handler (stmt))
return false;
tree op1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
tree op2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
// Handle end of lookup first.
if (op1 == name)
return compute_operand1_range (r, stmt, lhs, name, src);
if (op2 == name)
return compute_operand2_range (r, stmt, lhs, name, src);
// NAME is not in this stmt, but one of the names in it ought to be
// derived from it.
bool op1_in_chain = op1 && in_chain_p (name, op1);
bool op2_in_chain = op2 && in_chain_p (name, op2);
// If neither operand is derived, then this stmt tells us nothing.
if (!op1_in_chain && !op2_in_chain)
return false;
bool res;
// Process logicals as they have special handling.
if (is_gimple_logical_p (stmt))
{
unsigned idx;
if ((idx = tracer.header ("compute_operand ")))
{
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " with LHS = ");
lhs.dump (dump_file);
fprintf (dump_file, " at stmt ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
int_range_max op1_trange, op1_frange;
int_range_max op2_trange, op2_frange;
compute_logical_operands (op1_trange, op1_frange, stmt, lhs,
name, src, op1, op1_in_chain);
compute_logical_operands (op2_trange, op2_frange, stmt, lhs,
name, src, op2, op2_in_chain);
res = logical_combine (r, gimple_expr_code (stmt), lhs,
op1_trange, op1_frange, op2_trange, op2_frange);
if (idx)
tracer.trailer (idx, "compute_operand", res, name, r);
}
// Follow the appropriate operands now.
else if (op1_in_chain && op2_in_chain)
res = compute_operand1_and_operand2_range (r, stmt, lhs, name, src);
else if (op1_in_chain)
res = compute_operand1_range (r, stmt, lhs, name, src);
else if (op2_in_chain)
res = compute_operand2_range (r, stmt, lhs, name, src);
else
gcc_unreachable ();
// If neither operand is derived, this statement tells us nothing.
return res;
}
// Return TRUE if range R is either a true or false compatible range.
static bool
range_is_either_true_or_false (const irange &r)
{
if (r.undefined_p ())
return false;
// This is complicated by the fact that Ada has multi-bit booleans,
// so true can be ~[0, 0] (i.e. [1,MAX]).
tree type = r.type ();
gcc_checking_assert (range_compatible_p (type, boolean_type_node));
return (r.singleton_p () || !r.contains_p (build_zero_cst (type)));
}
// Evaluate a binary logical expression by combining the true and
// false ranges for each of the operands based on the result value in
// the LHS.
bool
gori_compute::logical_combine (irange &r, enum tree_code code,
const irange &lhs,
const irange &op1_true, const irange &op1_false,
const irange &op2_true, const irange &op2_false)
{
if (op1_true.varying_p () && op1_false.varying_p ()
&& op2_true.varying_p () && op2_false.varying_p ())
return false;
unsigned idx;
if ((idx = tracer.header ("logical_combine")))
{
switch (code)
{
case TRUTH_OR_EXPR:
case BIT_IOR_EXPR:
fprintf (dump_file, " || ");
break;
case TRUTH_AND_EXPR:
case BIT_AND_EXPR:
fprintf (dump_file, " && ");
break;
default:
break;
}
fprintf (dump_file, " with LHS = ");
lhs.dump (dump_file);
fputc ('\n', dump_file);
tracer.print (idx, "op1_true = ");
op1_true.dump (dump_file);
fprintf (dump_file, " op1_false = ");
op1_false.dump (dump_file);
fputc ('\n', dump_file);
tracer.print (idx, "op2_true = ");
op2_true.dump (dump_file);
fprintf (dump_file, " op2_false = ");
op2_false.dump (dump_file);
fputc ('\n', dump_file);
}
// This is not a simple fold of a logical expression, rather it
// determines ranges which flow through the logical expression.
//
// Assuming x_8 is an unsigned char, and relational statements:
// b_1 = x_8 < 20
// b_2 = x_8 > 5
// consider the logical expression and branch:
// c_2 = b_1 && b_2
// if (c_2)
//
// To determine the range of x_8 on either edge of the branch, one
// must first determine what the range of x_8 is when the boolean
// values of b_1 and b_2 are both true and false.
// b_1 TRUE x_8 = [0, 19]
// b_1 FALSE x_8 = [20, 255]
// b_2 TRUE x_8 = [6, 255]
// b_2 FALSE x_8 = [0,5].
