1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
|
/* Data structure for the modref pass.
Copyright (C) 2020-2022 Free Software Foundation, Inc.
Contributed by David Cepelik and Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* modref_tree represent a decision tree that can be used by alias analysis
oracle to determine whether given memory access can be affected by a function
call. For every function we collect two trees, one for loads and other
for stores. Tree consist of following levels:
1) Base: this level represent base alias set of the access and refers
to sons (ref nodes). Flag all_refs means that all possible references
are aliasing.
Because for LTO streaming we need to stream types rather than alias sets
modref_base_node is implemented as a template.
2) Ref: this level represent ref alias set and links to accesses unless
all_refs flag is set.
Again ref is an template to allow LTO streaming.
3) Access: this level represent info about individual accesses. Presently
we record whether access is through a dereference of a function parameter
and if so we record the access range.
*/
#ifndef GCC_MODREF_TREE_H
#define GCC_MODREF_TREE_H
struct ipa_modref_summary;
/* parm indexes greater than 0 are normal parms.
Some negative values have special meaning. */
enum modref_special_parms {
MODREF_UNKNOWN_PARM = -1,
MODREF_STATIC_CHAIN_PARM = -2,
MODREF_RETSLOT_PARM = -3,
/* Used for bases that points to memory that escapes from function. */
MODREF_GLOBAL_MEMORY_PARM = -4,
/* Used in modref_parm_map to take references which can be removed
from the summary during summary update since they now points to local
memory. */
MODREF_LOCAL_MEMORY_PARM = -5
};
/* Modref record accesses relative to function parameters.
This is entry for single access specifying its base and access range.
Accesses can be collected to boundedly sized arrays using
modref_access_node::insert. */
struct GTY(()) modref_access_node
{
/* Access range information (in bits). */
poly_int64 offset;
poly_int64 size;
poly_int64 max_size;
/* Offset from parameter pointer to the base of the access (in bytes). */
poly_int64 parm_offset;
/* Index of parameter which specifies the base of access. -1 if base is not
a function parameter. */
int parm_index;
bool parm_offset_known;
/* Number of times interval was extended during dataflow.
This has to be limited in order to keep dataflow finite. */
unsigned char adjustments;
/* Return true if access node holds some useful info. */
bool useful_p () const
{
return parm_index != MODREF_UNKNOWN_PARM;
}
/* Return true if access can be used to determine a kill. */
bool useful_for_kill_p () const
{
return parm_offset_known && parm_index != MODREF_UNKNOWN_PARM
&& parm_index != MODREF_GLOBAL_MEMORY_PARM
&& parm_index != MODREF_RETSLOT_PARM && known_size_p (size)
&& known_eq (max_size, size)
&& known_gt (size, 0);
}
/* Dump range to debug OUT. */
void dump (FILE *out);
/* Return true if both accesses are the same. */
bool operator == (modref_access_node &a) const;
/* Return true if range info is useful. */
bool range_info_useful_p () const;
/* Return tree corresponding to parameter of the range in STMT. */
tree get_call_arg (const gcall *stmt) const;
/* Build ao_ref corresponding to the access and return true if successful. */
bool get_ao_ref (const gcall *stmt, class ao_ref *ref) const;
/* Stream access to OB. */
void stream_out (struct output_block *ob) const;
/* Stream access in from IB. */
static modref_access_node stream_in (struct lto_input_block *ib);
/* Insert A into vector ACCESSES. Limit size of vector to MAX_ACCESSES and
if RECORD_ADJUSTMENT is true keep track of adjustment counts.
