1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
|
// export.cc -- Export declarations in Go frontend.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go-system.h"
#include "go-c.h"
#include "go-diagnostics.h"
#include "go-sha1.h"
#include "gogo.h"
#include "types.h"
#include "expressions.h"
#include "statements.h"
#include "export.h"
#include "go-linemap.h"
#include "backend.h"
// This file handles exporting global declarations.
// Class Export.
const int Export::magic_len;
// Current version magic string.
const char Export::cur_magic[Export::magic_len] =
{
'v', '3', ';', '\n'
};
// Magic strings for previous versions (still supported).
const char Export::v1_magic[Export::magic_len] =
{
'v', '1', ';', '\n'
};
const char Export::v2_magic[Export::magic_len] =
{
'v', '2', ';', '\n'
};
const int Export::checksum_len;
// Type hash table operations, treating aliases as distinct.
class Type_hash_alias_identical
{
public:
unsigned int
operator()(const Type* type) const
{
return type->hash_for_method(NULL,
(Type::COMPARE_ERRORS
| Type::COMPARE_TAGS
| Type::COMPARE_EMBEDDED_INTERFACES
| Type::COMPARE_ALIASES));
}
};
class Type_alias_identical
{
public:
bool
operator()(const Type* t1, const Type* t2) const
{
return Type::are_identical(t1, t2,
(Type::COMPARE_ERRORS
| Type::COMPARE_TAGS
| Type::COMPARE_EMBEDDED_INTERFACES
| Type::COMPARE_ALIASES),
NULL);
}
};
// Mapping from Type objects to a constant index.
typedef Unordered_map_hash(const Type*, int, Type_hash_alias_identical,
Type_alias_identical) Type_refs;
// Implementation object for class Export. Hidden implementation avoids
// having to #include types.h in export.h, or use a static map.
struct Export_impl {
Type_refs type_refs;
};
// Constructor.
Export::Export(Stream* stream)
: stream_(stream), type_index_(1), packages_(), impl_(new Export_impl)
{
go_assert(Export::checksum_len == Go_sha1_helper::checksum_len);
}
// Destructor.
Export::~Export()
{
delete this->impl_;
}
// A traversal class to collect functions and global variables
// referenced by inlined functions, and also to gather up
// referenced types that need to be included in the exports.
class Collect_export_references : public Traverse
{
public:
Collect_export_references(Export* exp,
const std::map<std::string, Package*>& packages,
Unordered_set(Named_object*)* exports,
Unordered_set(const Package*)* imports)
: Traverse(traverse_expressions
| traverse_types),
exp_(exp), packages_(packages), exports_(exports), imports_(imports),
inline_fcn_worklist_(NULL), exports_finalized_(false)
{ }
// Initial entry point; performs a walk to expand the exports set.
void
expand_exports(std::vector<Named_object*>* inlinable_functions);
// Second entry point (called after the method above), to find
// all types referenced by exports.
void
prepare_types(const std::vector<Named_object*>& sorted_exports);
protected:
// Override of parent class method.
int
expression(Expression**);
// Override of parent class method.
int
type(Type* type);
// Traverse the components of a function type.
void
traverse_function_type(Function_type*);
// Traverse the methods of a named type, and register its package.
void
traverse_named_type(Named_type*);
private:
// Add a named object to the exports set (during expand_exports()).
// Returns TRUE if a new object was added to the exports set,
// FALSE otherwise.
bool
add_to_exports(Named_object*);
// The exporter.
Export* exp_;
// The list of packages known to this compilation.
const std::map<std::string, Package*>& packages_;
// The set of named objects to export.
Unordered_set(Named_object*)* exports_;
// Set containing all directly and indirectly imported packages.
Unordered_set(const Package*)* imports_;
// Functions we've already traversed and don't need to visit again.
Unordered_set(Named_object*) checked_functions_;
// Worklist of functions we are exporting with inline bodies that need
// to be checked.
std::vector<Named_object*>* inline_fcn_worklist_;
// Set to true if expand_exports() has been called and is complete.
bool exports_finalized_;
};
void
Collect_export_references::expand_exports(std::vector<Named_object*>* fcns)
{
this->inline_fcn_worklist_ = fcns;
while (!this->inline_fcn_worklist_->empty())
{
Named_object* no = this->inline_fcn_worklist_->back();
this->inline_fcn_worklist_->pop_back();
std::pair<Unordered_set(Named_object*)::iterator, bool> ins =
this->checked_functions_.insert(no);
if (ins.second)
{
// This traversal may add new objects to this->exports_ and new
// functions to this->inline_fcn_worklist_.
no->func_value()->block()->traverse(this);
}
}
this->inline_fcn_worklist_ = NULL;
this->exports_finalized_ = true;
}
bool
Collect_export_references::add_to_exports(Named_object* no)
{
std::pair<Unordered_set(Named_object*)::iterator, bool> ins =
this->exports_->insert(no);
// If the export list has been finalized, then we should not be
// adding anything new to the exports set.
