1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
|
/* Basic block path solver.
Copyright (C) 2021-2022 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfganal.h"
#include "value-range.h"
#include "gimple-range.h"
#include "tree-pretty-print.h"
#include "gimple-range-path.h"
#include "ssa.h"
#include "tree-cfg.h"
#include "gimple-iterator.h"
// Internal construct to help facilitate debugging of solver.
#define DEBUG_SOLVER (dump_file && (param_threader_debug == THREADER_DEBUG_ALL))
path_range_query::path_range_query (bool resolve, gimple_ranger *ranger)
: m_cache (new ssa_global_cache),
m_has_cache_entry (BITMAP_ALLOC (NULL)),
m_resolve (resolve),
m_alloced_ranger (!ranger)
{
if (m_alloced_ranger)
m_ranger = new gimple_ranger;
else
m_ranger = ranger;
m_oracle = new path_oracle (m_ranger->oracle ());
if (m_resolve && flag_checking)
verify_marked_backedges (cfun);
}
path_range_query::~path_range_query ()
{
delete m_oracle;
if (m_alloced_ranger)
delete m_ranger;
BITMAP_FREE (m_has_cache_entry);
delete m_cache;
}
// Return TRUE if NAME is in the import bitmap.
bool
path_range_query::import_p (tree name)
{
return (TREE_CODE (name) == SSA_NAME
&& bitmap_bit_p (m_imports, SSA_NAME_VERSION (name)));
}
// Mark cache entry for NAME as unused.
void
path_range_query::clear_cache (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
bitmap_clear_bit (m_has_cache_entry, v);
}
// If NAME has a cache entry, return it in R, and return TRUE.
inline bool
path_range_query::get_cache (irange &r, tree name)
{
if (!gimple_range_ssa_p (name))
return get_global_range_query ()->range_of_expr (r, name);
unsigned v = SSA_NAME_VERSION (name);
if (bitmap_bit_p (m_has_cache_entry, v))
return m_cache->get_global_range (r, name);
return false;
}
// Set the cache entry for NAME to R.
void
path_range_query::set_cache (const irange &r, tree name)
{
unsigned v = SSA_NAME_VERSION (name);
bitmap_set_bit (m_has_cache_entry, v);
m_cache->set_global_range (name, r);
}
void
path_range_query::dump (FILE *dump_file)
{
push_dump_file save (dump_file, dump_flags & ~TDF_DETAILS);
if (m_path.is_empty ())
return;
unsigned i;
bitmap_iterator bi;
dump_ranger (dump_file, m_path);
fprintf (dump_file, "Imports:\n");
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, "\n");
}
m_cache->dump (dump_file);
}
void
path_range_query::debug ()
{
dump (stderr);
}
// Return TRUE if NAME is defined outside the current path.
bool
path_range_query::defined_outside_path (tree name)
{
gimple *def = SSA_NAME_DEF_STMT (name);
basic_block bb = gimple_bb (def);
return !bb || !m_path.contains (bb);
}
// Return the range of NAME on entry to the path.
void
path_range_query::range_on_path_entry (irange &r, tree name)
{
gcc_checking_assert (defined_outside_path (name));
basic_block entry = entry_bb ();
// Prefer to use range_of_expr if we have a statement to look at,
// since it has better caching than range_on_edge.
gimple *last = last_stmt (entry);
if (last)
{
if (m_ranger->range_of_expr (r, name, last))
return;
gcc_unreachable ();
}
// If we have no statement, look at all the incoming ranges to the
// block. This can happen when we're querying a block with only an
// outgoing edge (no statement but the fall through edge), but for
// which we can determine a range on entry to the block.
int_range_max tmp;
bool changed = false;
r.set_undefined ();
for (unsigned i = 0; i < EDGE_COUNT (entry->preds); ++i)
{
edge e = EDGE_PRED (entry, i);
if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
&& m_ranger->range_on_edge (tmp, e, name))
{
r.union_ (tmp);
changed = true;
}
}
// Make sure we don't return UNDEFINED by mistake.
if (!changed)
r.set_varying (TREE_TYPE (name));
}
// Return the range of NAME at the end of the path being analyzed.
