1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
|
/* Build live ranges for pseudos.
Copyright (C) 2010-2022 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file contains code to build pseudo live-ranges (analogous
structures used in IRA, so read comments about the live-ranges
there) and other info necessary for other passes to assign
hard-registers to pseudos, coalesce the spilled pseudos, and assign
stack memory slots to spilled pseudos. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "recog.h"
#include "cfganal.h"
#include "sparseset.h"
#include "lra-int.h"
#include "target.h"
#include "function-abi.h"
/* Program points are enumerated by numbers from range
0..LRA_LIVE_MAX_POINT-1. There are approximately two times more
program points than insns. Program points are places in the
program where liveness info can be changed. In most general case
(there are more complicated cases too) some program points
correspond to places where input operand dies and other ones
correspond to places where output operands are born. */
int lra_live_max_point;
/* Accumulated execution frequency of all references for each hard
register. */
int lra_hard_reg_usage[FIRST_PSEUDO_REGISTER];
/* A global flag whose true value says to build live ranges for all
pseudos, otherwise the live ranges only for pseudos got memory is
build. True value means also building copies and setting up hard
register preferences. The complete info is necessary only for the
assignment pass. The complete info is not needed for the
coalescing and spill passes. */
static bool complete_info_p;
/* Pseudos live at current point in the RTL scan. */
static sparseset pseudos_live;
/* Pseudos probably living through calls and setjumps. As setjump is
a call too, if a bit in PSEUDOS_LIVE_THROUGH_SETJUMPS is set up
then the corresponding bit in PSEUDOS_LIVE_THROUGH_CALLS is set up
too. These data are necessary for cases when only one subreg of a
multi-reg pseudo is set up after a call. So we decide it is
probably live when traversing bb backward. We are sure about
living when we see its usage or definition of the pseudo. */
static sparseset pseudos_live_through_calls;
static sparseset pseudos_live_through_setjumps;
/* Set of hard regs (except eliminable ones) currently live. */
static HARD_REG_SET hard_regs_live;
/* Set of pseudos and hard registers start living/dying in the current
insn. These sets are used to update REG_DEAD and REG_UNUSED notes
in the insn. */
static sparseset start_living, start_dying;
/* Set of pseudos and hard regs dead and unused in the current
insn. */
static sparseset unused_set, dead_set;
/* Bitmap used for holding intermediate bitmap operation results. */
static bitmap_head temp_bitmap;
/* Pool for pseudo live ranges. */
static object_allocator<lra_live_range> lra_live_range_pool ("live ranges");
/* Free live range list LR. */
static void
free_live_range_list (lra_live_range_t lr)
{
lra_live_range_t next;
while (lr != NULL)
{
next = lr->next;
lra_live_range_pool.remove (lr);
lr = next;
}
}
/* Create and return pseudo live range with given attributes. */
static lra_live_range_t
create_live_range (int regno, int start, int finish, lra_live_range_t next)
{
lra_live_range_t p = lra_live_range_pool.allocate ();
p->regno = regno;
p->start = start;
p->finish = finish;
p->next = next;
return p;
}
/* Copy live range R and return the result. */
static lra_live_range_t
copy_live_range (lra_live_range_t r)
{
return new (lra_live_range_pool) lra_live_range (*r);
}
/* Copy live range list given by its head R and return the result. */
lra_live_range_t
lra_copy_live_range_list (lra_live_range_t r)
{
lra_live_range_t p, first, *chain;
first = NULL;
for (chain = &first; r != NULL; r = r->next)
{
p = copy_live_range (r);
*chain = p;
chain = &p->next;
}
return first;
}
/* Merge *non-intersected* ranges R1 and R2 and returns the result.
The function maintains the order of ranges and tries to minimize
size of the result range list. Ranges R1 and R2 may not be used
after the call. */
lra_live_range_t
lra_merge_live_ranges (lra_live_range_t r1, lra_live_range_t r2)
{
lra_live_range_t first, last;
if (r1 == NULL)
return r2;
if (r2 == NULL)
return r1;
for (first = last = NULL; r1 != NULL && r2 != NULL;)
{
if (r1->start < r2->start)
std::swap (r1, r2);
if (r1->start == r2->finish + 1)
{
/* Joint ranges: merge r1 and r2 into r1. */
r1->start = r2->start;
lra_live_range_t temp = r2;
r2 = r2->next;
lra_live_range_pool.remove (temp);
}
else
{
gcc_assert (r2->finish + 1 < r1->start);
/* Add r1 to the result. */
if (first == NULL)
first = last = r1;
else
{
last->next = r1;
last = r1;
}
r1 = r1->next;
}
}
if (r1 != NULL)
{
if (first == NULL)
first = r1;
else
last->next = r1;
}
else
{
lra_assert (r2 != NULL);
if (first == NULL)
first = r2;
else
last->next = r2;
}
return first;
}
/* Return TRUE if live ranges R1 and R2 intersect. */
bool
lra_intersected_live_ranges_p (lra_live_range_t r1, lra_live_range_t r2)
{
/* Remember the live ranges are always kept ordered. */
while (r1 != NULL && r2 != NULL)
{
if (r1->start > r2->finish)
r1 = r1->next;
else if (r2->start > r1->finish)
r2 = r2->next;
else
return true;
}
return false;
}
enum point_type {
DEF_POINT,
USE_POINT
};
/* Return TRUE if set A contains a pseudo register, otherwise, return FALSE. */
static bool