go_assert(!this->exports_finalized_ || !ins.second);
return ins.second;
}
int
Collect_export_references::expression(Expression** pexpr)
{
const Expression* expr = *pexpr;
const Var_expression* ve = expr->var_expression();
if (ve != NULL)
{
Named_object* no = ve->named_object();
if (no->is_variable() && no->var_value()->is_global())
{
const Package* var_package = no->package();
if (var_package != NULL)
this->imports_->insert(var_package);
this->add_to_exports(no);
no->var_value()->set_is_referenced_by_inline();
}
return TRAVERSE_CONTINUE;
}
const Func_expression* fe = expr->func_expression();
if (fe != NULL)
{
Named_object* no = fe->named_object();
const Package* func_package = fe->named_object()->package();
if (func_package != NULL)
this->imports_->insert(func_package);
if (no->is_function_declaration()
&& no->func_declaration_value()->type()->is_builtin())
return TRAVERSE_CONTINUE;
if (this->inline_fcn_worklist_ != NULL)
{
bool added = this->add_to_exports(no);
if (no->is_function())
no->func_value()->set_is_referenced_by_inline();
// If 'added' is false then this object was already in
// exports_, in which case it was already added to
// check_inline_refs_ the first time we added it to exports_, so
// we don't need to add it again.
if (added
&& no->is_function()
&& no->func_value()->export_for_inlining())
this->inline_fcn_worklist_->push_back(no);
}
return TRAVERSE_CONTINUE;
}
const Named_object* nco = expr->named_constant();
if (nco != 0)
{
const Named_constant *nc = nco->const_value();
Type::traverse(nc->type(), this);
return TRAVERSE_CONTINUE;
}
const Call_expression* call = expr->call_expression();
if (call != NULL)
{
const Builtin_call_expression* bce = call->builtin_call_expression();
if (bce != NULL
&& (bce->code() == Builtin_call_expression::BUILTIN_ADD
|| bce->code() == Builtin_call_expression::BUILTIN_SLICE))
{
// This is a reference to unsafe.Add or unsafe.Slice. Make
// sure we list the "unsafe" package in the imports and give
// it a package index.
const std::map<std::string, Package*>::const_iterator p =
this->packages_.find("unsafe");
go_assert(p != this->packages_.end());
this->imports_->insert(p->second);
}
}
return TRAVERSE_CONTINUE;
}
// Collect up the set of types mentioned in things we're exporting, and collect
// all the packages encountered during type traversal, to make sure we can
// declare things referered to indirectly (for example, in the body of an
// exported inline function from another package).
void
Collect_export_references::prepare_types(const std::vector<Named_object*>& sorted_exports)
{
// Iterate through the exported objects and traverse any types encountered.
for (std::vector<Named_object*>::const_iterator p = sorted_exports.begin();
p != sorted_exports.end();
++p)
{
Named_object* no = *p;
switch (no->classification())
{
case Named_object::NAMED_OBJECT_CONST:
{
Type* t = no->const_value()->type();
if (t != NULL && !t->is_abstract())
Type::traverse(t, this);
}
break;
case Named_object::NAMED_OBJECT_TYPE:
Type::traverse(no->type_value()->real_type(), this);
this->traverse_named_type(no->type_value());
break;
case Named_object::NAMED_OBJECT_VAR:
Type::traverse(no->var_value()->type(), this);
break;
case Named_object::NAMED_OBJECT_FUNC:
{
Function* fn = no->func_value();
this->traverse_function_type(fn->type());
if (fn->export_for_inlining())
fn->block()->traverse(this);
}
break;
case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
this->traverse_function_type(no->func_declaration_value()->type());
break;
default:
// We shouldn't see anything else. If we do we'll give an
// error later when we try to actually export it.
break;
}
}
}
// Record referenced type, record package imports, and make sure we traverse
// methods of named types.
int
Collect_export_references::type(Type* type)
{
// Skip forwarders; don't try to give them a type index.
if (type->forward_declaration_type() != NULL)
return TRAVERSE_CONTINUE;
// Skip the void type, which we'll see when exporting
// unsafe.Pointer. The void type is not itself exported, because
// Pointer_type::do_export checks for it.
if (type->is_void_type())
return TRAVERSE_SKIP_COMPONENTS;
// Skip the nil type, turns up in function bodies.
if (type->is_nil_type())
return TRAVERSE_SKIP_COMPONENTS;
// Skip abstract types. We should never see these in real code,
// only in things like const declarations.
if (type->is_abstract())
return TRAVERSE_SKIP_COMPONENTS;
// For interfaces make sure that embedded methods are sorted, since the
// comparison function we use for indexing types relies on it (this call has
// to happen before the record_type call below).
if (type->classification() == Type::TYPE_INTERFACE)
{
Interface_type* it = type->interface_type();
if (it != NULL)
it->sort_embedded();
}
if (!this->exp_->record_type(type))
{
// We've already seen this type.
return TRAVERSE_SKIP_COMPONENTS;
}
// At this stage of compilation traversing interface types traverses
// the final list of methods, but we export the locally defined
// methods. If there is an embedded interface type we need to make
// sure to export that. Check classification, rather than calling
// the interface_type method, because we want to handle named types
// below.
