1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
  
     | 
    
      // Implementation of access-related functions for RTL SSA           -*- C++ -*-
// Copyright (C) 2020-2022 Free Software Foundation, Inc.
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
//
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3.  If not see
// <http://www.gnu.org/licenses/>.
#define INCLUDE_ALGORITHM
#define INCLUDE_FUNCTIONAL
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "df.h"
#include "rtl-ssa.h"
#include "rtl-ssa/internals.h"
#include "rtl-ssa/internals.inl"
using namespace rtl_ssa;
// This clobber belongs to a clobber_group but m_group appears to be
// out of date.  Update it and return the new (correct) value.
clobber_group *
clobber_info::recompute_group ()
{
  using splay_tree = clobber_info::splay_tree;
  // Splay this clobber to the root of the tree while searching for a node
  // that has the correct group.  The root always has the correct group,
  // so the search always breaks early and does not install this clobber
  // as the root.
  clobber_info *cursor = m_parent;
  auto find_group = [](clobber_info *node, unsigned int)
    {
      return node->m_group->has_been_superceded () ? nullptr : node->m_group;
    };
  clobber_group *group = splay_tree::splay_and_search (this, nullptr,
						       find_group);
  gcc_checking_assert (m_parent);
  // If the previous splay operation did anything, this clobber is now an
  // ancestor of CURSOR, and all the nodes inbetween have a stale group.
  // Since we have visited the nodes, we might as well update them too.
  //
  // If the previous splay operation did nothing, start the update from
  // this clobber instead.  In that case we change at most two clobbers:
  // this clobber and possibly its parent.
  if (cursor == m_parent)
    cursor = this;
  // Walk up the tree from CURSOR updating clobbers that need it.
  // This walk always includes this clobber.
  while (cursor->m_group != group)
    {
      cursor->m_group = group;
      cursor = cursor->m_parent;
    }
  gcc_checking_assert (m_group == group);
  return group;
}
// See the comment above the declaration.
void
resource_info::print_identifier (pretty_printer *pp) const
{
  if (is_mem ())
    pp_string (pp, "mem");
  else
    {
      char tmp[3 * sizeof (regno) + 2];
      snprintf (tmp, sizeof (tmp), "r%d", regno);
      pp_string (pp, tmp);
    }
}
// See the comment above the declaration.
void
resource_info::print_context (pretty_printer *pp) const
{
  if (HARD_REGISTER_NUM_P (regno))
    {
      if (const char *name = reg_names[regno])
	{
	  pp_space (pp);
	  pp_left_paren (pp);
	  pp_string (pp, name);
	  if (mode != E_BLKmode)
	    {
	      pp_colon (pp);
	      pp_string (pp, GET_MODE_NAME (mode));
	    }
	  pp_right_paren (pp);
	}
    }
  else if (is_reg ())
    {
      pp_space (pp);
      pp_left_paren (pp);
      if (mode != E_BLKmode)
	{
	  pp_string (pp, GET_MODE_NAME (mode));
	  pp_space (pp);
	}
      pp_string (pp, "pseudo");
      pp_right_paren (pp);
    }
}
// See the comment above the declaration.
void
resource_info::print (pretty_printer *pp) const
{
  print_identifier (pp);
  print_context (pp);
}
// Some properties can naturally be described using adjectives that attach
// to nouns like "use" or "definition".  Print such adjectives to PP.
void
access_info::print_prefix_flags (pretty_printer *pp) const
{
  if (m_is_temp)
    pp_string (pp, "temporary ");
  if (m_has_been_superceded)
    pp_string (pp, "superceded ");
}
// Print properties not handled by print_prefix_flags to PP, putting
// each property on a new line indented by two extra spaces.
void
access_info::print_properties_on_new_lines (pretty_printer *pp) const
{
  if (m_is_pre_post_modify)
    {
      pp_newline_and_indent (pp, 2);
      pp_string (pp, "set by a pre/post-modify");
      pp_indentation (pp) -= 2;
    }
  if (m_includes_address_uses)
    {
      pp_newline_and_indent (pp, 2);
      pp_string (pp, "appears inside an address");
      pp_indentation (pp) -= 2;
    }
  if (m_includes_read_writes)
    {
      pp_newline_and_indent (pp, 2);
      pp_string (pp, "appears in a read/write context");
      pp_indentation (pp) -= 2;
    }
  if (m_includes_subregs)
    {
      pp_newline_and_indent (pp, 2);
      pp_string (pp, "appears inside a subreg");
      pp_indentation (pp) -= 2;
    }
}
// Return true if there are no known issues with the integrity of the
// link information.