//
// These ranges are then combined based on the expected outcome of
// the branch. The range on the TRUE side of the branch must satisfy
// b_1 == true && b_2 == true
//
// In terms of x_8, that means both x_8 == [0, 19] and x_8 = [6, 255]
// must be true. The range of x_8 on the true side must be the
// intersection of both ranges since both must be true. Thus the
// range of x_8 on the true side is [6, 19].
//
// To determine the ranges on the FALSE side, all 3 combinations of
// failing ranges must be considered, and combined as any of them
// can cause the false result.
//
// If the LHS can be TRUE or FALSE, then evaluate both a TRUE and
// FALSE results and combine them. If we fell back to VARYING any
// range restrictions that have been discovered up to this point
// would be lost.
if (!range_is_either_true_or_false (lhs))
{
bool res;
int_range_max r1;
if (logical_combine (r1, code, m_bool_zero, op1_true, op1_false,
op2_true, op2_false)
&& logical_combine (r, code, m_bool_one, op1_true, op1_false,
op2_true, op2_false))
{
r.union_ (r1);
res = true;
}
else
res = false;
if (idx)
tracer.trailer (idx, "logical_combine", res, NULL_TREE, r);
}
switch (code)
{
// A logical AND combines ranges from 2 boolean conditions.
// c_2 = b_1 && b_2
case TRUTH_AND_EXPR:
case BIT_AND_EXPR:
if (!lhs.zero_p ())
{
// The TRUE side is the intersection of the 2 true ranges.
r = op1_true;
r.intersect (op2_true);
}
else
{
// The FALSE side is the union of the other 3 cases.
int_range_max ff (op1_false);
ff.intersect (op2_false);
int_range_max tf (op1_true);
tf.intersect (op2_false);
int_range_max ft (op1_false);
ft.intersect (op2_true);
r = ff;
r.union_ (tf);
r.union_ (ft);
}
break;
// A logical OR combines ranges from 2 boolean conditons.
// c_2 = b_1 || b_2
case TRUTH_OR_EXPR:
case BIT_IOR_EXPR:
if (lhs.zero_p ())
{
// An OR operation will only take the FALSE path if both
// operands are false simlulateously, which means they should
// be intersected. !(x || y) == !x && !y
r = op1_false;
r.intersect (op2_false);
}
else
{
// The TRUE side of an OR operation will be the union of
// the other three combinations.
int_range_max tt (op1_true);
tt.intersect (op2_true);
int_range_max tf (op1_true);
tf.intersect (op2_false);
int_range_max ft (op1_false);
ft.intersect (op2_true);
r = tt;
r.union_ (tf);
r.union_ (ft);
}
break;
default:
gcc_unreachable ();
}
if (idx)
tracer.trailer (idx, "logical_combine", true, NULL_TREE, r);
return true;
}
// Given a logical STMT, calculate true and false ranges for each
// potential path of NAME, assuming NAME came through the OP chain if
// OP_IN_CHAIN is true.
void
gori_compute::compute_logical_operands (irange &true_range, irange &false_range,
gimple *stmt,
const irange &lhs,
tree name, fur_source &src,
tree op, bool op_in_chain)
{
gimple *src_stmt = gimple_range_ssa_p (op) ? SSA_NAME_DEF_STMT (op) : NULL;
if (!op_in_chain || !src_stmt || chain_import_p (gimple_get_lhs (stmt), op))
{
// If op is not in the def chain, or defined in this block,
// use its known value on entry to the block.
src.get_operand (true_range, name);
false_range = true_range;
unsigned idx;
if ((idx = tracer.header ("logical_operand")))
{
print_generic_expr (dump_file, op, TDF_SLIM);
fprintf (dump_file, " not in computation chain. Queried.\n");
tracer.trailer (idx, "logical_operand", true, NULL_TREE, true_range);
}
return;
}
enum tree_code code = gimple_expr_code (stmt);
// Optimize [0 = x | y], since neither operand can ever be non-zero.
if ((code == BIT_IOR_EXPR || code == TRUTH_OR_EXPR) && lhs.zero_p ())
{
if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name,
src))
src.get_operand (false_range, name);
true_range = false_range;
return;
}
// Optimize [1 = x & y], since neither operand can ever be zero.
if ((code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) && lhs == m_bool_one)
{
if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
src.get_operand (true_range, name);
false_range = true_range;
return;
}
// Calculate ranges for true and false on both sides, since the false
// path is not always a simple inversion of the true side.
if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
src.get_operand (true_range, name);
if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name, src))
src.get_operand (false_range, name);
}
// Calculate a range for NAME from the operand 1 position of STMT
// assuming the result of the statement is LHS. Return the range in
// R, or false if no range could be calculated.