Return 0 if nothing changed, 1 is insertion succeeded and -1 if failed. */
static int insert (vec <modref_access_node, va_gc> *&accesses,
modref_access_node a, size_t max_accesses,
bool record_adjustments);
/* Same as insert but for kills where we are conservative the other way
around: if information is lost, the kill is lost. */
static bool insert_kill (vec<modref_access_node> &kills,
modref_access_node &a, bool record_adjustments);
private:
bool contains (const modref_access_node &) const;
bool contains_for_kills (const modref_access_node &) const;
void update (poly_int64, poly_int64, poly_int64, poly_int64, bool);
bool update_for_kills (poly_int64, poly_int64, poly_int64,
poly_int64, poly_int64, bool);
bool merge (const modref_access_node &, bool);
bool merge_for_kills (const modref_access_node &, bool);
static bool closer_pair_p (const modref_access_node &,
const modref_access_node &,
const modref_access_node &,
const modref_access_node &);
void forced_merge (const modref_access_node &, bool);
void update2 (poly_int64, poly_int64, poly_int64, poly_int64,
poly_int64, poly_int64, poly_int64, bool);
bool combined_offsets (const modref_access_node &,
poly_int64 *, poly_int64 *, poly_int64 *) const;
static void try_merge_with (vec <modref_access_node, va_gc> *&, size_t);
};
/* Access node specifying no useful info. */
const modref_access_node unspecified_modref_access_node
= {0, -1, -1, 0, MODREF_UNKNOWN_PARM, false, 0};
template <typename T>
struct GTY((user)) modref_ref_node
{
T ref;
bool every_access;
vec <modref_access_node, va_gc> *accesses;
modref_ref_node (T ref):
ref (ref),
every_access (false),
accesses (NULL)
{}
/* Collapse the tree. */
void collapse ()
{
vec_free (accesses);
accesses = NULL;
every_access = true;
}
/* Insert access with OFFSET and SIZE.
Collapse tree if it has more than MAX_ACCESSES entries.
If RECORD_ADJUSTMENTs is true avoid too many interval extensions.
Return true if record was changed. */
bool insert_access (modref_access_node a, size_t max_accesses,
bool record_adjustments)
{
/* If this base->ref pair has no access information, bail out. */
if (every_access)
return false;
/* Only the following kind of parameters needs to be tracked.
We do not track return slots because they are seen as a direct store
in the caller. */
gcc_checking_assert (a.parm_index >= 0
|| a.parm_index == MODREF_STATIC_CHAIN_PARM
|| a.parm_index == MODREF_GLOBAL_MEMORY_PARM
|| a.parm_index == MODREF_UNKNOWN_PARM);
if (!a.useful_p ())
{
if (!every_access)
{
collapse ();
return true;
}
return false;
}
int ret = modref_access_node::insert (accesses, a, max_accesses,
record_adjustments);
if (ret == -1)
{
if (dump_file)
fprintf (dump_file,
"--param modref-max-accesses limit reached; collapsing\n");
collapse ();
}
return ret != 0;
}
};
/* Base of an access. */
template <typename T>
struct GTY((user)) modref_base_node
{
T base;
vec <modref_ref_node <T> *, va_gc> *refs;
bool every_ref;
modref_base_node (T base):
base (base),
refs (NULL),
every_ref (false) {}
/* Search REF; return NULL if failed. */
modref_ref_node <T> *search (T ref)
{
size_t i;
modref_ref_node <T> *n;
FOR_EACH_VEC_SAFE_ELT (refs, i, n)
if (n->ref == ref)
return n;
return NULL;
}
/* Insert REF; collapse tree if there are more than MAX_REFS.
Return inserted ref and if CHANGED is non-null set it to true if
something changed. */
modref_ref_node <T> *insert_ref (T ref, size_t max_refs,
bool *changed = NULL)
{
modref_ref_node <T> *ref_node;
/* If the node is collapsed, don't do anything. */
if (every_ref)
return NULL;
/* Otherwise, insert a node for the ref of the access under the base. */
ref_node = search (ref);
if (ref_node)
return ref_node;
/* We always allow inserting ref 0. For non-0 refs there is upper
limit on number of entries and if exceeded,
drop ref conservatively to 0. */
if (ref && refs && refs->length () >= max_refs)
{
if (dump_file)
fprintf (dump_file, "--param modref-max-refs limit reached;"
" using 0\n");
ref = 0;
ref_node = search (ref);
if (ref_node)
return ref_node;
}
if (changed)
*changed = true;
ref_node = new (ggc_alloc <modref_ref_node <T> > ())modref_ref_node <T>
(ref);
vec_safe_push (refs, ref_node);
return ref_node;
}
void collapse ()
{
size_t i;
modref_ref_node <T> *r;
if (refs)
{
FOR_EACH_VEC_SAFE_ELT (refs, i, r)
{
r->collapse ();
ggc_free (r);
}
vec_free (refs);
}
refs = NULL;
every_ref = true;
}
};
/* Map translating parameters across function call. */
struct modref_parm_map
{
/* Default constructor. */
modref_parm_map ()
: parm_index (MODREF_UNKNOWN_PARM), parm_offset_known (false), parm_offset ()
{}
/* Index of parameter we translate to.