sparseset_contains_pseudos_p (sparseset a)
{
int regno;
EXECUTE_IF_SET_IN_SPARSESET (a, regno)
if (!HARD_REGISTER_NUM_P (regno))
return true;
return false;
}
/* Mark pseudo REGNO as living or dying at program point POINT, depending on
whether TYPE is a definition or a use. If this is the first reference to
REGNO that we've encountered, then create a new live range for it. */
static void
update_pseudo_point (int regno, int point, enum point_type type)
{
lra_live_range_t p;
/* Don't compute points for hard registers. */
if (HARD_REGISTER_NUM_P (regno))
return;
if (complete_info_p || lra_get_regno_hard_regno (regno) < 0)
{
if (type == DEF_POINT)
{
if (sparseset_bit_p (pseudos_live, regno))
{
p = lra_reg_info[regno].live_ranges;
lra_assert (p != NULL);
p->finish = point;
}
}
else /* USE_POINT */
{
if (!sparseset_bit_p (pseudos_live, regno)
&& ((p = lra_reg_info[regno].live_ranges) == NULL
|| (p->finish != point && p->finish + 1 != point)))
lra_reg_info[regno].live_ranges
= create_live_range (regno, point, -1, p);
}
}
}
/* The corresponding bitmaps of BB currently being processed. */
static bitmap bb_killed_pseudos, bb_gen_pseudos;
/* Record hard register REGNO as now being live. It updates
living hard regs and START_LIVING. */
static void
make_hard_regno_live (int regno)
{
lra_assert (HARD_REGISTER_NUM_P (regno));
if (TEST_HARD_REG_BIT (hard_regs_live, regno)
|| TEST_HARD_REG_BIT (eliminable_regset, regno))
return;
SET_HARD_REG_BIT (hard_regs_live, regno);
sparseset_set_bit (start_living, regno);
if (fixed_regs[regno] || TEST_HARD_REG_BIT (hard_regs_spilled_into, regno))
bitmap_set_bit (bb_gen_pseudos, regno);
}
/* Process the definition of hard register REGNO. This updates
hard_regs_live, START_DYING and conflict hard regs for living
pseudos. */
static void
make_hard_regno_dead (int regno)
{
if (TEST_HARD_REG_BIT (eliminable_regset, regno))
return;
lra_assert (HARD_REGISTER_NUM_P (regno));
unsigned int i;
EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, i)
SET_HARD_REG_BIT (lra_reg_info[i].conflict_hard_regs, regno);
if (! TEST_HARD_REG_BIT (hard_regs_live, regno))
return;
CLEAR_HARD_REG_BIT (hard_regs_live, regno);
sparseset_set_bit (start_dying, regno);
if (fixed_regs[regno] || TEST_HARD_REG_BIT (hard_regs_spilled_into, regno))
{
bitmap_clear_bit (bb_gen_pseudos, regno);
bitmap_set_bit (bb_killed_pseudos, regno);
}
}
/* Mark pseudo REGNO as now being live and update START_LIVING. */
static void
mark_pseudo_live (int regno)
{
lra_assert (!HARD_REGISTER_NUM_P (regno));
if (sparseset_bit_p (pseudos_live, regno))
return;
sparseset_set_bit (pseudos_live, regno);
sparseset_set_bit (start_living, regno);
}
/* Mark pseudo REGNO as now being dead and update START_DYING. */
static void
mark_pseudo_dead (int regno)
{
lra_assert (!HARD_REGISTER_NUM_P (regno));
lra_reg_info[regno].conflict_hard_regs |= hard_regs_live;
if (!sparseset_bit_p (pseudos_live, regno))
return;
sparseset_clear_bit (pseudos_live, regno);
sparseset_set_bit (start_dying, regno);
}
/* Mark register REGNO (pseudo or hard register) in MODE as being live
and update BB_GEN_PSEUDOS. */
static void
mark_regno_live (int regno, machine_mode mode)
{
int last;
if (HARD_REGISTER_NUM_P (regno))
{
for (last = end_hard_regno (mode, regno); regno < last; regno++)
make_hard_regno_live (regno);
}
else
{
mark_pseudo_live (regno);
bitmap_set_bit (bb_gen_pseudos, regno);
}
}
/* Mark register REGNO (pseudo or hard register) in MODE as being dead
and update BB_GEN_PSEUDOS and BB_KILLED_PSEUDOS. */
static void
mark_regno_dead (int regno, machine_mode mode)
{
int last;
if (HARD_REGISTER_NUM_P (regno))
{
for (last = end_hard_regno (mode, regno); regno < last; regno++)
make_hard_regno_dead (regno);
}
else
{
mark_pseudo_dead (regno);
bitmap_clear_bit (bb_gen_pseudos, regno);
bitmap_set_bit (bb_killed_pseudos, regno);
}
}
/* This page contains code for making global live analysis of pseudos.
The code works only when pseudo live info is changed on a BB
border. That might be a consequence of some global transformations
in LRA, e.g. PIC pseudo reuse or rematerialization. */
/* Structure describing local BB data used for pseudo
live-analysis. */
class bb_data_pseudos
{
public:
/* Basic block about which the below data are. */
basic_block bb;
bitmap_head killed_pseudos; /* pseudos killed in the BB. */
bitmap_head gen_pseudos; /* pseudos generated in the BB. */
};
/* Array for all BB data. Indexed by the corresponding BB index. */
typedef class bb_data_pseudos *bb_data_t;
/* All basic block data are referred through the following array. */
static bb_data_t bb_data;
/* Two small functions for access to the bb data. */
static inline bb_data_t
get_bb_data (basic_block bb)
{
return &bb_data[(bb)->index];
}
static inline bb_data_t
get_bb_data_by_index (int index)
{
return &bb_data[index];
}
/* Bitmap with all hard regs. */
static bitmap_head all_hard_regs_bitmap;
/* The transfer function used by the DF equation solver to propagate
live info through block with BB_INDEX according to the following
equation:
bb.livein = (bb.liveout - bb.kill) OR bb.gen
*/
static bool
live_trans_fun (int bb_index)
{
basic_block bb = get_bb_data_by_index (bb_index)->bb;
bitmap bb_liveout = df_get_live_out (bb);
bitmap bb_livein = df_get_live_in (bb);
bb_data_t bb_info = get_bb_data (bb);
bitmap_and_compl (&temp_bitmap, bb_liveout, &all_hard_regs_bitmap);