inline bool
use_info::check_integrity ()
{
  auto subsequence_id = [](use_info *use)
    {
      if (use->is_in_nondebug_insn ())
	return 1;
      if (use->is_in_debug_insn ())
	return 2;
      return 3;
    };
  use_info *prev = prev_use ();
  use_info *next = next_use ();
  if (prev && subsequence_id (prev) > subsequence_id (this))
    return false;
  if (next && subsequence_id (next) < subsequence_id (this))
    return false;
  if (m_is_last_nondebug_insn_use != calculate_is_last_nondebug_insn_use ())
    return false;
  if (!prev && last_use ()->next_use ())
    return false;
  if (!next)
    if (use_info *use = last_nondebug_insn_use ())
      if (!use->m_is_last_nondebug_insn_use)
	return false;
  return true;
}
// See the comment above the declaration.
void
use_info::print_location (pretty_printer *pp) const
{
  if (is_in_phi ())
    pp_access (pp, phi (), PP_ACCESS_INCLUDE_LOCATION);
  else
    insn ()->print_identifier_and_location (pp);
}
// See the comment above the declaration.
void
use_info::print_def (pretty_printer *pp) const
{
  if (const set_info *set = def ())
    pp_access (pp, set, 0);
  else
    {
      pp_string (pp, "undefined ");
      resource ().print (pp);
    }
}
// See the comment above the declaration.
void
use_info::print (pretty_printer *pp, unsigned int flags) const
{
  print_prefix_flags (pp);
  const set_info *set = def ();
  if (set && set->mode () != mode ())
    {
      pp_string (pp, GET_MODE_NAME (mode ()));
      pp_space (pp);
    }
  pp_string (pp, "use of ");
  print_def (pp);
  if (flags & PP_ACCESS_INCLUDE_LOCATION)
    {
      pp_string (pp, " by ");
      print_location (pp);
    }
  if (set && (flags & PP_ACCESS_INCLUDE_LINKS))
    {
      pp_newline_and_indent (pp, 2);
      pp_string (pp, "defined in ");
      set->insn ()->print_location (pp);
      pp_indentation (pp) -= 2;
    }
  if (flags & PP_ACCESS_INCLUDE_PROPERTIES)
    print_properties_on_new_lines (pp);
}
// See the comment above the declaration.
void
def_info::print_identifier (pretty_printer *pp) const
{
  resource ().print_identifier (pp);
  pp_colon (pp);
  insn ()->print_identifier (pp);
  resource ().print_context (pp);
}
// See the comment above the declaration.
void
def_info::print_location (pretty_printer *pp) const
{
  insn ()->print_identifier_and_location (pp);
}
// See the comment above the declaration.
void
clobber_info::print (pretty_printer *pp, unsigned int flags) const
{
  print_prefix_flags (pp);
  if (is_call_clobber ())
    pp_string (pp, "call ");
  pp_string (pp, "clobber ");
  print_identifier (pp);
  if (flags & PP_ACCESS_INCLUDE_LOCATION)
    {
      pp_string (pp, " in ");
      insn ()->print_location (pp);
    }
  if (flags & PP_ACCESS_INCLUDE_PROPERTIES)
    print_properties_on_new_lines (pp);
}
// See the comment above the declaration.
void
set_info::print_uses_on_new_lines (pretty_printer *pp) const
{
  for (const use_info *use : all_uses ())
    {
      pp_newline_and_indent (pp, 2);
      if (use->is_live_out_use ())
	{
	  pp_string (pp, "live out from ");
	  use->insn ()->print_location (pp);
	}
      else
	{
	  pp_string (pp, "used by ");
	  use->print_location (pp);
	}
      pp_indentation (pp) -= 2;
    }
  if (m_use_tree)
    {
      pp_newline_and_indent (pp, 2);
      pp_string (pp, "splay tree:");
      pp_newline_and_indent (pp, 2);
      auto print_use = [](pretty_printer *pp,
			  splay_tree_node<use_info *> *node)
	{
	  pp_string (pp, "use by ");
	  node->value ()->print_location (pp);
	};
      m_use_tree.print (pp, m_use_tree.root (), print_use);
      pp_indentation (pp) -= 4;
    }
}
// See the comment above the declaration.