Values from special_params enum are permitted too. */
int parm_index;
bool parm_offset_known;
poly_int64 parm_offset;
};
/* Access tree for a single function. */
template <typename T>
struct GTY((user)) modref_tree
{
vec <modref_base_node <T> *, va_gc> *bases;
bool every_base;
modref_tree ():
bases (NULL),
every_base (false) {}
/* Insert BASE; collapse tree if there are more than MAX_REFS.
Return inserted base and if CHANGED is non-null set it to true if
something changed.
If table gets full, try to insert REF instead. */
modref_base_node <T> *insert_base (T base, T ref,
unsigned int max_bases,
bool *changed = NULL)
{
modref_base_node <T> *base_node;
/* If the node is collapsed, don't do anything. */
if (every_base)
return NULL;
/* Otherwise, insert a node for the base of the access into the tree. */
base_node = search (base);
if (base_node)
return base_node;
/* We always allow inserting base 0. For non-0 base there is upper
limit on number of entries and if exceeded,
drop base conservatively to ref and if it still does not fit to 0. */
if (base && bases && bases->length () >= max_bases)
{
base_node = search (ref);
if (base_node)
{
if (dump_file)
fprintf (dump_file, "--param modref-max-bases"
" limit reached; using ref\n");
return base_node;
}
if (dump_file)
fprintf (dump_file, "--param modref-max-bases"
" limit reached; using 0\n");
base = 0;
base_node = search (base);
if (base_node)
return base_node;
}
if (changed)
*changed = true;
base_node = new (ggc_alloc <modref_base_node <T> > ())
modref_base_node <T> (base);
vec_safe_push (bases, base_node);
return base_node;
}
/* Insert memory access to the tree.
Return true if something changed. */
bool insert (unsigned int max_bases,
unsigned int max_refs,
unsigned int max_accesses,
T base, T ref, modref_access_node a,
bool record_adjustments)
{
if (every_base)
return false;
bool changed = false;
/* We may end up with max_size being less than size for accesses past the
end of array. Those are undefined and safe to ignore. */
if (a.range_info_useful_p ()
&& known_size_p (a.size) && known_size_p (a.max_size)
&& known_lt (a.max_size, a.size))
{
if (dump_file)
fprintf (dump_file,
" - Paradoxical range. Ignoring\n");
return false;
}
if (known_size_p (a.size)
&& known_eq (a.size, 0))
{
if (dump_file)
fprintf (dump_file,
" - Zero size. Ignoring\n");
return false;
}
if (known_size_p (a.max_size)
&& known_eq (a.max_size, 0))
{
if (dump_file)
fprintf (dump_file,
" - Zero max_size. Ignoring\n");
return false;
}
gcc_checking_assert (!known_size_p (a.max_size)
|| !known_le (a.max_size, 0));
/* No useful information tracked; collapse everything. */
if (!base && !ref && !a.useful_p ())
{
collapse ();
return true;
}
modref_base_node <T> *base_node
= insert_base (base, ref, max_bases, &changed);
base = base_node->base;
/* If table got full we may end up with useless base. */
if (!base && !ref && !a.useful_p ())
{
collapse ();
return true;
}
if (base_node->every_ref)
return changed;
gcc_checking_assert (search (base) != NULL);
/* No useful ref info tracked; collapse base. */
if (!ref && !a.useful_p ())
{
base_node->collapse ();
return true;
}
modref_ref_node <T> *ref_node
= base_node->insert_ref (ref, max_refs, &changed);
ref = ref_node->ref;
if (ref_node->every_access)
return changed;
changed |= ref_node->insert_access (a, max_accesses,
record_adjustments);
/* See if we failed to add useful access. */
if (ref_node->every_access)
{
/* Collapse everything if there is no useful base and ref. */
if (!base && !ref)
{
collapse ();
gcc_checking_assert (changed);
}
/* Collapse base if there is no useful ref. */
else if (!ref)
{
base_node->collapse ();
gcc_checking_assert (changed);
}
}
return changed;
}
/* Insert memory access to the tree.