bool
path_range_query::internal_range_of_expr (irange &r, tree name, gimple *stmt)
{
if (!irange::supports_type_p (TREE_TYPE (name)))
return false;
if (get_cache (r, name))
return true;
if (m_resolve && defined_outside_path (name))
{
range_on_path_entry (r, name);
set_cache (r, name);
return true;
}
if (stmt
&& range_defined_in_block (r, name, gimple_bb (stmt)))
{
if (TREE_CODE (name) == SSA_NAME)
r.intersect (gimple_range_global (name));
set_cache (r, name);
return true;
}
r = gimple_range_global (name);
return true;
}
bool
path_range_query::range_of_expr (irange &r, tree name, gimple *stmt)
{
if (internal_range_of_expr (r, name, stmt))
{
if (r.undefined_p ())
m_undefined_path = true;
return true;
}
return false;
}
bool
path_range_query::unreachable_path_p ()
{
return m_undefined_path;
}
// Initialize the current path to PATH. The current block is set to
// the entry block to the path.
//
// Note that the blocks are in reverse order, so the exit block is
// path[0].
void
path_range_query::set_path (const vec<basic_block> &path)
{
gcc_checking_assert (path.length () > 1);
m_path = path.copy ();
m_pos = m_path.length () - 1;
bitmap_clear (m_has_cache_entry);
}
bool
path_range_query::ssa_defined_in_bb (tree name, basic_block bb)
{
return (TREE_CODE (name) == SSA_NAME
&& SSA_NAME_DEF_STMT (name)
&& gimple_bb (SSA_NAME_DEF_STMT (name)) == bb);
}
// Return the range of the result of PHI in R.
//
// Since PHIs are calculated in parallel at the beginning of the
// block, we must be careful to never save anything to the cache here.
// It is the caller's responsibility to adjust the cache. Also,
// calculating the PHI's range must not trigger additional lookups.
void
path_range_query::ssa_range_in_phi (irange &r, gphi *phi)
{
tree name = gimple_phi_result (phi);
basic_block bb = gimple_bb (phi);
unsigned nargs = gimple_phi_num_args (phi);
if (at_entry ())
{
if (m_resolve && m_ranger->range_of_expr (r, name, phi))
return;
// Try to fold the phi exclusively with global or cached values.
// This will get things like PHI <5(99), 6(88)>. We do this by
// calling range_of_expr with no context.
int_range_max arg_range;
r.set_undefined ();
for (size_t i = 0; i < nargs; ++i)
{
tree arg = gimple_phi_arg_def (phi, i);
if (range_of_expr (arg_range, arg, /*stmt=*/NULL))
r.union_ (arg_range);
else
{
r.set_varying (TREE_TYPE (name));
return;
}
}
return;
}
basic_block prev = prev_bb ();
edge e_in = find_edge (prev, bb);
for (size_t i = 0; i < nargs; ++i)
if (e_in == gimple_phi_arg_edge (phi, i))
{
tree arg = gimple_phi_arg_def (phi, i);
// Avoid using the cache for ARGs defined in this block, as
// that could create an ordering problem.
if (ssa_defined_in_bb (arg, bb) || !get_cache (r, arg))
{
if (m_resolve)
{
int_range_max tmp;
// Using both the range on entry to the path, and the
// range on this edge yields significantly better
// results.
if (defined_outside_path (arg))
range_on_path_entry (r, arg);
else
r.set_varying (TREE_TYPE (name));
m_ranger->range_on_edge (tmp, e_in, arg);
r.intersect (tmp);
return;
}
r.set_varying (TREE_TYPE (name));
}
return;
}
gcc_unreachable ();
}
// If NAME is defined in BB, set R to the range of NAME, and return
// TRUE. Otherwise, return FALSE.
bool
path_range_query::range_defined_in_block (irange &r, tree name, basic_block bb)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
basic_block def_bb = gimple_bb (def_stmt);
if (def_bb != bb)
return false;
if (get_cache (r, name))
return true;
if (gimple_code (def_stmt) == GIMPLE_PHI)
ssa_range_in_phi (r, as_a<gphi *> (def_stmt));
else
{
if (name)
get_path_oracle ()->killing_def (name);
if (!range_of_stmt (r, def_stmt, name))
r.set_varying (TREE_TYPE (name));
}
if (bb)
m_non_null.adjust_range (r, name, bb, false);
if (DEBUG_SOLVER && (bb || !r.varying_p ()))
{
fprintf (dump_file, "range_defined_in_block (BB%d) for ", bb ? bb->index : -1);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " is ");
r.dump (dump_file);
fprintf (dump_file, "\n");
}
return true;
}
// Compute ranges defined in the PHIs in this block.
void
path_range_query::compute_ranges_in_phis (basic_block bb)
{
int_range_max r;
auto_bitmap phi_set;
// PHIs must be resolved simultaneously on entry to the block
// because any dependencies must be satistifed with values on entry.