if (type->classification() == Type::TYPE_INTERFACE)
{
Interface_type* it = type->interface_type();
const Typed_identifier_list* methods = it->local_methods();
if (methods != NULL)
{
for (Typed_identifier_list::const_iterator p = methods->begin();
p != methods->end();
++p)
{
if (p->name().empty())
Type::traverse(p->type(), this);
else
this->traverse_function_type(p->type()->function_type());
}
}
return TRAVERSE_SKIP_COMPONENTS;
}
Named_type* nt = type->named_type();
if (nt != NULL)
this->traverse_named_type(nt);
return TRAVERSE_CONTINUE;
}
void
Collect_export_references::traverse_named_type(Named_type* nt)
{
const Package* package = nt->named_object()->package();
if (package != NULL)
this->imports_->insert(package);
// We have to traverse the methods of named types, because we are
// going to export them. This is not done by ordinary type
// traversal.
const Bindings* methods = nt->local_methods();
if (methods != NULL)
{
for (Bindings::const_definitions_iterator pm =
methods->begin_definitions();
pm != methods->end_definitions();
++pm)
{
Function* fn = (*pm)->func_value();
this->traverse_function_type(fn->type());
if (fn->export_for_inlining())
fn->block()->traverse(this);
}
for (Bindings::const_declarations_iterator pm =
methods->begin_declarations();
pm != methods->end_declarations();
++pm)
{
Named_object* mno = pm->second;
if (mno->is_function_declaration())
this->traverse_function_type(mno->func_declaration_value()->type());
}
}
}
// Traverse the types in a function type. We don't need the function
// type itself, just the receiver, parameter, and result types.
void
Collect_export_references::traverse_function_type(Function_type* type)
{
go_assert(type != NULL);
if (this->remember_type(type))
return;
const Typed_identifier* receiver = type->receiver();
if (receiver != NULL)
Type::traverse(receiver->type(), this);
const Typed_identifier_list* parameters = type->parameters();
if (parameters != NULL)
parameters->traverse(this);
const Typed_identifier_list* results = type->results();
if (results != NULL)
results->traverse(this);
}
// Return true if we should export NO.
static bool
should_export(Named_object* no)
{
// We only export objects which are locally defined.
if (no->package() != NULL)
return false;
// We don't export packages.
if (no->is_package())
return false;
// We don't export hidden names.
if (Gogo::is_hidden_name(no->name()))
return false;
// We don't export various special functions.
if (Gogo::special_name_pos(no->name()) != std::string::npos)
return false;
// Methods are exported with the type, not here.
if (no->is_function()
&& no->func_value()->type()->is_method())
return false;
if (no->is_function_declaration()
&& no->func_declaration_value()->type()->is_method())
return false;
// Don't export dummy global variables created for initializers when
// used with sinks.
if (no->is_variable() && no->name()[0] == '_' && no->name()[1] == '.')
return false;
return true;
}
// A functor to sort Named_object pointers by name.
struct Sort_bindings
{
bool
operator()(const Named_object* n1, const Named_object* n2) const
{
if (n1->package() != n2->package())
{
if (n1->package() == NULL)
return true;
if (n2->package() == NULL)
return false;
return n1->package()->pkgpath() < n2->package()->pkgpath();
}
return n1->name() < n2->name();
}
};
// A functor to sort types for export.
struct Sort_types
{
bool
operator()(const Type* t1, const Type* t2) const
{
const Named_type* nt1 = t1->named_type();
const Named_type* nt2 = t2->named_type();
if (nt1 != NULL)
{
if (nt2 != NULL)
{
Sort_bindings sb;
return sb(nt1->named_object(), nt2->named_object());
}
else
return true;
}
else if (nt2 != NULL)
return false;
if (t1->classification() != t2->classification())
return t1->classification() < t2->classification();
Gogo* gogo = go_get_gogo();
Backend_name b1;
gogo->type_descriptor_backend_name(t1, NULL, &b1);
Backend_name b2;
gogo->type_descriptor_backend_name(t2, NULL, &b2);
return b1.name() < b2.name();
}
};
// Export those identifiers marked for exporting.
void
Export::export_globals(const std::string& package_name,
const std::string& prefix,
const std::string& pkgpath,
const std::map<std::string, Package*>& packages,
const std::map<std::string, Package*>& imports,
const std::string& import_init_fn,
const Import_init_set& imported_init_fns,
const Bindings* bindings,
Unordered_set(Named_object*)* functions_marked_inline)
{
// If there have been any errors so far, don't try to export
// anything. That way the export code doesn't have to worry about
// mismatched types or other confusions.
if (saw_errors())
return;
// EXPORTS is the set of objects to export. CHECK_INLINE_REFS is a
// list of exported function with inline bodies that need to be
// checked for references to other objects. Every function on
// CHECK_INLINE_REFS is also on EXPORTS.