return bitmap_ior_and_compl (bb_livein, &bb_info->gen_pseudos,
&temp_bitmap, &bb_info->killed_pseudos);
}
/* The confluence function used by the DF equation solver to set up
live info for a block BB without predecessor. */
static void
live_con_fun_0 (basic_block bb)
{
bitmap_and_into (df_get_live_out (bb), &all_hard_regs_bitmap);
}
/* The confluence function used by the DF equation solver to propagate
live info from successor to predecessor on edge E according to the
following equation:
bb.liveout = 0 for entry block | OR (livein of successors)
*/
static bool
live_con_fun_n (edge e)
{
basic_block bb = e->src;
basic_block dest = e->dest;
bitmap bb_liveout = df_get_live_out (bb);
bitmap dest_livein = df_get_live_in (dest);
return bitmap_ior_and_compl_into (bb_liveout,
dest_livein, &all_hard_regs_bitmap);
}
/* Indexes of all function blocks. */
static bitmap_head all_blocks;
/* Allocate and initialize data needed for global pseudo live
analysis. */
static void
initiate_live_solver (void)
{
bitmap_initialize (&all_hard_regs_bitmap, ®_obstack);
bitmap_set_range (&all_hard_regs_bitmap, 0, FIRST_PSEUDO_REGISTER);
bb_data = XNEWVEC (class bb_data_pseudos, last_basic_block_for_fn (cfun));
bitmap_initialize (&all_blocks, ®_obstack);
basic_block bb;
FOR_ALL_BB_FN (bb, cfun)
{
bb_data_t bb_info = get_bb_data (bb);
bb_info->bb = bb;
bitmap_initialize (&bb_info->killed_pseudos, ®_obstack);
bitmap_initialize (&bb_info->gen_pseudos, ®_obstack);
bitmap_set_bit (&all_blocks, bb->index);
}
}
/* Free all data needed for global pseudo live analysis. */
static void
finish_live_solver (void)
{
basic_block bb;
bitmap_clear (&all_blocks);
FOR_ALL_BB_FN (bb, cfun)
{
bb_data_t bb_info = get_bb_data (bb);
bitmap_clear (&bb_info->killed_pseudos);
bitmap_clear (&bb_info->gen_pseudos);
}
free (bb_data);
bitmap_clear (&all_hard_regs_bitmap);
}
/* Insn currently scanned. */
static rtx_insn *curr_insn;
/* The insn data. */
static lra_insn_recog_data_t curr_id;
/* The insn static data. */
static struct lra_static_insn_data *curr_static_id;
/* Vec containing execution frequencies of program points. */
static vec<int> point_freq_vec;
/* The start of the above vector elements. */
int *lra_point_freq;
/* Increment the current program point POINT to the next point which has
execution frequency FREQ. */
static void
next_program_point (int &point, int freq)
{
point_freq_vec.safe_push (freq);
lra_point_freq = point_freq_vec.address ();
point++;
}
/* Update the preference of HARD_REGNO for pseudo REGNO by PROFIT. */
void
lra_setup_reload_pseudo_preferenced_hard_reg (int regno,
int hard_regno, int profit)
{
lra_assert (regno >= lra_constraint_new_regno_start);
if (lra_reg_info[regno].preferred_hard_regno1 == hard_regno)
lra_reg_info[regno].preferred_hard_regno_profit1 += profit;
else if (lra_reg_info[regno].preferred_hard_regno2 == hard_regno)
lra_reg_info[regno].preferred_hard_regno_profit2 += profit;
else if (lra_reg_info[regno].preferred_hard_regno1 < 0)
{
lra_reg_info[regno].preferred_hard_regno1 = hard_regno;
lra_reg_info[regno].preferred_hard_regno_profit1 = profit;
}
else if (lra_reg_info[regno].preferred_hard_regno2 < 0
|| profit > lra_reg_info[regno].preferred_hard_regno_profit2)
{
lra_reg_info[regno].preferred_hard_regno2 = hard_regno;
lra_reg_info[regno].preferred_hard_regno_profit2 = profit;
}
else
return;
/* Keep the 1st hard regno as more profitable. */
if (lra_reg_info[regno].preferred_hard_regno1 >= 0
&& lra_reg_info[regno].preferred_hard_regno2 >= 0
&& (lra_reg_info[regno].preferred_hard_regno_profit2
> lra_reg_info[regno].preferred_hard_regno_profit1))
{
std::swap (lra_reg_info[regno].preferred_hard_regno1,
lra_reg_info[regno].preferred_hard_regno2);
std::swap (lra_reg_info[regno].preferred_hard_regno_profit1,
lra_reg_info[regno].preferred_hard_regno_profit2);
}
if (lra_dump_file != NULL)
{
if ((hard_regno = lra_reg_info[regno].preferred_hard_regno1) >= 0)
fprintf (lra_dump_file,
" Hard reg %d is preferable by r%d with profit %d\n",
hard_regno, regno,
lra_reg_info[regno].preferred_hard_regno_profit1);
if ((hard_regno = lra_reg_info[regno].preferred_hard_regno2) >= 0)
fprintf (lra_dump_file,
" Hard reg %d is preferable by r%d with profit %d\n",
hard_regno, regno,
lra_reg_info[regno].preferred_hard_regno_profit2);
}
}
/* Check whether REGNO lives through calls and setjmps and clear
the corresponding bits in PSEUDOS_LIVE_THROUGH_CALLS and
PSEUDOS_LIVE_THROUGH_SETJUMPS. All calls in the region described
by PSEUDOS_LIVE_THROUGH_CALLS have the given ABI. */
static inline void
check_pseudos_live_through_calls (int regno, const function_abi &abi)
{
if (! sparseset_bit_p (pseudos_live_through_calls, regno))
return;
machine_mode mode = PSEUDO_REGNO_MODE (regno);
sparseset_clear_bit (pseudos_live_through_calls, regno);
lra_reg_info[regno].conflict_hard_regs |= abi.mode_clobbers (mode);
if (! sparseset_bit_p (pseudos_live_through_setjumps, regno))
return;
sparseset_clear_bit (pseudos_live_through_setjumps, regno);
/* Don't allocate pseudos that cross setjmps or any call, if this
function receives a nonlocal goto. */
SET_HARD_REG_SET (lra_reg_info[regno].conflict_hard_regs);
}
/* Return true if insn REG is an early clobber operand in alternative
NALT. Negative NALT means that we don't know the current insn
