1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
// Multiplexer utilities
// Copyright (C) 2020-2022 Free Software Foundation, Inc.
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
//
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
#ifndef GCC_MUX_UTILS_H
#define GCC_MUX_UTILS_H 1
// A class that stores a choice "A or B", where A has type T1 * and B has
// type T2 *. Both T1 and T2 must have an alignment greater than 1, since
// the low bit is used to identify B over A. T1 and T2 can be the same.
//
// A can be a null pointer but B cannot.
//
// Barring the requirement that B must be nonnull, using the class is
// equivalent to using:
//
// union { T1 *A; T2 *B; };
//
// and having a separate tag bit to indicate which alternative is active.
// However, using this class can have two advantages over a union:
//
// - It avoides the need to find somewhere to store the tag bit.
//
// - The compiler is aware that B cannot be null, which can make checks
// of the form:
//
// if (auto *B = mux.dyn_cast<T2 *> ())
//
// more efficient. With a union-based representation, the dyn_cast
// check could fail either because MUX is an A or because MUX is a
// null B, both of which require a run-time test. With a pointer_mux,
// only a check for MUX being A is needed.
template<typename T1, typename T2 = T1>
class pointer_mux
{
public:
// Return an A pointer with the given value.
static pointer_mux first (T1 *);
// Return a B pointer with the given (nonnull) value.
static pointer_mux second (T2 *);
pointer_mux () = default;
// Create a null A pointer.
pointer_mux (std::nullptr_t) : m_ptr (nullptr) {}
// Create an A or B pointer with the given value. This is only valid
// if T1 and T2 are distinct and if T can be resolved to exactly one
// of them.
template<typename T,
typename Enable = typename
std::enable_if<std::is_convertible<T *, T1 *>::value
!= std::is_convertible<T *, T2 *>::value>::type>
pointer_mux (T *ptr);
// Return true unless the pointer is a null A pointer.
explicit operator bool () const { return m_ptr; }
// Assign A and B pointers respectively.
void set_first (T1 *ptr) { *this = first (ptr); }
void set_second (T2 *ptr) { *this = second (ptr); }
// Return true if the pointer is an A pointer.
bool is_first () const { return !(uintptr_t (m_ptr) & 1); }
// Return true if the pointer is a B pointer.
bool is_second () const { return uintptr_t (m_ptr) & 1; }
// Return the contents of the pointer, given that it is known to be
// an A pointer.
T1 *known_first () const { return reinterpret_cast<T1 *> (m_ptr); }
// Return the contents of the pointer, given that it is known to be
// a B pointer.
T2 *known_second () const { return reinterpret_cast<T2 *> (m_ptr - 1); }
// If the pointer is an A pointer, return its contents, otherwise
// return null. Thus a null return can mean that the pointer is
// either a null A pointer or a B pointer.
//
// If all A pointers are nonnull, it is more efficient to use:
//
// if (ptr.is_first ())
// ...use ptr.known_first ()...
//
// over:
//
// if (T1 *a = ptr.first_or_null ())
// ...use a...
T1 *first_or_null () const;
// If the pointer is a B pointer, return its contents, otherwise
// return null. Using:
//
// if (T1 *b = ptr.second_or_null ())
// ...use b...
//
// should be at least as efficient as:
//
// if (ptr.is_second ())
// ...use ptr.known_second ()...
T2 *second_or_null () const;
// Return true if the pointer is a T.
//
// This is only valid if T1 and T2 are distinct and if T can be
// resolved to exactly one of them. The condition is checked using
// a static assertion rather than SFINAE because it gives a clearer
// error message.
template<typename T>
bool is_a () const;
// Assert that the pointer is a T and return it as such. See is_a
// for the restrictions on T.
template<typename T>
T as_a () const;
// If the pointer is a T, return it as such, otherwise return null.
// See is_a for the restrictions on T.
template<typename T>
T dyn_cast () const;
private:
pointer_mux (char *ptr) : m_ptr (ptr) {}
// Points to the first byte of an object for A pointers or the second
// byte of an object for B pointers. Using a pointer rather than a
// uintptr_t tells the compiler that second () can never return null,
// and that second_or_null () is only null if is_first ().
char *m_ptr;
};
template<typename T1, typename T2>
inline pointer_mux<T1, T2>
pointer_mux<T1, T2>::first (T1 *ptr)
{
gcc_checking_assert (!(uintptr_t (ptr) & 1));
return reinterpret_cast<char *> (ptr);
}
template<typename T1, typename T2>
inline pointer_mux<T1, T2>
pointer_mux<T1, T2>::second (T2 *ptr)
{
gcc_checking_assert (ptr && !(uintptr_t (ptr) & 1));
return reinterpret_cast<char *> (ptr) + 1;
}
template<typename T1, typename T2>
template<typename T, typename Enable>
inline pointer_mux<T1, T2>::pointer_mux (T *ptr)
: m_ptr (reinterpret_cast<char *> (ptr))
{
if (std::is_convertible<T *, T2 *>::value)
{
gcc_checking_assert (m_ptr);
m_ptr += 1;
}
}
template<typename T1, typename T2>
inline T1 *
pointer_mux<T1, T2>::first_or_null () const
{
return is_first () ? known_first () : nullptr;
}
template<typename T1, typename T2>
inline T2 *
pointer_mux<T1, T2>::second_or_null () const
{
// Micro optimization that's effective as of GCC 11: compute the value
// of the second pointer as an integer and test that, so that the integer
// result can be reused as the pointer and so that all computation can
// happen before a branch on null. This reduces the number of branches
// needed for loops.
return (uintptr_t (m_ptr) - 1) & 1 ? nullptr : known_second ();
}
template<typename T1, typename T2>
template<typename T>
inline bool
pointer_mux<T1, T2>::is_a () const
{
static_assert (std::is_convertible<T1 *, T>::value
!= std::is_convertible<T2 *, T>::value,
"Ambiguous pointer type");
if (std::is_convertible<T2 *, T>::value)
return is_second ();
else
return is_first ();
}
template<typename T1, typename T2>
template<typename T>
inline T
pointer_mux<T1, T2>::as_a () const
{
static_assert (std::is_convertible<T1 *, T>::value
!= std::is_convertible<T2 *, T>::value,
"Ambiguous pointer type");
if (std::is_convertible<T2 *, T>::value)
{
gcc_checking_assert (is_second ());
return reinterpret_cast<T> (m_ptr - 1);
}
else
{
gcc_checking_assert (is_first ());
return reinterpret_cast<T> (m_ptr);
}
}
template<typename T1, typename T2>
template<typename T>
inline T
pointer_mux<T1, T2>::dyn_cast () const
{
static_assert (std::is_convertible<T1 *, T>::value
!= std::is_convertible<T2 *, T>::value,
"Ambiguous pointer type");
if (std::is_convertible<T2 *, T>::value)
{
if (is_second ())
return reinterpret_cast<T> (m_ptr - 1);
}
else
{
if (is_first ())
return reinterpret_cast<T> (m_ptr);
}
return nullptr;
}
#endif
|