bool
gori_compute::compute_operand1_range (irange &r, gimple *stmt,
const irange &lhs, tree name,
fur_source &src)
{
int_range_max op1_range, op2_range;
tree op1 = gimple_range_operand1 (stmt);
tree op2 = gimple_range_operand2 (stmt);
// Fetch the known range for op1 in this block.
src.get_operand (op1_range, op1);
// Now range-op calcuate and put that result in r.
if (op2)
{
src.get_operand (op2_range, op2);
if (!gimple_range_calc_op1 (r, stmt, lhs, op2_range))
return false;
}
else
{
// We pass op1_range to the unary operation. Nomally it's a
// hidden range_for_type parameter, but sometimes having the
// actual range can result in better information.
if (!gimple_range_calc_op1 (r, stmt, lhs, op1_range))
return false;
}
unsigned idx;
if ((idx = tracer.header ("compute op 1 (")))
{
print_generic_expr (dump_file, op1, TDF_SLIM);
fprintf (dump_file, ") at ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
tracer.print (idx, "LHS =");
lhs.dump (dump_file);
if (op2 && TREE_CODE (op2) == SSA_NAME)
{
fprintf (dump_file, ", ");
print_generic_expr (dump_file, op2, TDF_SLIM);
fprintf (dump_file, " = ");
op2_range.dump (dump_file);
}
fprintf (dump_file, "\n");
tracer.print (idx, "Computes ");
print_generic_expr (dump_file, op1, TDF_SLIM);
fprintf (dump_file, " = ");
r.dump (dump_file);
fprintf (dump_file, " intersect Known range : ");
op1_range.dump (dump_file);
fputc ('\n', dump_file);
}
// Intersect the calculated result with the known result and return if done.
if (op1 == name)
{
r.intersect (op1_range);
if (idx)
tracer.trailer (idx, "produces ", true, name, r);
return true;
}
// If the calculation continues, we're using op1_range as the new LHS.
op1_range.intersect (r);
if (idx)
tracer.trailer (idx, "produces ", true, op1, op1_range);
gimple *src_stmt = SSA_NAME_DEF_STMT (op1);
gcc_checking_assert (src_stmt);
// Then feed this range back as the LHS of the defining statement.
return compute_operand_range (r, src_stmt, op1_range, name, src);
}
// Calculate a range for NAME from the operand 2 position of S
// assuming the result of the statement is LHS. Return the range in
// R, or false if no range could be calculated.
bool
gori_compute::compute_operand2_range (irange &r, gimple *stmt,
const irange &lhs, tree name,
fur_source &src)
{
int_range_max op1_range, op2_range;
tree op1 = gimple_range_operand1 (stmt);
tree op2 = gimple_range_operand2 (stmt);
src.get_operand (op1_range, op1);
src.get_operand (op2_range, op2);
// Intersect with range for op2 based on lhs and op1.
if (!gimple_range_calc_op2 (r, stmt, lhs, op1_range))
return false;
unsigned idx;
if ((idx = tracer.header ("compute op 2 (")))
{
print_generic_expr (dump_file, op2, TDF_SLIM);
fprintf (dump_file, ") at ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
tracer.print (idx, "LHS = ");
lhs.dump (dump_file);
if (TREE_CODE (op1) == SSA_NAME)
{
fprintf (dump_file, ", ");
print_generic_expr (dump_file, op1, TDF_SLIM);
fprintf (dump_file, " = ");
op1_range.dump (dump_file);
}
fprintf (dump_file, "\n");
tracer.print (idx, "Computes ");
print_generic_expr (dump_file, op2, TDF_SLIM);
fprintf (dump_file, " = ");
r.dump (dump_file);
fprintf (dump_file, " intersect Known range : ");
op2_range.dump (dump_file);
fputc ('\n', dump_file);
}
// Intersect the calculated result with the known result and return if done.
if (op2 == name)
{
r.intersect (op2_range);
if (idx)
tracer.trailer (idx, " produces ", true, NULL_TREE, r);
return true;
}
// If the calculation continues, we're using op2_range as the new LHS.
op2_range.intersect (r);
if (idx)
tracer.trailer (idx, " produces ", true, op2, op2_range);
gimple *src_stmt = SSA_NAME_DEF_STMT (op2);
gcc_checking_assert (src_stmt);
// gcc_checking_assert (!is_import_p (op2, find.bb));
// Then feed this range back as the LHS of the defining statement.