alternative. So assume the worst. */
static inline bool
reg_early_clobber_p (const struct lra_insn_reg *reg, int n_alt)
{
return (n_alt == LRA_UNKNOWN_ALT
? reg->early_clobber_alts != 0
: (n_alt != LRA_NON_CLOBBERED_ALT
&& TEST_BIT (reg->early_clobber_alts, n_alt)));
}
/* Clear pseudo REGNO in SET or all hard registers of REGNO in MODE in SET. */
static void
clear_sparseset_regnos (sparseset set, int regno, enum machine_mode mode)
{
if (regno >= FIRST_PSEUDO_REGISTER)
{
sparseset_clear_bit (dead_set, regno);
return;
}
for (int last = end_hard_regno (mode, regno); regno < last; regno++)
sparseset_clear_bit (set, regno);
}
/* Return true if pseudo REGNO is in SET or all hard registers of REGNO in MODE
are in SET. */
static bool
regnos_in_sparseset_p (sparseset set, int regno, enum machine_mode mode)
{
if (regno >= FIRST_PSEUDO_REGISTER)
return sparseset_bit_p (dead_set, regno);
for (int last = end_hard_regno (mode, regno); regno < last; regno++)
if (!sparseset_bit_p (set, regno))
return false;
return true;
}
/* Process insns of the basic block BB to update pseudo live ranges,
pseudo hard register conflicts, and insn notes. We do it on
backward scan of BB insns. CURR_POINT is the program point where
BB ends. The function updates this counter and returns in
CURR_POINT the program point where BB starts. The function also
does local live info updates and can delete the dead insns if
DEAD_INSN_P. It returns true if pseudo live info was
changed at the BB start. */
static bool
process_bb_lives (basic_block bb, int &curr_point, bool dead_insn_p)
{
int i, regno, freq;
unsigned int j;
bitmap_iterator bi;
bitmap reg_live_out;
unsigned int px;
rtx_insn *next;
rtx link, *link_loc;
bool need_curr_point_incr;
/* Only has a meaningful value once we've seen a call. */
function_abi last_call_abi = default_function_abi;
reg_live_out = df_get_live_out (bb);
sparseset_clear (pseudos_live);
sparseset_clear (pseudos_live_through_calls);
sparseset_clear (pseudos_live_through_setjumps);
REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
hard_regs_live &= ~eliminable_regset;
EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
{
update_pseudo_point (j, curr_point, USE_POINT);
mark_pseudo_live (j);
}
bb_gen_pseudos = &get_bb_data (bb)->gen_pseudos;
bb_killed_pseudos = &get_bb_data (bb)->killed_pseudos;
bitmap_clear (bb_gen_pseudos);
bitmap_clear (bb_killed_pseudos);
freq = REG_FREQ_FROM_BB (bb);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " BB %d\n", bb->index);
/* Scan the code of this basic block, noting which pseudos and hard
regs are born or die.
Note that this loop treats uninitialized values as live until the
beginning of the block. For example, if an instruction uses
(reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever set,
FOO will remain live until the beginning of the block. Likewise
if FOO is not set at all. This is unnecessarily pessimistic, but
it probably doesn't matter much in practice. */
FOR_BB_INSNS_REVERSE_SAFE (bb, curr_insn, next)
{
bool call_p;
int n_alt, dst_regno, src_regno;
rtx set;
struct lra_insn_reg *reg;
if (!NONDEBUG_INSN_P (curr_insn))
continue;
curr_id = lra_get_insn_recog_data (curr_insn);
curr_static_id = curr_id->insn_static_data;
n_alt = curr_id->used_insn_alternative;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Insn %u: point = %d, n_alt = %d\n",
INSN_UID (curr_insn), curr_point, n_alt);
set = single_set (curr_insn);
if (dead_insn_p && set != NULL_RTX
&& REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set))
&& find_reg_note (curr_insn, REG_EH_REGION, NULL_RTX) == NULL_RTX
&& ! may_trap_p (PATTERN (curr_insn))
/* Don't do premature remove of pic offset pseudo as we can
start to use it after some reload generation. */
&& (pic_offset_table_rtx == NULL_RTX
|| pic_offset_table_rtx != SET_DEST (set)))
{
bool remove_p = true;
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN
&& (reg->regno < FIRST_PSEUDO_REGISTER
? TEST_HARD_REG_BIT (hard_regs_live, reg->regno)
: sparseset_bit_p (pseudos_live, reg->regno)))
{
remove_p = false;
break;
}
for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN)
{
remove_p = false;
break;
}
if (remove_p && ! volatile_refs_p (PATTERN (curr_insn)))
{
dst_regno = REGNO (SET_DEST (set));
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Deleting dead insn %u\n",
INSN_UID (curr_insn));
lra_set_insn_deleted (curr_insn);
if (lra_reg_info[dst_regno].nrefs == 0)
{
/* There might be some debug insns with the pseudo. */
unsigned int uid;
rtx_insn *insn;
bitmap_copy (&temp_bitmap, &lra_reg_info[dst_regno].insn_bitmap);
EXECUTE_IF_SET_IN_BITMAP (&temp_bitmap, 0, uid, bi)
{
insn = lra_insn_recog_data[uid]->insn;
lra_substitute_pseudo_within_insn (insn, dst_regno,
SET_SRC (set), true);
lra_update_insn_regno_info (insn);
}
}
continue;
}
}
/* Update max ref width and hard reg usage. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
{
int regno = reg->regno;
if (partial_subreg_p (lra_reg_info[regno].biggest_mode,
reg->biggest_mode))
lra_reg_info[regno].biggest_mode = reg->biggest_mode;
if (HARD_REGISTER_NUM_P (regno))
lra_hard_reg_usage[regno] += freq;
}
call_p = CALL_P (curr_insn);
/* If we have a simple register copy and the source reg is live after
this instruction, then remove the source reg from the live set so
that it will not conflict with the destination reg. */