void
set_info::print (pretty_printer *pp, unsigned int flags) const
{
  print_prefix_flags (pp);
  pp_string (pp, "set ");
  print_identifier (pp);
  if (flags & PP_ACCESS_INCLUDE_LOCATION)
    {
      pp_string (pp, " in ");
      insn ()->print_location (pp);
    }
  if (flags & PP_ACCESS_INCLUDE_PROPERTIES)
    print_properties_on_new_lines (pp);
  if (flags & PP_ACCESS_INCLUDE_LINKS)
    print_uses_on_new_lines (pp);
}
// See the comment above the declaration.
void
phi_info::print (pretty_printer *pp, unsigned int flags) const
{
  print_prefix_flags (pp);
  pp_string (pp, "phi node ");
  print_identifier (pp);
  if (flags & PP_ACCESS_INCLUDE_LOCATION)
    {
      pp_string (pp, " in ");
      insn ()->print_location (pp);
    }
  if (flags & PP_ACCESS_INCLUDE_PROPERTIES)
    print_properties_on_new_lines (pp);
  if (flags & PP_ACCESS_INCLUDE_LINKS)
    {
      basic_block cfg_bb = bb ()->cfg_bb ();
      pp_newline_and_indent (pp, 2);
      pp_string (pp, "inputs:");
      unsigned int i = 0;
      for (const use_info *input : inputs ())
	{
	  basic_block pred_cfg_bb = EDGE_PRED (cfg_bb, i)->src;
	  pp_newline_and_indent (pp, 2);
	  pp_string (pp, "bb");
	  pp_decimal_int (pp, pred_cfg_bb->index);
	  pp_colon (pp);
	  pp_space (pp);
	  input->print_def (pp);
	  pp_indentation (pp) -= 2;
	  i += 1;
	}
      pp_indentation (pp) -= 2;
      print_uses_on_new_lines (pp);
    }
}
// See the comment above the declaration.
void
set_node::print (pretty_printer *pp) const
{
  pp_access (pp, first_def ());
}
// See the comment above the declaration.
clobber_info *
clobber_group::prev_clobber (insn_info *insn) const
{
  auto &tree = const_cast<clobber_tree &> (m_clobber_tree);
  int comparison = lookup_clobber (tree, insn);
  if (comparison <= 0)
    return dyn_cast<clobber_info *> (tree.root ()->prev_def ());
  return tree.root ();
}
// See the comment above the declaration.
clobber_info *
clobber_group::next_clobber (insn_info *insn) const
{
  auto &tree = const_cast<clobber_tree &> (m_clobber_tree);
  int comparison = lookup_clobber (tree, insn);
  if (comparison >= 0)
    return dyn_cast<clobber_info *> (tree.root ()->next_def ());
  return tree.root ();
}
// See the comment above the declaration.
void
clobber_group::print (pretty_printer *pp) const
{
  auto print_clobber = [](pretty_printer *pp, const def_info *clobber)
    {
      pp_access (pp, clobber);
    };
  pp_string (pp, "grouped clobber");
  for (const def_info *clobber : clobbers ())
    {
      pp_newline_and_indent (pp, 2);
      print_clobber (pp, clobber);
      pp_indentation (pp) -= 2;
    }
  pp_newline_and_indent (pp, 2);
  pp_string (pp, "splay tree");
  pp_newline_and_indent (pp, 2);
  m_clobber_tree.print (pp, print_clobber);
  pp_indentation (pp) -= 4;
}
// See the comment above the declaration.
def_info *
def_lookup::prev_def (insn_info *insn) const
{
  if (mux && comparison == 0)
    if (auto *node = mux.dyn_cast<def_node *> ())
      if (auto *group = dyn_cast<clobber_group *> (node))
	if (clobber_info *clobber = group->prev_clobber (insn))
	  return clobber;
  return last_def_of_prev_group ();
}
// See the comment above the declaration.