// Thus, we calculate all PHIs first, and then update the cache at
// the end.
for (auto iter = gsi_start_phis (bb); !gsi_end_p (iter); gsi_next (&iter))
{
gphi *phi = iter.phi ();
tree name = gimple_phi_result (phi);
if (import_p (name) && range_defined_in_block (r, name, bb))
{
unsigned v = SSA_NAME_VERSION (name);
set_cache (r, name);
bitmap_set_bit (phi_set, v);
// Pretend we don't have a cache entry for this name until
// we're done with all PHIs.
bitmap_clear_bit (m_has_cache_entry, v);
}
}
bitmap_ior_into (m_has_cache_entry, phi_set);
}
// Return TRUE if relations may be invalidated after crossing edge E.
bool
path_range_query::relations_may_be_invalidated (edge e)
{
// As soon as the path crosses a back edge, we can encounter
// definitions of SSA_NAMEs that may have had a use in the path
// already, so this will then be a new definition. The relation
// code is all designed around seeing things in dominator order, and
// crossing a back edge in the path violates this assumption.
return (e->flags & EDGE_DFS_BACK);
}
// Compute ranges defined in the current block, or exported to the
// next block.
void
path_range_query::compute_ranges_in_block (basic_block bb)
{
bitmap_iterator bi;
int_range_max r, cached_range;
unsigned i;
if (m_resolve && !at_entry ())
compute_phi_relations (bb, prev_bb ());
// Force recalculation of any names in the cache that are defined in
// this block. This can happen on interdependent SSA/phis in loops.
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
if (ssa_defined_in_bb (name, bb))
clear_cache (name);
}
// Solve imports defined in this block, starting with the PHIs...
compute_ranges_in_phis (bb);
// ...and then the rest of the imports.
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
if (gimple_code (SSA_NAME_DEF_STMT (name)) != GIMPLE_PHI
&& range_defined_in_block (r, name, bb))
set_cache (r, name);
}
if (at_exit ())
return;
// Solve imports that are exported to the next block.
basic_block next = next_bb ();
edge e = find_edge (bb, next);
if (m_resolve && relations_may_be_invalidated (e))
{
if (DEBUG_SOLVER)
fprintf (dump_file,
"Resetting relations as they may be invalidated in %d->%d.\n",
e->src->index, e->dest->index);
path_oracle *p = get_path_oracle ();
p->reset_path ();
// ?? Instead of nuking the root oracle altogether, we could
// reset the path oracle to search for relations from the top of
// the loop with the root oracle. Something for future development.
p->set_root_oracle (nullptr);
}
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
gori_compute &g = m_ranger->gori ();
bitmap exports = g.exports (bb);
if (bitmap_bit_p (exports, i))
{
if (g.outgoing_edge_range_p (r, e, name, *this))
{
if (get_cache (cached_range, name))
r.intersect (cached_range);
set_cache (r, name);
if (DEBUG_SOLVER)
{
fprintf (dump_file, "outgoing_edge_range_p for ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " on edge %d->%d ",
e->src->index, e->dest->index);
fprintf (dump_file, "is ");
r.dump (dump_file);
fprintf (dump_file, "\n");
}
}
}
}
if (m_resolve)
compute_outgoing_relations (bb, next);
}
// Adjust all pointer imports in BB with non-null information.
void
path_range_query::adjust_for_non_null_uses (basic_block bb)
{
int_range_max r;
bitmap_iterator bi;
unsigned i;
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
if (!POINTER_TYPE_P (TREE_TYPE (name)))
continue;
if (get_cache (r, name))
{
if (r.nonzero_p ())
continue;
}
else
r.set_varying (TREE_TYPE (name));
if (m_non_null.adjust_range (r, name, bb, false))
set_cache (r, name);
}
}
// If NAME is a supported SSA_NAME, add it the bitmap in IMPORTS.
bool
path_range_query::add_to_imports (tree name, bitmap imports)
{
if (TREE_CODE (name) == SSA_NAME
&& irange::supports_type_p (TREE_TYPE (name)))
return bitmap_set_bit (imports, SSA_NAME_VERSION (name));
return false;
}
// Compute the imports to the path ending in EXIT. These are
// essentially the SSA names used to calculate the final conditional
// along the path.