Unordered_set(Named_object*) exports;
std::vector<Named_object*> check_inline_refs;
check_inline_refs.reserve(functions_marked_inline->size());
// Add all functions/methods from the "marked inlined" set to the
// CHECK_INLINE_REFS worklist.
for (Unordered_set(Named_object*)::const_iterator p = functions_marked_inline->begin();
p != functions_marked_inline->end();
++p)
check_inline_refs.push_back(*p);
for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
p != bindings->end_definitions();
++p)
{
if (should_export(*p))
exports.insert(*p);
}
for (Bindings::const_declarations_iterator p =
bindings->begin_declarations();
p != bindings->end_declarations();
++p)
{
// We export a function declaration as it may be implemented in
// supporting C code. We do not export type declarations.
if (p->second->is_function_declaration()
&& should_export(p->second))
exports.insert(p->second);
}
// Track all imported packages mentioned in export data.
Unordered_set(const Package*) all_imports;
Collect_export_references collect(this, packages, &exports, &all_imports);
// Walk the set of inlinable routine bodies collected above. This
// can potentially expand the exports set.
collect.expand_exports(&check_inline_refs);
// Export the symbols in sorted order. That will reduce cases where
// irrelevant changes to the source code affect the exported
// interface.
std::vector<Named_object*> sorted_exports;
sorted_exports.reserve(exports.size());
for (Unordered_set(Named_object*)::const_iterator p = exports.begin();
p != exports.end();
++p)
{
sorted_exports.push_back(*p);
const Package* pkg = (*p)->package();
if (pkg != NULL)
all_imports.insert(pkg);
}
std::sort(sorted_exports.begin(), sorted_exports.end(), Sort_bindings());
// Collect up the set of types mentioned in things we're exporting,
// and any packages that may be referred to indirectly.
collect.prepare_types(sorted_exports);
// Assign indexes to all exported types and types referenced by
// things we're exporting. Return value is index of first non-exported
// type.
int unexported_type_index = this->assign_type_indices(sorted_exports);
// Although the export data is readable, at least this version is,
// it is conceptually a binary format. Start with a four byte
// version number.
this->write_bytes(Export::cur_magic, Export::magic_len);
// The package name.
this->write_c_string("package ");
this->write_string(package_name);
this->write_c_string("\n");
// The prefix or package path, used for all global symbols.
if (prefix.empty())
{
go_assert(!pkgpath.empty());
this->write_c_string("pkgpath ");
this->write_string(pkgpath);
}
else
{
this->write_c_string("prefix ");
this->write_string(prefix);
}
this->write_c_string("\n");
this->write_packages(packages);
this->write_imports(imports, all_imports);
this->write_imported_init_fns(package_name, import_init_fn,
imported_init_fns);
// FIXME: It might be clever to add something about the processor
// and ABI being used, although ideally any problems in that area
// would be caught by the linker.
// Write out all the types, both exported and not.
this->write_types(unexported_type_index);
// Write out the non-type export data.
for (std::vector<Named_object*>::const_iterator p = sorted_exports.begin();
p != sorted_exports.end();
++p)
{
if (!(*p)->is_type())
(*p)->export_named_object(this);
}
std::string checksum = this->stream_->checksum();
std::string s = "checksum ";
for (std::string::const_iterator p = checksum.begin();
p != checksum.end();
++p)
{
unsigned char c = *p;
unsigned int dig = c >> 4;
s += dig < 10 ? '0' + dig : 'A' + dig - 10;
dig = c & 0xf;
s += dig < 10 ? '0' + dig : 'A' + dig - 10;
}
s += "\n";
this->stream_->write_checksum(s);
}
// Record a type in the "to be indexed" set. Return true if the type
// was not already in the set, false otherwise.
bool
Export::record_type(Type* type)
{
type = type->forwarded();
std::pair<Type_refs::iterator, bool> ins =
this->impl_->type_refs.insert(std::make_pair(type, 0));
if (!ins.second)
{
// We've already seen this type.
return false;
}
ins.first->second = 0;
return true;
}
// Assign the specified type an index.
void
Export::set_type_index(const Type* type)
{
type = type->forwarded();
std::pair<Type_refs::iterator, bool> ins =
this->impl_->type_refs.insert(std::make_pair(type, 0));
go_assert(!ins.second);
int index = this->type_index_;
++this->type_index_;
go_assert(ins.first->second == 0);
ins.first->second = index;
}
// This helper assigns type indices to all types mentioned directly or
// indirectly in the things we're exporting. Actual exported types are given
// indices according to where the appear on the sorted exports list; all other
// types appear afterwards. Return value is the total number of exported types
// plus 1, e.g. the index of the 1st non-exported type.
int
Export::assign_type_indices(const std::vector<Named_object*>& sorted_exports)
{
// Assign indexes to all the exported types.
for (std::vector<Named_object*>::const_iterator p = sorted_exports.begin();
p != sorted_exports.end();
++p)
{
if (!(*p)->is_type())
continue;
Interface_type* it = (*p)->type_value()->interface_type();
if (it != NULL)
it->sort_embedded();
this->record_type((*p)->type_value());
this->set_type_index((*p)->type_value());
}
int ret = this->type_index_;
// Collect export-referenced, non-builtin types.