rtx ignore_reg = non_conflicting_reg_copy_p (curr_insn);
if (ignore_reg != NULL_RTX)
{
int ignore_regno = REGNO (ignore_reg);
if (HARD_REGISTER_NUM_P (ignore_regno)
&& TEST_HARD_REG_BIT (hard_regs_live, ignore_regno))
CLEAR_HARD_REG_BIT (hard_regs_live, ignore_regno);
else if (!HARD_REGISTER_NUM_P (ignore_regno)
&& sparseset_bit_p (pseudos_live, ignore_regno))
sparseset_clear_bit (pseudos_live, ignore_regno);
else
/* We don't need any special handling of the source reg if
it is dead after this instruction. */
ignore_reg = NULL_RTX;
}
src_regno = (set != NULL_RTX && REG_P (SET_SRC (set))
? REGNO (SET_SRC (set)) : -1);
dst_regno = (set != NULL_RTX && REG_P (SET_DEST (set))
? REGNO (SET_DEST (set)) : -1);
if (complete_info_p
&& src_regno >= 0 && dst_regno >= 0
/* Check that source regno does not conflict with
destination regno to exclude most impossible
preferences. */
&& (((!HARD_REGISTER_NUM_P (src_regno)
&& (! sparseset_bit_p (pseudos_live, src_regno)
|| (!HARD_REGISTER_NUM_P (dst_regno)
&& lra_reg_val_equal_p (src_regno,
lra_reg_info[dst_regno].val,
lra_reg_info[dst_regno].offset))))
|| (HARD_REGISTER_NUM_P (src_regno)
&& ! TEST_HARD_REG_BIT (hard_regs_live, src_regno)))
/* It might be 'inheritance pseudo <- reload pseudo'. */
|| (src_regno >= lra_constraint_new_regno_start
&& dst_regno >= lra_constraint_new_regno_start
/* Remember to skip special cases where src/dest regnos are
the same, e.g. insn SET pattern has matching constraints
like =r,0. */
&& src_regno != dst_regno)))
{
int hard_regno = -1, regno = -1;
if (dst_regno >= lra_constraint_new_regno_start
&& src_regno >= lra_constraint_new_regno_start)
{
/* It might be still an original (non-reload) insn with
one unused output and a constraint requiring to use
the same reg for input/output operands. In this case
dst_regno and src_regno have the same value, we don't
need a misleading copy for this case. */
if (dst_regno != src_regno)
lra_create_copy (dst_regno, src_regno, freq);
}
else if (dst_regno >= lra_constraint_new_regno_start)
{
if (!HARD_REGISTER_NUM_P (hard_regno = src_regno))
hard_regno = reg_renumber[src_regno];
regno = dst_regno;
}
else if (src_regno >= lra_constraint_new_regno_start)
{
if (!HARD_REGISTER_NUM_P (hard_regno = dst_regno))
hard_regno = reg_renumber[dst_regno];
regno = src_regno;
}
if (regno >= 0 && hard_regno >= 0)
lra_setup_reload_pseudo_preferenced_hard_reg
(regno, hard_regno, freq);
}
sparseset_clear (start_living);
/* Mark each defined value as live. We need to do this for
unused values because they still conflict with quantities
that are live at the time of the definition. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN)
{
update_pseudo_point (reg->regno, curr_point, USE_POINT);
mark_regno_live (reg->regno, reg->biggest_mode);
/* ??? Should be a no-op for unused registers. */
check_pseudos_live_through_calls (reg->regno, last_call_abi);
}
for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN)
make_hard_regno_live (reg->regno);
if (curr_id->arg_hard_regs != NULL)
for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
if (!HARD_REGISTER_NUM_P (regno))
/* It is a clobber. */
make_hard_regno_live (regno - FIRST_PSEUDO_REGISTER);
sparseset_copy (unused_set, start_living);
sparseset_clear (start_dying);
/* See which defined values die here. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN
&& ! reg_early_clobber_p (reg, n_alt) && ! reg->subreg_p)
{
if (reg->type == OP_OUT)
update_pseudo_point (reg->regno, curr_point, DEF_POINT);
mark_regno_dead (reg->regno, reg->biggest_mode);
}
for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN
&& ! reg_early_clobber_p (reg, n_alt) && ! reg->subreg_p)
make_hard_regno_dead (reg->regno);
if (curr_id->arg_hard_regs != NULL)
for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
if (!HARD_REGISTER_NUM_P (regno))
/* It is a clobber. */
make_hard_regno_dead (regno - FIRST_PSEUDO_REGISTER);
if (call_p)
{
function_abi call_abi = insn_callee_abi (curr_insn);
if (last_call_abi != call_abi)
EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, j)
check_pseudos_live_through_calls (j, last_call_abi);
last_call_abi = call_abi;
sparseset_ior (pseudos_live_through_calls,
pseudos_live_through_calls, pseudos_live);
if (cfun->has_nonlocal_label
|| (!targetm.setjmp_preserves_nonvolatile_regs_p ()
&& (find_reg_note (curr_insn, REG_SETJMP, NULL_RTX)
!= NULL_RTX)))
sparseset_ior (pseudos_live_through_setjumps,
pseudos_live_through_setjumps, pseudos_live);
}
/* Increment the current program point if we must. */
if (sparseset_contains_pseudos_p (unused_set)
|| sparseset_contains_pseudos_p (start_dying))
next_program_point (curr_point, freq);
/* If we removed the source reg from a simple register copy from the
live set above, then add it back now so we don't accidentally add
it to the start_living set below. */
if (ignore_reg != NULL_RTX)
{
int ignore_regno = REGNO (ignore_reg);
if (HARD_REGISTER_NUM_P (ignore_regno))
SET_HARD_REG_BIT (hard_regs_live, ignore_regno);
else
sparseset_set_bit (pseudos_live, ignore_regno);
}
sparseset_clear (start_living);
/* Mark each used value as live. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type != OP_OUT)
{
if (reg->type == OP_IN)
update_pseudo_point (reg->regno, curr_point, USE_POINT);
mark_regno_live (reg->regno, reg->biggest_mode);