//
// They are hints for the solver. Adding more elements doesn't slow
// us down, because we don't solve anything that doesn't appear in the
// path. On the other hand, not having enough imports will limit what
// we can solve.
void
path_range_query::compute_imports (bitmap imports, basic_block exit)
{
// Start with the imports from the exit block...
gori_compute &gori = m_ranger->gori ();
bitmap r_imports = gori.imports (exit);
bitmap_copy (imports, r_imports);
auto_vec<tree> worklist (bitmap_count_bits (imports));
bitmap_iterator bi;
unsigned i;
EXECUTE_IF_SET_IN_BITMAP (imports, 0, i, bi)
{
tree name = ssa_name (i);
worklist.quick_push (name);
}
// ...and add any operands used to define these imports.
while (!worklist.is_empty ())
{
tree name = worklist.pop ();
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
if (is_gimple_assign (def_stmt))
{
add_to_imports (gimple_assign_rhs1 (def_stmt), imports);
tree rhs = gimple_assign_rhs2 (def_stmt);
if (rhs && add_to_imports (rhs, imports))
worklist.safe_push (rhs);
rhs = gimple_assign_rhs3 (def_stmt);
if (rhs && add_to_imports (rhs, imports))
worklist.safe_push (rhs);
}
else if (gphi *phi = dyn_cast <gphi *> (def_stmt))
{
for (size_t i = 0; i < gimple_phi_num_args (phi); ++i)
{
edge e = gimple_phi_arg_edge (phi, i);
tree arg = gimple_phi_arg (phi, i)->def;
if (TREE_CODE (arg) == SSA_NAME
&& m_path.contains (e->src)
&& bitmap_set_bit (imports, SSA_NAME_VERSION (arg)))
worklist.safe_push (arg);
}
}
}
// Exported booleans along the path, may help conditionals.
if (m_resolve)
for (i = 0; i < m_path.length (); ++i)
{
basic_block bb = m_path[i];
tree name;
FOR_EACH_GORI_EXPORT_NAME (gori, bb, name)
if (TREE_CODE (TREE_TYPE (name)) == BOOLEAN_TYPE)
bitmap_set_bit (imports, SSA_NAME_VERSION (name));
}
}
// Compute the ranges for IMPORTS along PATH.
//
// IMPORTS are the set of SSA names, any of which could potentially
// change the value of the final conditional in PATH. Default to the
// imports of the last block in the path if none is given.
void
path_range_query::compute_ranges (const vec<basic_block> &path,
const bitmap_head *imports)
{
if (DEBUG_SOLVER)
fprintf (dump_file, "\n==============================================\n");
set_path (path);
m_undefined_path = false;
if (imports)
bitmap_copy (m_imports, imports);
else
compute_imports (m_imports, exit_bb ());
if (m_resolve)
get_path_oracle ()->reset_path ();
if (DEBUG_SOLVER)
{
fprintf (dump_file, "path_range_query: compute_ranges for path: ");
for (unsigned i = path.length (); i > 0; --i)
{
basic_block bb = path[i - 1];
fprintf (dump_file, "%d", bb->index);
if (i > 1)
fprintf (dump_file, "->");
}
fprintf (dump_file, "\n");
}
while (1)
{
basic_block bb = curr_bb ();
compute_ranges_in_block (bb);
adjust_for_non_null_uses (bb);
if (at_exit ())
break;
move_next ();
}
if (DEBUG_SOLVER)
{
get_path_oracle ()->dump (dump_file);
dump (dump_file);
}
}
// Convenience function to compute ranges along a path consisting of
// E->SRC and E->DEST.
void
path_range_query::compute_ranges (edge e)
{
auto_vec<basic_block> bbs (2);
bbs.quick_push (e->dest);
bbs.quick_push (e->src);
compute_ranges (bbs);
}
// A folding aid used to register and query relations along a path.
// When queried, it returns relations as they would appear on exit to
// the path.