std::vector<const Type*> types;
types.reserve(this->impl_->type_refs.size());
for (Type_refs::const_iterator p = this->impl_->type_refs.begin();
p != this->impl_->type_refs.end();
++p)
{
const Type* t = p->first;
if (p->second != 0)
continue;
types.push_back(t);
}
// Sort the types.
std::sort(types.begin(), types.end(), Sort_types());
// Assign numbers to the sorted list.
for (std::vector<const Type *>::const_iterator p = types.begin();
p != types.end();
++p)
this->set_type_index((*p));
return ret;
}
// Sort packages.
static bool
packages_compare(const Package* a, const Package* b)
{
if (a->package_name() < b->package_name())
return true;
else if (a->package_name() > b->package_name())
return false;
if (a->pkgpath() < b->pkgpath())
return true;
else if (a->pkgpath() > b->pkgpath())
return false;
// In principle if we get here then a == b. Try to do something sensible
// even if the import information is inconsistent.
if (a->pkgpath_symbol() < b->pkgpath_symbol())
return true;
else if (a->pkgpath_symbol() > b->pkgpath_symbol())
return false;
return a < b;
}
// Write out all the known packages whose pkgpath symbol is not a
// simple transformation of the pkgpath, so that the importing code
// can reliably know it.
void
Export::write_packages(const std::map<std::string, Package*>& packages)
{
// Sort for consistent output.
std::vector<Package*> out;
for (std::map<std::string, Package*>::const_iterator p = packages.begin();
p != packages.end();
++p)
{
if (p->second->pkgpath_symbol()
!= Gogo::pkgpath_for_symbol(p->second->pkgpath()))
out.push_back(p->second);
}
std::sort(out.begin(), out.end(), packages_compare);
for (std::vector<Package*>::const_iterator p = out.begin();
p != out.end();
++p)
{
this->write_c_string("package ");
this->write_string((*p)->package_name());
this->write_c_string(" ");
this->write_string((*p)->pkgpath());
this->write_c_string(" ");
this->write_string((*p)->pkgpath_symbol());
this->write_c_string("\n");
}
}
// Sort imported packages.
static bool
import_compare(const std::pair<std::string, Package*>& a,
const std::pair<std::string, Package*>& b)
{
return a.first < b.first;
}
// Write out the imported packages.
void
Export::write_imports(const std::map<std::string, Package*>& imports,
const Unordered_set(const Package*)& all_imports)
{
// Sort the imports for more consistent output.
Unordered_set(const Package*) seen;
std::vector<std::pair<std::string, Package*> > sorted_imports;
for (std::map<std::string, Package*>::const_iterator p = imports.begin();
p != imports.end();
++p)
{
sorted_imports.push_back(std::make_pair(p->first, p->second));
seen.insert(p->second);
}
std::sort(sorted_imports.begin(), sorted_imports.end(), import_compare);
int package_index = 1;
for (std::vector<std::pair<std::string, Package*> >::const_iterator p =
sorted_imports.begin();
p != sorted_imports.end();
++p)
{
this->write_c_string("import ");
this->write_string(p->second->package_name());
this->write_c_string(" ");
this->write_string(p->second->pkgpath());
this->write_c_string(" \"");
this->write_string(p->first);
this->write_c_string("\"\n");
this->packages_[p->second] = package_index;
package_index++;
}
// Write out a separate list of indirectly imported packages.
std::vector<const Package*> indirect_imports;
for (Unordered_set(const Package*)::const_iterator p =
all_imports.begin();
p != all_imports.end();
++p)
{
if (seen.find(*p) == seen.end())
indirect_imports.push_back(*p);
}
std::sort(indirect_imports.begin(), indirect_imports.end(),
packages_compare);
for (std::vector<const Package*>::const_iterator p =
indirect_imports.begin();
p != indirect_imports.end();
++p)
{
this->write_c_string("indirectimport ");
this->write_string((*p)->package_name());
this->write_c_string(" ");
this->write_string((*p)->pkgpath());
this->write_c_string("\n");
this->packages_[*p] = package_index;
package_index++;
}
}
void
Export::add_init_graph_edge(Init_graph* init_graph, unsigned src, unsigned sink)
{
Init_graph::iterator it = init_graph->find(src);
if (it != init_graph->end())
it->second.insert(sink);
else
{
std::set<unsigned> succs;
succs.insert(sink);
(*init_graph)[src] = succs;
}
}
// Constructs the imported portion of the init graph, e.g. those
// edges that we read from imported packages.
void
Export::populate_init_graph(Init_graph* init_graph,
const Import_init_set& imported_init_fns,
const std::map<std::string, unsigned>& init_idx)
{
for (Import_init_set::const_iterator p = imported_init_fns.begin();
p != imported_init_fns.end();
++p)
{
const Import_init* ii = *p;
if (ii->is_dummy())
continue;
std::map<std::string, unsigned>::const_iterator srcit =
init_idx.find(ii->init_name());
go_assert(srcit != init_idx.end());
unsigned src = srcit->second;
for (std::set<std::string>::const_iterator pci = ii->precursors().begin();
pci != ii->precursors().end();
++pci)
{
std::map<std::string, unsigned>::const_iterator it =
init_idx.find(*pci);
go_assert(it != init_idx.end());
unsigned sink = it->second;
add_init_graph_edge(init_graph, src, sink);
}
}
}
// Write out the initialization functions which need to run for this
// package.