Return true if something changed. */
bool insert (tree fndecl,
T base, T ref, const modref_access_node &a,
bool record_adjustments)
{
return insert (opt_for_fn (fndecl, param_modref_max_bases),
opt_for_fn (fndecl, param_modref_max_refs),
opt_for_fn (fndecl, param_modref_max_accesses),
base, ref, a, record_adjustments);
}
/* Remove tree branches that are not useful (i.e. they will always pass). */
void cleanup ()
{
size_t i, j;
modref_base_node <T> *base_node;
modref_ref_node <T> *ref_node;
if (!bases)
return;
for (i = 0; vec_safe_iterate (bases, i, &base_node);)
{
if (base_node->refs)
for (j = 0; vec_safe_iterate (base_node->refs, j, &ref_node);)
{
if (!ref_node->every_access
&& (!ref_node->accesses
|| !ref_node->accesses->length ()))
{
base_node->refs->unordered_remove (j);
vec_free (ref_node->accesses);
ggc_delete (ref_node);
}
else
j++;
}
if (!base_node->every_ref
&& (!base_node->refs || !base_node->refs->length ()))
{
bases->unordered_remove (i);
vec_free (base_node->refs);
ggc_delete (base_node);
}
else
i++;
}
if (bases && !bases->length ())
{
vec_free (bases);
bases = NULL;
}
}
/* Merge OTHER into the tree.
PARM_MAP, if non-NULL, maps parm indexes of callee to caller.
Similar CHAIN_MAP, if non-NULL, maps static chain of callee to caller.
Return true if something has changed. */
bool merge (unsigned int max_bases,
unsigned int max_refs,
unsigned int max_accesses,
modref_tree <T> *other, vec <modref_parm_map> *parm_map,
modref_parm_map *static_chain_map,
bool record_accesses,
bool promote_unknown_to_global = false)
{
if (!other || every_base)
return false;
if (other->every_base)
{
collapse ();
return true;
}
bool changed = false;
size_t i, j, k;
modref_base_node <T> *base_node, *my_base_node;
modref_ref_node <T> *ref_node;
modref_access_node *access_node;
bool release = false;
/* For self-recursive functions we may end up merging summary into itself;
produce copy first so we do not modify summary under our own hands. */
if (other == this)
{
release = true;
other = modref_tree<T>::create_ggc ();
other->copy_from (this);
}
FOR_EACH_VEC_SAFE_ELT (other->bases, i, base_node)
{
if (base_node->every_ref)
{
my_base_node = insert_base (base_node->base, 0,
max_bases, &changed);
if (my_base_node && !my_base_node->every_ref)
{
my_base_node->collapse ();
cleanup ();
changed = true;
}
}
else
FOR_EACH_VEC_SAFE_ELT (base_node->refs, j, ref_node)
{
if (ref_node->every_access)
{
changed |= insert (max_bases, max_refs, max_accesses,
base_node->base,
ref_node->ref,
unspecified_modref_access_node,
record_accesses);
}
else
FOR_EACH_VEC_SAFE_ELT (ref_node->accesses, k, access_node)
{
modref_access_node a = *access_node;
if (a.parm_index != MODREF_UNKNOWN_PARM
&& a.parm_index != MODREF_GLOBAL_MEMORY_PARM
&& parm_map)
{
if (a.parm_index >= (int)parm_map->length ())
a.parm_index = MODREF_UNKNOWN_PARM;
else
{
modref_parm_map &m
= a.parm_index == MODREF_STATIC_CHAIN_PARM
? *static_chain_map
: (*parm_map) [a.parm_index];
if (m.parm_index == MODREF_LOCAL_MEMORY_PARM)
continue;
a.parm_offset += m.parm_offset;
a.parm_offset_known &= m.parm_offset_known;
a.parm_index = m.parm_index;
}
}
if (a.parm_index == MODREF_UNKNOWN_PARM
&& promote_unknown_to_global)
a.parm_index = MODREF_GLOBAL_MEMORY_PARM;
changed |= insert (max_bases, max_refs, max_accesses,
base_node->base, ref_node->ref,
a, record_accesses);
}
}
}
if (release)
ggc_delete (other);
return changed;
}
/* Merge OTHER into the tree.
PARM_MAP, if non-NULL, maps parm indexes of callee to caller.
Similar CHAIN_MAP, if non-NULL, maps static chain of callee to caller.