//
// Relations are registered on entry so the path_oracle knows which
// block to query the root oracle at when a relation lies outside the
// path. However, when queried we return the relation on exit to the
// path, since the root_oracle ignores the registered.
class jt_fur_source : public fur_depend
{
public:
jt_fur_source (gimple *s, path_range_query *, gori_compute *,
const vec<basic_block> &);
relation_kind query_relation (tree op1, tree op2) override;
void register_relation (gimple *, relation_kind, tree op1, tree op2) override;
void register_relation (edge, relation_kind, tree op1, tree op2) override;
private:
basic_block m_entry;
};
jt_fur_source::jt_fur_source (gimple *s,
path_range_query *query,
gori_compute *gori,
const vec<basic_block> &path)
: fur_depend (s, gori, query)
{
gcc_checking_assert (!path.is_empty ());
m_entry = path[path.length () - 1];
if (dom_info_available_p (CDI_DOMINATORS))
m_oracle = query->oracle ();
else
m_oracle = NULL;
}
// Ignore statement and register relation on entry to path.
void
jt_fur_source::register_relation (gimple *, relation_kind k, tree op1, tree op2)
{
if (m_oracle)
m_oracle->register_relation (m_entry, k, op1, op2);
}
// Ignore edge and register relation on entry to path.
void
jt_fur_source::register_relation (edge, relation_kind k, tree op1, tree op2)
{
if (m_oracle)
m_oracle->register_relation (m_entry, k, op1, op2);
}
relation_kind
jt_fur_source::query_relation (tree op1, tree op2)
{
if (!m_oracle)
return VREL_NONE;
if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
return VREL_NONE;
return m_oracle->query_relation (m_entry, op1, op2);
}
// Return the range of STMT at the end of the path being analyzed.
bool
path_range_query::range_of_stmt (irange &r, gimple *stmt, tree)
{
tree type = gimple_range_type (stmt);
if (!irange::supports_type_p (type))
return false;
// If resolving unknowns, fold the statement making use of any
// relations along the path.
if (m_resolve)
{
fold_using_range f;
jt_fur_source src (stmt, this, &m_ranger->gori (), m_path);
if (!f.fold_stmt (r, stmt, src))
r.set_varying (type);
}
// Otherwise, fold without relations.
else if (!fold_range (r, stmt, this))
r.set_varying (type);
return true;
}
// If possible, register the relation on the incoming edge E into PHI.
void
path_range_query::maybe_register_phi_relation (gphi *phi, edge e)
{
tree arg = gimple_phi_arg_def (phi, e->dest_idx);
if (!gimple_range_ssa_p (arg))
return;
if (relations_may_be_invalidated (e))
return;
basic_block bb = gimple_bb (phi);
tree result = gimple_phi_result (phi);
// Avoid recording the equivalence if the arg is defined in this
// block, as that could create an ordering problem.
if (ssa_defined_in_bb (arg, bb))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "maybe_register_phi_relation in bb%d:", bb->index);
get_path_oracle ()->killing_def (result);
m_oracle->register_relation (entry_bb (), EQ_EXPR, arg, result);
}
// Compute relations for each PHI in BB. For example:
//
// x_5 = PHI<y_9(5),...>
//
// If the path flows through BB5, we can register that x_5 == y_9.
void
path_range_query::compute_phi_relations (basic_block bb, basic_block prev)
{
if (prev == NULL)
return;
edge e_in = find_edge (prev, bb);
for (gphi_iterator iter = gsi_start_phis (bb); !gsi_end_p (iter);
gsi_next (&iter))
{
gphi *phi = iter.phi ();
tree result = gimple_phi_result (phi);
unsigned nargs = gimple_phi_num_args (phi);
if (!import_p (result))
continue;
for (size_t i = 0; i < nargs; ++i)
if (e_in == gimple_phi_arg_edge (phi, i))
{
maybe_register_phi_relation (phi, e_in);
break;
}
}
}
// Compute outgoing relations from BB to NEXT.
void
path_range_query::compute_outgoing_relations (basic_block bb, basic_block next)
{
gimple *stmt = last_stmt (bb);
if (stmt
&& gimple_code (stmt) == GIMPLE_COND
&& (import_p (gimple_cond_lhs (stmt))
|| import_p (gimple_cond_rhs (stmt))))
{
int_range<2> r;
gcond *cond = as_a<gcond *> (stmt);
edge e0 = EDGE_SUCC (bb, 0);
edge e1 = EDGE_SUCC (bb, 1);
if (e0->dest == next)
gcond_edge_range (r, e0);
else if (e1->dest == next)
gcond_edge_range (r, e1);
else
gcc_unreachable ();
jt_fur_source src (NULL, this, &m_ranger->gori (), m_path);
src.register_outgoing_edges (cond, r, e0, e1);
}
}
|