void
Export::write_imported_init_fns(const std::string& package_name,
const std::string& import_init_fn,
const Import_init_set& imported_init_fns)
{
if (import_init_fn.empty() && imported_init_fns.empty()) return;
// Maps a given init function to the its index in the exported "init" clause.
std::map<std::string, unsigned> init_idx;
this->write_c_string("init");
if (!import_init_fn.empty())
{
this->write_c_string(" ");
this->write_string(package_name);
this->write_c_string(" ");
this->write_string(import_init_fn);
init_idx[import_init_fn] = 0;
}
if (imported_init_fns.empty())
{
this->write_c_string("\n");
return;
}
typedef std::map<int, std::vector<std::string> > level_map;
Init_graph init_graph;
level_map inits_at_level;
// Walk through the set of import inits (already sorted by
// init fcn name) and write them out to the exports.
for (Import_init_set::const_iterator p = imported_init_fns.begin();
p != imported_init_fns.end();
++p)
{
const Import_init* ii = *p;
if (ii->init_name() == import_init_fn)
continue;
this->write_c_string(" ");
this->write_string(ii->package_name());
this->write_c_string(" ");
this->write_string(ii->init_name());
// Populate init_idx.
go_assert(init_idx.find(ii->init_name()) == init_idx.end());
unsigned idx = init_idx.size();
init_idx[ii->init_name()] = idx;
// If the init function has a non-negative priority value, this
// is an indication that it was referred to in an older version
// export data section (e.g. we read a legacy object
// file). Record such init fcns so that we can fix up the graph
// for them (handled later in this function).
if (ii->priority() > 0)
{
level_map::iterator it = inits_at_level.find(ii->priority());
if (it == inits_at_level.end())
{
std::vector<std::string> l;
l.push_back(ii->init_name());
inits_at_level[ii->priority()] = l;
}
else
it->second.push_back(ii->init_name());
}
}
this->write_c_string("\n");
// Create the init graph. Start by populating the graph with
// all the edges we inherited from imported packages.
populate_init_graph(&init_graph, imported_init_fns, init_idx);
// Now add edges from the local init function to each of the
// imported fcns.
if (!import_init_fn.empty() && import_init_fn[0] != '~')
{
unsigned src = 0;
go_assert(init_idx[import_init_fn] == 0);
for (Import_init_set::const_iterator p = imported_init_fns.begin();
p != imported_init_fns.end();
++p)
{
const Import_init* ii = *p;
if (ii->is_dummy())
continue;
unsigned sink = init_idx[ii->init_name()];
add_init_graph_edge(&init_graph, src, sink);
}
}
// In the scenario where one or more of the packages we imported
// was written with the legacy export data format, add dummy edges
// to capture the priority relationships. Here is a package import
// graph as an example:
//
// *A
// /|
// / |
// B *C
// /|
// / |
// *D *E
// | /|
// |/ |
// *F *G
//
// Let's suppose that the object for package "C" is from an old
// gccgo, e.g. it has the old export data format. All other
// packages are compiled with the new compiler and have the new
// format. Packages with *'s have init functions. The scenario is
// that we're compiling a package "A"; during this process we'll
// read the export data for "C". It should look something like
//
// init F F..import 1 G G..import 1 D D..import 2 E E..import 2;
//
// To capture this information and convey it to the consumers of
// "A", the code below adds edges to the graph from each priority K
// function to every priority K-1 function for appropriate values
// of K. This will potentially add more edges than we need (for
// example, an edge from D to G), but given that we don't expect
// to see large numbers of old objects, this will hopefully be OK.
if (inits_at_level.size() > 0)
{
for (level_map::reverse_iterator it = inits_at_level.rbegin();
it != inits_at_level.rend(); ++it)
{
int level = it->first;
if (level < 2) break;
const std::vector<std::string>& fcns_at_level = it->second;
for (std::vector<std::string>::const_iterator sit =
fcns_at_level.begin();
sit != fcns_at_level.end(); ++sit)
{
unsigned src = init_idx[*sit];
level_map::iterator it2 = inits_at_level.find(level - 1);
if (it2 != inits_at_level.end())
{
const std::vector<std::string> fcns_at_lm1 = it2->second;
for (std::vector<std::string>::const_iterator mit =
fcns_at_lm1.begin();
mit != fcns_at_lm1.end(); ++mit)
{
unsigned sink = init_idx[*mit];
add_init_graph_edge(&init_graph, src, sink);
}
}
}
}
}
// Write out the resulting graph.
this->write_c_string("init_graph");
for (Init_graph::const_iterator ki = init_graph.begin();
ki != init_graph.end(); ++ki)
{
unsigned src = ki->first;
const std::set<unsigned>& successors = ki->second;
for (std::set<unsigned>::const_iterator vi = successors.begin();
vi != successors.end(); ++vi)
{
this->write_c_string(" ");
this->write_unsigned(src);
unsigned sink = (*vi);
this->write_c_string(" ");
this->write_unsigned(sink);
}
}
this->write_c_string("\n");
}
// Write the types to the export stream.
void
Export::write_types(int unexported_type_index)
{
// Map from type index to type.
std::vector<const Type*> types(static_cast<size_t>(this->type_index_));
for (Type_refs::const_iterator p = this->impl_->type_refs.begin();
p != this->impl_->type_refs.end();
++p)
{
if (p->second >= 0)
types.at(p->second) = p->first;
}
// Write the type information to a buffer.