def_info *
def_lookup::next_def (insn_info *insn) const
{
  if (mux && comparison == 0)
    if (auto *node = mux.dyn_cast<def_node *> ())
      if (auto *group = dyn_cast<clobber_group *> (node))
	if (clobber_info *clobber = group->next_clobber (insn))
	  return clobber;
  return first_def_of_next_group ();
}
// Return a clobber_group for CLOBBER, creating one if CLOBBER doesn't
// already belong to a group.
clobber_group *
function_info::need_clobber_group (clobber_info *clobber)
{
  if (clobber->is_in_group ())
    return clobber->group ();
  return allocate<clobber_group> (clobber);
}
// Return a def_node for inserting DEF into the associated resource's
// splay tree.  Use a clobber_group if DEF is a clobber and a set_node
// otherwise.
def_node *
function_info::need_def_node (def_info *def)
{
  if (auto *clobber = dyn_cast<clobber_info *> (def))
    return need_clobber_group (clobber);
  return allocate<set_node> (as_a<set_info *> (def));
}
// LAST is the last thing to define LAST->resource (), and is where any
// splay tree root for LAST->resource () is stored.  Require such a splay tree
// to exist, creating a new one if necessary.  Return the root of the tree.
//
// The caller must call LAST->set_splay_root after it has finished with
// the splay tree.
def_splay_tree
function_info::need_def_splay_tree (def_info *last)
{
  if (def_node *root = last->splay_root ())
    return root;
  // Use a left-spine rooted at the last node.
  def_node *root = need_def_node (last);
  def_node *parent = root;
  while (def_info *prev = first_def (parent)->prev_def ())
    {
      def_node *node = need_def_node (prev);
      def_splay_tree::insert_child (parent, 0, node);
      parent = node;
    }
  return root;
}
// Search TREE for either:
//
// - a set_info at INSN or
// - a clobber_group whose range includes INSN
//
// If such a node exists, install it as the root of TREE and return 0.
// Otherwise arbitrarily choose between:
//
// (1) Installing the closest preceding node as the root and returning 1.
// (2) Installing the closest following node as the root and returning -1.
//
// Note that this routine should not be used to check whether INSN
// itself defines a resource; that can be checked more cheaply using
// find_access_index.
int
rtl_ssa::lookup_def (def_splay_tree &tree, insn_info *insn)
{
  auto go_left = [&](def_node *node)
    {
      return *insn < *first_def (node)->insn ();
    };
  auto go_right = [&](def_node *node)
    {
      return *insn > *last_def (node)->insn ();
    };
  return tree.lookup (go_left, go_right);
}
// Search TREE for a clobber in INSN.  If such a clobber exists, install
// it as the root of TREE and return 0.  Otherwise arbitrarily choose between:
//
// (1) Installing the closest preceding clobber as the root and returning 1.
// (2) Installing the closest following clobber as the root and returning -1.
int
rtl_ssa::lookup_clobber (clobber_tree &tree, insn_info *insn)
{
  auto compare = [&](clobber_info *clobber)
    {
      return insn->compare_with (clobber->insn ());
    };
  return tree.lookup (compare);
}
// Search for a definition of RESOURCE at INSN and return the result of
// the search as a def_lookup.  See the comment above the class for more
// details.
def_lookup
function_info::find_def (resource_info resource, insn_info *insn)
{
  def_info *first = m_defs[resource.regno + 1];
  if (!first)
    // There are no nodes.  The comparison result is pretty meaningless
    // in this case.
    return { nullptr, -1 };
  // See whether the first node matches.
  auto first_result = clobber_group_or_single_def (first);
  if (*insn <= *last_def (first_result)->insn ())
    {
      int comparison = (*insn >= *first->insn () ? 0 : -1);
      return { first_result, comparison };
    }
  // See whether the last node matches.
  def_info *last = first->last_def ();
  auto last_result = clobber_group_or_single_def (last);
  if (*insn >= *first_def (last_result)->insn ())
    {
      int comparison = (*insn <= *last->insn () ? 0 : 1);
      return { last_result, comparison };
    }
  // Resort to using a splay tree to search for the result.