return compute_operand_range (r, src_stmt, op2_range, name, src);
}
// Calculate a range for NAME from both operand positions of S
// assuming the result of the statement is LHS. Return the range in
// R, or false if no range could be calculated.
bool
gori_compute::compute_operand1_and_operand2_range (irange &r,
gimple *stmt,
const irange &lhs,
tree name,
fur_source &src)
{
int_range_max op_range;
// Calculate a good a range for op2. Since op1 == op2, this will
// have already included whatever the actual range of name is.
if (!compute_operand2_range (op_range, stmt, lhs, name, src))
return false;
// Now get the range thru op1.
if (!compute_operand1_range (r, stmt, lhs, name, src))
return false;
// Both operands have to be simultaneously true, so perform an intersection.
r.intersect (op_range);
return true;
}
// Return TRUE if NAME can be recomputed on any edge exiting BB. If any
// direct dependant is exported, it may also change the computed value of NAME.
bool
gori_compute::may_recompute_p (tree name, basic_block bb)
{
tree dep1 = depend1 (name);
tree dep2 = depend2 (name);
// If the first dependency is not set, there is no recompuation.
if (!dep1)
return false;
// Don't recalculate PHIs or statements with side_effects.
gimple *s = SSA_NAME_DEF_STMT (name);
if (is_a<gphi *> (s) || gimple_has_side_effects (s))
return false;
// If edge is specified, check if NAME can be recalculated on that edge.
if (bb)
return ((is_export_p (dep1, bb))
|| (dep2 && is_export_p (dep2, bb)));
return (is_export_p (dep1)) || (dep2 && is_export_p (dep2));
}
// Return TRUE if NAME can be recomputed on edge E. If any direct dependant
// is exported on edge E, it may change the computed value of NAME.
bool
gori_compute::may_recompute_p (tree name, edge e)
{
gcc_checking_assert (e);
return may_recompute_p (name, e->src);
}
// Return TRUE if a range can be calculated or recomputed for NAME on any
// edge exiting BB.
bool
gori_compute::has_edge_range_p (tree name, basic_block bb)
{
// Check if NAME is an export or can be recomputed.
if (bb)
return is_export_p (name, bb) || may_recompute_p (name, bb);
// If no block is specified, check for anywhere in the IL.
return is_export_p (name) || may_recompute_p (name);
}
// Return TRUE if a range can be calculated or recomputed for NAME on edge E.
bool
gori_compute::has_edge_range_p (tree name, edge e)
{
gcc_checking_assert (e);
return has_edge_range_p (name, e->src);
}
// Calculate a range on edge E and return it in R. Try to evaluate a
// range for NAME on this edge. Return FALSE if this is either not a
// control edge or NAME is not defined by this edge.
bool
gori_compute::outgoing_edge_range_p (irange &r, edge e, tree name,
range_query &q)
{
int_range_max lhs;
unsigned idx;
if ((e->flags & m_not_executable_flag))
{
r.set_undefined ();
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Outgoing edge %d->%d unexecutable.\n",
e->src->index, e->dest->index);
return true;
}
gcc_checking_assert (gimple_range_ssa_p (name));
// Determine if there is an outgoing edge.
gimple *stmt = outgoing.edge_range_p (lhs, e);
if (!stmt)
return false;
fur_stmt src (stmt, &q);
// If NAME can be calculated on the edge, use that.
if (is_export_p (name, e->src))
{
bool res;
if ((idx = tracer.header ("outgoing_edge")))
{
fprintf (dump_file, " for ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " on edge %d->%d\n",
e->src->index, e->dest->index);
}
if ((res = compute_operand_range (r, stmt, lhs, name, src)))
{
// Sometimes compatible types get interchanged. See PR97360.
// Make sure we are returning the type of the thing we asked for.
if (!r.undefined_p () && r.type () != TREE_TYPE (name))
{
gcc_checking_assert (range_compatible_p (r.type (),
TREE_TYPE (name)));
range_cast (r, TREE_TYPE (name));
}
}
if (idx)
tracer.trailer (idx, "outgoing_edge", res, name, r);
return res;
}
// If NAME isn't exported, check if it can be recomputed.
else if (may_recompute_p (name, e))
{
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
if ((idx = tracer.header ("recomputation")))
{
fprintf (dump_file, " attempt on edge %d->%d for ",
e->src->index, e->dest->index);
print_gimple_stmt (dump_file, def_stmt, 0, TDF_SLIM);
}
// Simply calculate DEF_STMT on edge E using the range query Q.
fold_range (r, def_stmt, e, &q);
if (idx)
tracer.trailer (idx, "recomputation", true, name, r);
return true;
}
return false;
}
// Given COND ? OP1 : OP2 with ranges R1 for OP1 and R2 for OP2, Use gori
// to further resolve R1 and R2 if there are any dependencies between
// OP1 and COND or OP2 and COND. All values can are to be calculated using SRC
// as the origination source location for operands..