Stream_to_string type_data;
Export::Stream* orig_stream = this->stream_;
this->stream_ = &type_data;
std::vector<size_t> type_sizes(static_cast<size_t>(this->type_index_));
type_sizes[0] = 0;
// Start at 1 because type index 0 is not used.
size_t start_size = 0;
for (int i = 1; i < this->type_index_; ++i)
{
this->write_type_definition(types[i], i);
size_t cur_size = type_data.string().size();
type_sizes[i] = cur_size - start_size;
start_size = cur_size;
}
// Back to original stream.
this->stream_ = orig_stream;
// The line "types MAXP1 EXPORTEDP1 SIZES..." appears before the
// types. MAXP1 is one more than the maximum type index used; that
// is, it is the size of the array we need to allocate to hold all
// the values. Indexes 1 up to but not including EXPORTEDP1 are the
// exported types. The other types are not exported. SIZES... is a
// list of MAXP1-1 entries listing the size of the type definition
// for each type, starting at index 1.
char buf[100];
snprintf(buf, sizeof buf, "types %d %d", this->type_index_,
unexported_type_index);
this->write_c_string(buf);
// Start at 1 because type index 0 is not used.
for (int i = 1; i < this->type_index_; ++i)
{
snprintf(buf, sizeof buf, " %lu",
static_cast<unsigned long>(type_sizes[i]));
this->write_c_string(buf);
}
this->write_c_string("\n");
this->write_string(type_data.string());
}
// Write a single type to the export stream.
void
Export::write_type_definition(const Type* type, int index)
{
this->write_c_string("type ");
char buf[30];
snprintf(buf, sizeof buf, "%d ", index);
this->write_c_string(buf);
const Named_type* nt = type->named_type();
if (nt != NULL)
{
const Named_object* no = nt->named_object();
const Package* package = no->package();
this->write_c_string("\"");
if (package != NULL && !Gogo::is_hidden_name(no->name()))
{
this->write_string(package->pkgpath());
this->write_c_string(".");
}
this->write_string(nt->named_object()->name());
this->write_c_string("\" ");
if (!nt->in_heap())
this->write_c_string("notinheap ");
if (nt->is_alias())
this->write_c_string("= ");
}
type->export_type(this);
// Type::export_type will print a newline for a named type, but not
// otherwise.
if (nt == NULL)
this->write_c_string("\n");
}
// Write a name to the export stream.
void
Export::write_name(const std::string& name)
{
if (name.empty())
this->write_c_string("?");
else
this->write_string(Gogo::unpack_hidden_name(name));
}
// Write an integer value to the export stream.
void
Export::write_int(int value)
{
char buf[100];
snprintf(buf, sizeof buf, "%d", value);
this->write_c_string(buf);
}
// Write an integer value to the export stream.
void
Export::write_unsigned(unsigned value)
{
char buf[100];
snprintf(buf, sizeof buf, "%u", value);
this->write_c_string(buf);
}
// Return the index of a package.
int
Export::package_index(const Package* pkg) const
{
Unordered_map(const Package *, int)::const_iterator p =
this->packages_.find(pkg);
go_assert(p != this->packages_.end());
int index = p->second;
go_assert(index != 0);
return index;
}
// Return the index of the "unsafe" package.
int
Export::unsafe_package_index() const
{
for (Unordered_map(const Package*, int)::const_iterator p =
this->packages_.begin();
p != this->packages_.end();
++p)
{
if (p->first->pkgpath() == "unsafe")
{
go_assert(p->second != 0);
return p->second;
}
}
go_unreachable();
}
// Return the index of a type.
int
Export::type_index(const Type* type)
{
type = type->forwarded();
Type_refs::const_iterator p = this->impl_->type_refs.find(type);
go_assert(p != this->impl_->type_refs.end());
int index = p->second;
go_assert(index != 0);
return index;
}
// Export a type.
void
Export::write_type(const Type* type)
{
int index = this->type_index(type);
char buf[30];
snprintf(buf, sizeof buf, "<type %d>", index);
this->write_c_string(buf);
}
// Export a type to a function body.
void
Export::write_type_to(const Type* type, Export_function_body* efb)
{
int index = this->type_index(type);
char buf[30];
snprintf(buf, sizeof buf, "<type %d>", index);
efb->write_c_string(buf);
}
// Export escape note.
void
Export::write_escape(std::string* note)
{
if (note != NULL && *note != "esc:0x0")
{
this->write_c_string(" ");
char buf[50];
go_assert(note->find("esc:") != std::string::npos);
snprintf(buf, sizeof buf, "<%s>", note->c_str());
this->write_c_string(buf);
}
}
// Add the builtin types to the export table.