  def_splay_tree tree = need_def_splay_tree (last);
  int comparison = lookup_def (tree, insn);
  last->set_splay_root (tree.root ());
  return { tree.root (), comparison };
}
// Add DEF to the function's list of definitions of DEF->resource (),
// inserting DEF immediately before BEFORE.  DEF is not currently in the list.
void
function_info::insert_def_before (def_info *def, def_info *before)
{
  gcc_checking_assert (!def->has_def_links ()
		       && *before->insn () > *def->insn ());
  def->copy_prev_from (before);
  if (def_info *prev = def->prev_def ())
    {
      gcc_checking_assert (*prev->insn () < *def->insn ());
      prev->set_next_def (def);
    }
  else
    m_defs[def->regno () + 1] = def;
  def->set_next_def (before);
  before->set_prev_def (def);
}
// Add DEF to the function's list of definitions of DEF->resource (),
// inserting DEF immediately after AFTER.  DEF is not currently in the list.
void
function_info::insert_def_after (def_info *def, def_info *after)
{
  gcc_checking_assert (!def->has_def_links ()
		       && *after->insn () < *def->insn ());
  def->copy_next_from (after);
  if (def_info *next = def->next_def ())
    {
      gcc_checking_assert (*next->insn () > *def->insn ());
      next->set_prev_def (def);
    }
  else
    m_defs[def->regno () + 1]->set_last_def (def);
  def->set_prev_def (after);
  after->set_next_def (def);
}
// Remove DEF from the function's list of definitions of DEF->resource ().
void
function_info::remove_def_from_list (def_info *def)
{
  def_info *prev = def->prev_def ();
  def_info *next = def->next_def ();
  if (next)
    next->copy_prev_from (def);
  else
    m_defs[def->regno () + 1]->set_last_def (prev);
  if (prev)
    prev->copy_next_from (def);
  else
    m_defs[def->regno () + 1] = next;
  def->clear_def_links ();
}
// Add CLOBBER to GROUP and insert it into the function's list of
// accesses to CLOBBER->resource ().  CLOBBER is not currently part
// of an active group and is not currently in the list.
void
function_info::add_clobber (clobber_info *clobber, clobber_group *group)
{
  // Search for either the previous or next clobber in the group.
  // The result is less than zero if CLOBBER should come before NEIGHBOR
  // or greater than zero if CLOBBER should come after NEIGHBOR.
  int comparison = lookup_clobber (group->m_clobber_tree, clobber->insn ());
  gcc_checking_assert (comparison != 0);
  clobber_info *neighbor = group->m_clobber_tree.root ();
  // Since HEIGHBOR is now the root of the splay tree, its group needs
  // to be up-to-date.
  neighbor->update_group (group);
  // If CLOBBER comes before NEIGHBOR, insert CLOBBER to NEIGHBOR's left,
  // otherwise insert CLOBBER to NEIGHBOR's right.
  clobber_info::splay_tree::insert_child (neighbor, comparison > 0, clobber);
  clobber->set_group (group);
  // Insert the clobber into the function-wide list and update the
  // bounds of the group.
  if (comparison > 0)
    {
      insert_def_after (clobber, neighbor);
      if (neighbor == group->last_clobber ())
	group->set_last_clobber (clobber);
    }
  else
    {
      insert_def_before (clobber, neighbor);
      if (neighbor == group->first_clobber ())
	group->set_first_clobber (clobber);
    }
}
// Remove CLOBBER from GROUP, given that GROUP contains other clobbers too.
// Also remove CLOBBER from the function's list of accesses to
// CLOBBER->resource ().
void
function_info::remove_clobber (clobber_info *clobber, clobber_group *group)
{
  if (clobber == group->first_clobber ())
    {
      auto *new_first = as_a<clobber_info *> (clobber->next_def ());
      group->set_first_clobber (new_first);
      new_first->update_group (group);
    }
  else if (clobber == group->last_clobber ())
    {
      auto *new_last = as_a<clobber_info *> (clobber->prev_def ());
      group->set_last_clobber (new_last);
      new_last->update_group (group);
    }
  clobber_info *replacement = clobber_info::splay_tree::remove_node (clobber);
  if (clobber == group->m_clobber_tree.root ())
    {
      group->m_clobber_tree = replacement;
      replacement->update_group (group);
    }
  clobber->set_group (nullptr);
  remove_def_from_list (clobber);
}
// Add CLOBBER immediately before the first clobber in GROUP, given that
// CLOBBER is not currently part of any group.