check_pseudos_live_through_calls (reg->regno, last_call_abi);
}
for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
if (reg->type != OP_OUT)
make_hard_regno_live (reg->regno);
if (curr_id->arg_hard_regs != NULL)
/* Make argument hard registers live. */
for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
if (HARD_REGISTER_NUM_P (regno))
make_hard_regno_live (regno);
sparseset_and_compl (dead_set, start_living, start_dying);
sparseset_clear (start_dying);
/* Mark early clobber outputs dead. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN
&& reg_early_clobber_p (reg, n_alt) && ! reg->subreg_p)
{
if (reg->type == OP_OUT)
update_pseudo_point (reg->regno, curr_point, DEF_POINT);
mark_regno_dead (reg->regno, reg->biggest_mode);
/* We're done processing inputs, so make sure early clobber
operands that are both inputs and outputs are still live. */
if (reg->type == OP_INOUT)
mark_regno_live (reg->regno, reg->biggest_mode);
}
for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN
&& reg_early_clobber_p (reg, n_alt) && ! reg->subreg_p)
{
struct lra_insn_reg *reg2;
/* We can have early clobbered non-operand hard reg and
the same hard reg as an insn input. Don't make hard
reg dead before the insns. */
for (reg2 = curr_id->regs; reg2 != NULL; reg2 = reg2->next)
if (reg2->type != OP_OUT && reg2->regno == reg->regno)
break;
if (reg2 == NULL)
make_hard_regno_dead (reg->regno);
}
/* Increment the current program point if we must. */
if (sparseset_contains_pseudos_p (dead_set)
|| sparseset_contains_pseudos_p (start_dying))
next_program_point (curr_point, freq);
/* Update notes. */
for (link_loc = ®_NOTES (curr_insn); (link = *link_loc) != NULL_RTX;)
{
if (REG_NOTE_KIND (link) != REG_DEAD
&& REG_NOTE_KIND (link) != REG_UNUSED)
;
else if (REG_P (XEXP (link, 0)))
{
rtx note_reg = XEXP (link, 0);
int note_regno = REGNO (note_reg);
if ((REG_NOTE_KIND (link) == REG_DEAD
&& ! regnos_in_sparseset_p (dead_set, note_regno,
GET_MODE (note_reg)))
|| (REG_NOTE_KIND (link) == REG_UNUSED
&& ! regnos_in_sparseset_p (unused_set, note_regno,
GET_MODE (note_reg))))
{
*link_loc = XEXP (link, 1);
continue;
}
if (REG_NOTE_KIND (link) == REG_DEAD)
clear_sparseset_regnos (dead_set, note_regno,
GET_MODE (note_reg));
else if (REG_NOTE_KIND (link) == REG_UNUSED)
clear_sparseset_regnos (unused_set, note_regno,
GET_MODE (note_reg));
}
link_loc = &XEXP (link, 1);
}
EXECUTE_IF_SET_IN_SPARSESET (dead_set, j)
add_reg_note (curr_insn, REG_DEAD, regno_reg_rtx[j]);
EXECUTE_IF_SET_IN_SPARSESET (unused_set, j)
add_reg_note (curr_insn, REG_UNUSED, regno_reg_rtx[j]);
}
if (bb_has_eh_pred (bb))
/* Any pseudos that are currently live conflict with the eh_return
data registers. For liveness purposes, these registers are set
by artificial definitions at the start of the BB, so are not
actually live on entry. */
for (j = 0; ; ++j)
{
unsigned int regno = EH_RETURN_DATA_REGNO (j);
if (regno == INVALID_REGNUM)
break;
make_hard_regno_live (regno);
make_hard_regno_dead (regno);
}
/* Pseudos can't go in stack regs at the start of a basic block that
is reached by an abnormal edge. Likewise for registers that are at
least partly call clobbered, because caller-save, fixup_abnormal_edges
and possibly the table driven EH machinery are not quite ready to
handle such pseudos live across such edges. */
if (bb_has_abnormal_pred (bb))
{
HARD_REG_SET clobbers;
CLEAR_HARD_REG_SET (clobbers);
#ifdef STACK_REGS
EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, px)
lra_reg_info[px].no_stack_p = true;
for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
SET_HARD_REG_BIT (clobbers, px);
#endif
/* No need to record conflicts for call clobbered regs if we
have nonlocal labels around, as we don't ever try to
allocate such regs in this case. */
if (!cfun->has_nonlocal_label
&& has_abnormal_call_or_eh_pred_edge_p (bb))
for (px = 0; HARD_REGISTER_NUM_P (px); px++)
if (eh_edge_abi.clobbers_at_least_part_of_reg_p (px)
#ifdef REAL_PIC_OFFSET_TABLE_REGNUM
/* We should create a conflict of PIC pseudo with PIC
hard reg as PIC hard reg can have a wrong value after
jump described by the abnormal edge. In this case we
cannot allocate PIC hard reg to PIC pseudo as PIC
pseudo will also have a wrong value. */
|| (px == REAL_PIC_OFFSET_TABLE_REGNUM
&& pic_offset_table_rtx != NULL_RTX
&& !HARD_REGISTER_P (pic_offset_table_rtx))
#endif
)
SET_HARD_REG_BIT (clobbers, px);
clobbers &= ~hard_regs_live;
for (px = 0; HARD_REGISTER_NUM_P (px); px++)
if (TEST_HARD_REG_BIT (clobbers, px))
{
make_hard_regno_live (px);
make_hard_regno_dead (px);
}
}
bool live_change_p = false;
/* Check if bb border live info was changed. */
unsigned int live_pseudos_num = 0;
EXECUTE_IF_SET_IN_BITMAP (df_get_live_in (bb),
FIRST_PSEUDO_REGISTER, j, bi)
{
live_pseudos_num++;
if (! sparseset_bit_p (pseudos_live, j))
{
live_change_p = true;
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
" r%d is removed as live at bb%d start\n", j, bb->index);
break;
}
}
if (! live_change_p
&& sparseset_cardinality (pseudos_live) != live_pseudos_num)
{
live_change_p = true;
if (lra_dump_file != NULL)
EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, j)
if (! bitmap_bit_p (df_get_live_in (bb), j))
fprintf (lra_dump_file,
" r%d is added to live at bb%d start\n", j, bb->index);
}
/* See if we'll need an increment at the end of this basic block.