void
Export::register_builtin_types(Gogo* gogo)
{
this->register_builtin_type(gogo, "int8", BUILTIN_INT8);
this->register_builtin_type(gogo, "int16", BUILTIN_INT16);
this->register_builtin_type(gogo, "int32", BUILTIN_INT32);
this->register_builtin_type(gogo, "int64", BUILTIN_INT64);
this->register_builtin_type(gogo, "uint8", BUILTIN_UINT8);
this->register_builtin_type(gogo, "uint16", BUILTIN_UINT16);
this->register_builtin_type(gogo, "uint32", BUILTIN_UINT32);
this->register_builtin_type(gogo, "uint64", BUILTIN_UINT64);
this->register_builtin_type(gogo, "float32", BUILTIN_FLOAT32);
this->register_builtin_type(gogo, "float64", BUILTIN_FLOAT64);
this->register_builtin_type(gogo, "complex64", BUILTIN_COMPLEX64);
this->register_builtin_type(gogo, "complex128", BUILTIN_COMPLEX128);
this->register_builtin_type(gogo, "int", BUILTIN_INT);
this->register_builtin_type(gogo, "uint", BUILTIN_UINT);
this->register_builtin_type(gogo, "uintptr", BUILTIN_UINTPTR);
this->register_builtin_type(gogo, "bool", BUILTIN_BOOL);
this->register_builtin_type(gogo, "string", BUILTIN_STRING);
this->register_builtin_type(gogo, "error", BUILTIN_ERROR);
this->register_builtin_type(gogo, "byte", BUILTIN_BYTE);
this->register_builtin_type(gogo, "rune", BUILTIN_RUNE);
}
// Register one builtin type in the export table.
void
Export::register_builtin_type(Gogo* gogo, const char* name, Builtin_code code)
{
Named_object* named_object = gogo->lookup_global(name);
go_assert(named_object != NULL && named_object->is_type());
std::pair<Type_refs::iterator, bool> ins =
this->impl_->type_refs.insert(std::make_pair(named_object->type_value(), code));
go_assert(ins.second);
// We also insert the underlying type. We can see the underlying
// type at least for string and bool. It's OK if this insert
// fails--we expect duplications here, and it doesn't matter when
// they occur.
Type* real_type = named_object->type_value()->real_type();
this->impl_->type_refs.insert(std::make_pair(real_type, code));
}
// Class Export::Stream.
Export::Stream::Stream()
{
this->sha1_helper_ = go_create_sha1_helper();
go_assert(this->sha1_helper_ != NULL);
}
Export::Stream::~Stream()
{
}
// Write bytes to the stream. This keeps a checksum of bytes as they
// go by.
void
Export::Stream::write_and_sum_bytes(const char* bytes, size_t length)
{
this->sha1_helper_->process_bytes(bytes, length);
this->do_write(bytes, length);
}
// Get the checksum.
std::string
Export::Stream::checksum()
{
std::string rval = this->sha1_helper_->finish();
delete this->sha1_helper_;
return rval;
}
// Write the checksum string to the export data.
void
Export::Stream::write_checksum(const std::string& s)
{
this->do_write(s.data(), s.length());
}
// Class Stream_to_section.
Stream_to_section::Stream_to_section(Backend* backend)
: backend_(backend)
{
}
// Write data to a section.
void
Stream_to_section::do_write(const char* bytes, size_t length)
{
this->backend_->write_export_data (bytes, length);
}
// Class Export_function_body.
// Record a temporary statement.
unsigned int
Export_function_body::record_temporary(const Temporary_statement* temp)
{
unsigned int ret = this->next_temporary_index_;
if (ret > 0x7fffffff)
go_error_at(temp->location(),
"too many temporary statements in export data");
++this->next_temporary_index_;
std::pair<const Temporary_statement*, unsigned int> val(temp, ret);
std::pair<Unordered_map(const Temporary_statement*, unsigned int)::iterator,
bool> ins = this->temporary_indexes_.insert(val);
go_assert(ins.second);
return ret;
}
// Return the index of a temporary statement.
unsigned int
Export_function_body::temporary_index(const Temporary_statement* temp)
{
Unordered_map(const Temporary_statement*, unsigned int)::const_iterator p =
this->temporary_indexes_.find(temp);
go_assert(p != this->temporary_indexes_.end());
return p->second;
}
// Return the index of an unnamed label. If it doesn't already have
// an index, give it one.
unsigned int
Export_function_body::unnamed_label_index(const Unnamed_label* label)
{
unsigned int next = this->next_label_index_;
std::pair<const Unnamed_label*, unsigned int> val(label, next);
std::pair<Unordered_map(const Unnamed_label*, unsigned int)::iterator,
bool> ins =
this->label_indexes_.insert(val);
if (!ins.second)
return ins.first->second;
else
{
if (next > 0x7fffffff)
go_error_at(label->location(),
"too many unnamed labels in export data");
++this->next_label_index_;
return next;
}
}
|