Return true if something has changed. */
bool merge (tree fndecl,
modref_tree <T> *other, vec <modref_parm_map> *parm_map,
modref_parm_map *static_chain_map,
bool record_accesses,
bool promote_unknown_to_global = false)
{
return merge (opt_for_fn (fndecl, param_modref_max_bases),
opt_for_fn (fndecl, param_modref_max_refs),
opt_for_fn (fndecl, param_modref_max_accesses),
other, parm_map, static_chain_map, record_accesses,
promote_unknown_to_global);
}
/* Copy OTHER to THIS. */
void copy_from (modref_tree <T> *other)
{
merge (INT_MAX, INT_MAX, INT_MAX, other, NULL, NULL, false);
}
/* Search BASE in tree; return NULL if failed. */
modref_base_node <T> *search (T base)
{
size_t i;
modref_base_node <T> *n;
FOR_EACH_VEC_SAFE_ELT (bases, i, n)
if (n->base == base)
return n;
return NULL;
}
/* Return true if tree contains access to global memory. */
bool global_access_p ()
{
size_t i, j, k;
modref_base_node <T> *base_node;
modref_ref_node <T> *ref_node;
modref_access_node *access_node;
if (every_base)
return true;
FOR_EACH_VEC_SAFE_ELT (bases, i, base_node)
{
if (base_node->every_ref)
return true;
FOR_EACH_VEC_SAFE_ELT (base_node->refs, j, ref_node)
{
if (ref_node->every_access)
return true;
FOR_EACH_VEC_SAFE_ELT (ref_node->accesses, k, access_node)
if (access_node->parm_index == MODREF_UNKNOWN_PARM
|| access_node->parm_index == MODREF_GLOBAL_MEMORY_PARM)
return true;
}
}
return false;
}
/* Return ggc allocated instance. We explicitly call destructors via
ggc_delete and do not want finalizers to be registered and
called at the garbage collection time. */
static modref_tree<T> *create_ggc ()
{
return new (ggc_alloc_no_dtor<modref_tree<T>> ())
modref_tree<T> ();
}
/* Remove all records and mark tree to alias with everything. */
void collapse ()
{
size_t i;
modref_base_node <T> *n;
if (bases)
{
FOR_EACH_VEC_SAFE_ELT (bases, i, n)
{
n->collapse ();
ggc_free (n);
}
vec_free (bases);
}
bases = NULL;
every_base = true;
}
/* Release memory. */
~modref_tree ()
{
collapse ();
}
/* Update parameter indexes in TT according to MAP. */
void
remap_params (vec <int> *map)
{
size_t i;
modref_base_node <T> *base_node;
FOR_EACH_VEC_SAFE_ELT (bases, i, base_node)
{
size_t j;
modref_ref_node <T> *ref_node;
FOR_EACH_VEC_SAFE_ELT (base_node->refs, j, ref_node)
{
size_t k;
modref_access_node *access_node;
FOR_EACH_VEC_SAFE_ELT (ref_node->accesses, k, access_node)
if (access_node->parm_index >= 0)
{
if (access_node->parm_index < (int)map->length ())
access_node->parm_index = (*map)[access_node->parm_index];
else
access_node->parm_index = MODREF_UNKNOWN_PARM;
}
}
}
}
};
void gt_ggc_mx (modref_tree <int>* const&);
void gt_ggc_mx (modref_tree <tree_node*>* const&);
void gt_pch_nx (modref_tree <int>* const&);
void gt_pch_nx (modref_tree <tree_node*>* const&);
void gt_pch_nx (modref_tree <int>* const&, gt_pointer_operator op, void *cookie);
void gt_pch_nx (modref_tree <tree_node*>* const&, gt_pointer_operator op,
void *cookie);
void gt_ggc_mx (modref_base_node <int>*);
void gt_ggc_mx (modref_base_node <tree_node*>* &);
void gt_pch_nx (modref_base_node <int>* const&);
void gt_pch_nx (modref_base_node <tree_node*>* const&);
void gt_pch_nx (modref_base_node <int>* const&, gt_pointer_operator op,
void *cookie);
void gt_pch_nx (modref_base_node <tree_node*>* const&, gt_pointer_operator op,
void *cookie);
void gt_ggc_mx (modref_ref_node <int>*);
void gt_ggc_mx (modref_ref_node <tree_node*>* &);
void gt_pch_nx (modref_ref_node <int>* const&);
void gt_pch_nx (modref_ref_node <tree_node*>* const&);
void gt_pch_nx (modref_ref_node <int>* const&, gt_pointer_operator op,
void *cookie);
void gt_pch_nx (modref_ref_node <tree_node*>* const&, gt_pointer_operator op,
void *cookie);
#endif
|