An increment is needed if the PSEUDOS_LIVE set is not empty,
to make sure the finish points are set up correctly. */
need_curr_point_incr = (sparseset_cardinality (pseudos_live) > 0);
EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, i)
{
update_pseudo_point (i, curr_point, DEF_POINT);
mark_pseudo_dead (i);
}
EXECUTE_IF_SET_IN_BITMAP (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, j, bi)
{
if (sparseset_cardinality (pseudos_live_through_calls) == 0)
break;
if (sparseset_bit_p (pseudos_live_through_calls, j))
check_pseudos_live_through_calls (j, last_call_abi);
}
for (i = 0; HARD_REGISTER_NUM_P (i); ++i)
{
if (!TEST_HARD_REG_BIT (hard_regs_live, i))
continue;
if (!TEST_HARD_REG_BIT (hard_regs_spilled_into, i))
continue;
if (bitmap_bit_p (df_get_live_in (bb), i))
continue;
live_change_p = true;
if (lra_dump_file)
fprintf (lra_dump_file,
" hard reg r%d is added to live at bb%d start\n", i,
bb->index);
bitmap_set_bit (df_get_live_in (bb), i);
}
if (need_curr_point_incr)
next_program_point (curr_point, freq);
return live_change_p;
}
/* Compress pseudo live ranges by removing program points where
nothing happens. Complexity of many algorithms in LRA is linear
function of program points number. To speed up the code we try to
minimize the number of the program points here. */
static void
remove_some_program_points_and_update_live_ranges (void)
{
unsigned i;
int n, max_regno;
int *map;
lra_live_range_t r, prev_r, next_r;
sbitmap_iterator sbi;
bool born_p, dead_p, prev_born_p, prev_dead_p;
auto_sbitmap born (lra_live_max_point);
auto_sbitmap dead (lra_live_max_point);
bitmap_clear (born);
bitmap_clear (dead);
max_regno = max_reg_num ();
for (i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
{
for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
{
lra_assert (r->start <= r->finish);
bitmap_set_bit (born, r->start);
bitmap_set_bit (dead, r->finish);
}
}
auto_sbitmap born_or_dead (lra_live_max_point);
bitmap_ior (born_or_dead, born, dead);
map = XCNEWVEC (int, lra_live_max_point);
n = -1;
prev_born_p = prev_dead_p = false;
EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
{
born_p = bitmap_bit_p (born, i);
dead_p = bitmap_bit_p (dead, i);
if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
|| (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
{
map[i] = n;
lra_point_freq[n] = MAX (lra_point_freq[n], lra_point_freq[i]);
}
else
{
map[i] = ++n;
lra_point_freq[n] = lra_point_freq[i];
}
prev_born_p = born_p;
prev_dead_p = dead_p;
}
n++;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
lra_live_max_point, n,
lra_live_max_point ? 100 * n / lra_live_max_point : 100);
if (n < lra_live_max_point)
{
lra_live_max_point = n;
for (i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
{
for (prev_r = NULL, r = lra_reg_info[i].live_ranges;
r != NULL;
r = next_r)
{
next_r = r->next;
r->start = map[r->start];
r->finish = map[r->finish];
if (prev_r == NULL || prev_r->start > r->finish + 1)
{
prev_r = r;
continue;
}
prev_r->start = r->start;
prev_r->next = next_r;
lra_live_range_pool.remove (r);
}
}
}
free (map);
}
/* Print live ranges R to file F. */
void
lra_print_live_range_list (FILE *f, lra_live_range_t r)
{
for (; r != NULL; r = r->next)
fprintf (f, " [%d..%d]", r->start, r->finish);
fprintf (f, "\n");
}
DEBUG_FUNCTION void
debug (lra_live_range &ref)
{
lra_print_live_range_list (stderr, &ref);
}
DEBUG_FUNCTION void
debug (lra_live_range *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Print live ranges R to stderr. */
void
lra_debug_live_range_list (lra_live_range_t r)
{
lra_print_live_range_list (stderr, r);
}
/* Print live ranges of pseudo REGNO to file F. */
static void
print_pseudo_live_ranges (FILE *f, int regno)
{
if (lra_reg_info[regno].live_ranges == NULL)
return;
fprintf (f, " r%d:", regno);
lra_print_live_range_list (f, lra_reg_info[regno].live_ranges);
}
/* Print live ranges of pseudo REGNO to stderr. */
void
lra_debug_pseudo_live_ranges (int regno)
{
print_pseudo_live_ranges (stderr, regno);
}
/* Print live ranges of all pseudos to file F. */
static void
print_live_ranges (FILE *f)
{
int i, max_regno;
max_regno = max_reg_num ();
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
print_pseudo_live_ranges (f, i);
}
/* Print live ranges of all pseudos to stderr. */
void
lra_debug_live_ranges (void)
{
print_live_ranges (stderr);
}
/* Compress pseudo live ranges. */
static void
compress_live_ranges (void)
{
remove_some_program_points_and_update_live_ranges ();
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file, "Ranges after the compression:\n");
print_live_ranges (lra_dump_file);
}
}
/* The number of the current live range pass. */
int lra_live_range_iter;
/* The function creates live ranges only for memory pseudos (or for
all ones if ALL_P), set up CONFLICT_HARD_REGS for the pseudos. It
also does dead insn elimination if DEAD_INSN_P and global live
analysis only for pseudos and only if the pseudo live info was
changed on a BB border. Return TRUE if the live info was
changed. */
static bool
lra_create_live_ranges_1 (bool all_p, bool dead_insn_p)
{
basic_block bb;
int i, hard_regno, max_regno = max_reg_num ();
int curr_point;
bool bb_live_change_p, have_referenced_pseudos = false;
timevar_push (TV_LRA_CREATE_LIVE_RANGES);
complete_info_p = all_p;
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
"\n********** Pseudo live ranges #%d: **********\n\n",
++lra_live_range_iter);
memset (lra_hard_reg_usage, 0, sizeof (lra_hard_reg_usage));
for (i = 0; i < max_regno; i++)
{
lra_reg_info[i].live_ranges = NULL;
CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
lra_reg_info[i].preferred_hard_regno1 = -1;
lra_reg_info[i].preferred_hard_regno2 = -1;
lra_reg_info[i].preferred_hard_regno_profit1 = 0;
lra_reg_info[i].preferred_hard_regno_profit2 = 0;
#ifdef STACK_REGS
lra_reg_info[i].no_stack_p = false;
#endif
/* The biggest mode is already set but its value might be to
conservative because of recent transformation. Here in this
file we recalculate it again as it costs practically
nothing. */
if (!HARD_REGISTER_NUM_P (i) && regno_reg_rtx[i] != NULL_RTX)
lra_reg_info[i].biggest_mode = GET_MODE (regno_reg_rtx[i]);
else
lra_reg_info[i].biggest_mode = VOIDmode;
if (!HARD_REGISTER_NUM_P (i)
&& lra_reg_info[i].nrefs != 0)
{
if ((hard_regno = reg_renumber[i]) >= 0)
lra_hard_reg_usage[hard_regno] += lra_reg_info[i].freq;
have_referenced_pseudos = true;
}
}
lra_free_copies ();
/* Under some circumstances, we can have functions without pseudo
registers. For such functions, lra_live_max_point will be 0,
see e.g. PR55604, and there's nothing more to do for us here. */
if (! have_referenced_pseudos)
{
timevar_pop (TV_LRA_CREATE_LIVE_RANGES);
return false;
}
pseudos_live = sparseset_alloc (max_regno);
pseudos_live_through_calls = sparseset_alloc (max_regno);
pseudos_live_through_setjumps = sparseset_alloc (max_regno);
start_living = sparseset_alloc (max_regno);
start_dying = sparseset_alloc (max_regno);
dead_set = sparseset_alloc (max_regno);
unused_set = sparseset_alloc (max_regno);
curr_point = 0;
unsigned new_length = get_max_uid () * 2;
point_freq_vec.truncate (0);
point_freq_vec.reserve_exact (new_length);
lra_point_freq = point_freq_vec.address ();
auto_vec<int, 20> post_order_rev_cfg;
inverted_post_order_compute (&post_order_rev_cfg);
lra_assert (post_order_rev_cfg.length () == (unsigned) n_basic_blocks_for_fn (cfun));
bb_live_change_p = false;
for (i = post_order_rev_cfg.length () - 1; i >= 0; --i)
{
bb = BASIC_BLOCK_FOR_FN (cfun, post_order_rev_cfg[i]);
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun))
continue;
if (process_bb_lives (bb, curr_point, dead_insn_p))
bb_live_change_p = true;
}
if (bb_live_change_p)
{
/* We need to clear pseudo live info as some pseudos can
disappear, e.g. pseudos with used equivalences. */
FOR_EACH_BB_FN (bb, cfun)
{
bitmap_clear_range (df_get_live_in (bb), FIRST_PSEUDO_REGISTER,
max_regno - FIRST_PSEUDO_REGISTER);
bitmap_clear_range (df_get_live_out (bb), FIRST_PSEUDO_REGISTER,
max_regno - FIRST_PSEUDO_REGISTER);
}
/* As we did not change CFG since LRA start we can use
DF-infrastructure solver to solve live data flow problem. */
for (int i = 0; HARD_REGISTER_NUM_P (i); ++i)
{
if (TEST_HARD_REG_BIT (hard_regs_spilled_into, i))
bitmap_clear_bit (&all_hard_regs_bitmap, i);
}
df_simple_dataflow
(DF_BACKWARD, NULL, live_con_fun_0, live_con_fun_n,
live_trans_fun, &all_blocks,
df_get_postorder (DF_BACKWARD), df_get_n_blocks (DF_BACKWARD));
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file,
"Global pseudo live data have been updated:\n");
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
bb_data_t bb_info = get_bb_data (bb);
bitmap bb_livein = df_get_live_in (bb);
bitmap bb_liveout = df_get_live_out (bb);
fprintf (lra_dump_file, "\nBB %d:\n", bb->index);
lra_dump_bitmap_with_title (" gen:",
&bb_info->gen_pseudos, bb->index);
lra_dump_bitmap_with_title (" killed:",
&bb_info->killed_pseudos, bb->index);
lra_dump_bitmap_with_title (" livein:", bb_livein, bb->index);
lra_dump_bitmap_with_title (" liveout:", bb_liveout, bb->index);
}
}
}
lra_live_max_point = curr_point;
if (lra_dump_file != NULL)
print_live_ranges (lra_dump_file);
/* Clean up. */
sparseset_free (unused_set);
sparseset_free (dead_set);
sparseset_free (start_dying);
sparseset_free (start_living);
sparseset_free (pseudos_live_through_calls);
sparseset_free (pseudos_live_through_setjumps);
sparseset_free (pseudos_live);
compress_live_ranges ();
timevar_pop (TV_LRA_CREATE_LIVE_RANGES);
return bb_live_change_p;
}
/* The main entry function creates live-ranges and other live info
necessary for the assignment sub-pass. It uses
lra_creates_live_ranges_1 -- so read comments for the
function. */
void
lra_create_live_ranges (bool all_p, bool dead_insn_p)
{
if (! lra_create_live_ranges_1 (all_p, dead_insn_p))
return;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "Live info was changed -- recalculate it\n");
/* Live info was changed on a bb border. It means that some info,
e.g. about conflict regs, calls crossed, and live ranges may be
wrong. We need this info for allocation. So recalculate it
again but without removing dead insns which can change live info
again. Repetitive live range calculations are expensive therefore
we stop here as we already have correct info although some
improvement in rare cases could be possible on this sub-pass if
we do dead insn elimination again (still the improvement may
happen later). */
lra_clear_live_ranges ();
bool res = lra_create_live_ranges_1 (all_p, false);
lra_assert (! res);
}
/* Finish all live ranges. */
void
lra_clear_live_ranges (void)
{
int i;
for (i = 0; i < max_reg_num (); i++)
free_live_range_list (lra_reg_info[i].live_ranges);
point_freq_vec.release ();
}
/* Initialize live ranges data once per function. */
void
lra_live_ranges_init (void)
{
bitmap_initialize (&temp_bitmap, ®_obstack);
initiate_live_solver ();
}
/* Finish live ranges data once per function. */
void
lra_live_ranges_finish (void)
{
finish_live_solver ();
bitmap_clear (&temp_bitmap);
lra_live_range_pool.release ();
}
|