// Effectively, use COND an the edge condition and solve for OP1 on the true
// edge and OP2 on the false edge.
bool
gori_compute::condexpr_adjust (irange &r1, irange &r2, gimple *, tree cond,
tree op1, tree op2, fur_source &src)
{
int_range_max tmp, cond_true, cond_false;
tree ssa1 = gimple_range_ssa_p (op1);
tree ssa2 = gimple_range_ssa_p (op2);
if (!ssa1 && !ssa2)
return false;
if (!COMPARISON_CLASS_P (cond))
return false;
tree type = TREE_TYPE (TREE_OPERAND (cond, 0));
if (!range_compatible_p (type, TREE_TYPE (TREE_OPERAND (cond, 1))))
return false;
range_operator *hand = range_op_handler (TREE_CODE (cond), type);
if (!hand)
return false;
tree c1 = gimple_range_ssa_p (TREE_OPERAND (cond, 0));
tree c2 = gimple_range_ssa_p (TREE_OPERAND (cond, 1));
// Only solve if there is one SSA name in the condition.
if ((!c1 && !c2) || (c1 && c2))
return false;
// Pick up the current values of each part of the condition.
int_range_max cl, cr;
src.get_operand (cl, TREE_OPERAND (cond, 0));
src.get_operand (cr, TREE_OPERAND (cond, 1));
tree cond_name = c1 ? c1 : c2;
gimple *def_stmt = SSA_NAME_DEF_STMT (cond_name);
// Evaluate the value of COND_NAME on the true and false edges, using either
// the op1 or op2 routines based on its location.
if (c1)
{
if (!hand->op1_range (cond_false, type, m_bool_zero, cr))
return false;
if (!hand->op1_range (cond_true, type, m_bool_one, cr))
return false;
cond_false.intersect (cl);
cond_true.intersect (cl);
}
else
{
if (!hand->op2_range (cond_false, type, m_bool_zero, cl))
return false;
if (!hand->op2_range (cond_true, type, m_bool_one, cl))
return false;
cond_false.intersect (cr);
cond_true.intersect (cr);
}
unsigned idx;
if ((idx = tracer.header ("cond_expr evaluation : ")))
{
fprintf (dump_file, " range1 = ");
r1.dump (dump_file);
fprintf (dump_file, ", range2 = ");
r1.dump (dump_file);
fprintf (dump_file, "\n");
}
// Now solve for SSA1 or SSA2 if they are in the dependency chain.
if (ssa1 && in_chain_p (ssa1, cond_name))
{
if (compute_operand_range (tmp, def_stmt, cond_true, ssa1, src))
r1.intersect (tmp);
}
if (ssa2 && in_chain_p (ssa2, cond_name))
{
if (compute_operand_range (tmp, def_stmt, cond_false, ssa2, src))
r2.intersect (tmp);
}
if (idx)
{
tracer.print (idx, "outgoing: range1 = ");
r1.dump (dump_file);
fprintf (dump_file, ", range2 = ");
r1.dump (dump_file);
fprintf (dump_file, "\n");
tracer.trailer (idx, "cond_expr", true, cond_name, cond_true);
}
return true;
}
// Dump what is known to GORI computes to listing file F.
void
gori_compute::dump (FILE *f)
{
gori_map::dump (f);
}
// ------------------------------------------------------------------------
// GORI iterator. Although we have bitmap iterators, don't expose that it
// is currently a bitmap. Use an export iterator to hide future changes.
// Construct a basic iterator over an export bitmap.
gori_export_iterator::gori_export_iterator (bitmap b)
{
bm = b;
if (b)
bmp_iter_set_init (&bi, b, 1, &y);
}
// Move to the next export bitmap spot.
void
gori_export_iterator::next ()
{
bmp_iter_next (&bi, &y);
}
// Fetch the name of the next export in the export list. Return NULL if
// iteration is done.
tree
gori_export_iterator::get_name ()
{
if (!bm)
return NULL_TREE;
while (bmp_iter_set (&bi, &y))
{
tree t = ssa_name (y);
if (t)
return t;
next ();
}
return NULL_TREE;
}
|