void
function_info::prepend_clobber_to_group (clobber_info *clobber,
					 clobber_group *group)
{
  clobber_info *next = group->first_clobber ();
  clobber_info::splay_tree::insert_child (next, 0, clobber);
  group->set_first_clobber (clobber);
  clobber->set_group (group);
}
// Add CLOBBER immediately after the last clobber in GROUP, given that
// CLOBBER is not currently part of any group.
void
function_info::append_clobber_to_group (clobber_info *clobber,
					clobber_group *group)
{
  clobber_info *prev = group->last_clobber ();
  clobber_info::splay_tree::insert_child (prev, 1, clobber);
  group->set_last_clobber (clobber);
  clobber->set_group (group);
}
// Put CLOBBER1 and CLOBBER2 into the same clobber_group, given that
// CLOBBER1 occurs immediately before CLOBBER2 and that the two clobbers
// are not currently in the same group.  LAST is the last definition of
// the associated resource, and is where any splay tree is stored.
void
function_info::merge_clobber_groups (clobber_info *clobber1,
				     clobber_info *clobber2,
				     def_info *last)
{
  if (clobber1->is_in_group () && clobber2->is_in_group ())
    {
      clobber_group *group1 = clobber1->group ();
      clobber_group *group2 = clobber2->group ();
      gcc_checking_assert (clobber1 == group1->last_clobber ()
			   && clobber2 == group2->first_clobber ());
      if (def_splay_tree tree = last->splay_root ())
	{
	  // Remove GROUP2 from the splay tree.
	  int comparison = lookup_def (tree, clobber2->insn ());
	  gcc_checking_assert (comparison == 0);
	  tree.remove_root ();
	  last->set_splay_root (tree.root ());
	}
      // Splice the trees together.
      group1->m_clobber_tree.splice_next_tree (group2->m_clobber_tree);
      // Bring the two extremes of GROUP2 under GROUP1.  Any other
      // clobbers in the group are updated lazily on demand.
      clobber2->set_group (group1);
      group2->last_clobber ()->set_group (group1);
      group1->set_last_clobber (group2->last_clobber ());
      // Record that GROUP2 is no more.
      group2->set_first_clobber (nullptr);
      group2->set_last_clobber (nullptr);
      group2->m_clobber_tree = nullptr;
    }
  else
    {
      // In this case there can be no active splay tree.
      gcc_assert (!last->splay_root ());
      if (clobber2->is_in_group ())
	prepend_clobber_to_group (clobber1, clobber2->group ());
      else
	append_clobber_to_group (clobber2, need_clobber_group (clobber1));
    }
}
// GROUP spans INSN, and INSN now sets the resource that GROUP clobbers.
// Split GROUP around INSN and return the clobber that comes immediately
// before INSN.
clobber_info *
function_info::split_clobber_group (clobber_group *group, insn_info *insn)
{
  // Search for either the previous or next clobber in the group.
  // The result is less than zero if CLOBBER should come before NEIGHBOR
  // or greater than zero if CLOBBER should come after NEIGHBOR.
  int comparison = lookup_clobber (group->m_clobber_tree, insn);
  gcc_checking_assert (comparison != 0);
  clobber_info *neighbor = group->m_clobber_tree.root ();
  clobber_tree tree1, tree2;
  clobber_info *prev;
  clobber_info *next;
  if (comparison > 0)
    {
      // NEIGHBOR is the last clobber in what will become the first group.
      tree1 = neighbor;
      tree2 = tree1.split_after_root ();
      prev = neighbor;
      next = as_a<clobber_info *> (prev->next_def ());
    }
  else
    {
      // NEIGHBOR is the first clobber in what will become the second group.
      tree2 = neighbor;
      tree1 = tree2.split_before_root ();
      next = neighbor;
      prev = as_a<clobber_info *> (next->prev_def ());
    }
  // Use GROUP to hold PREV and earlier clobbers.  Create a new group for
  // NEXT onwards.
  clobber_info *last_clobber = group->last_clobber ();
  clobber_group *group1 = group;
  clobber_group *group2 = allocate<clobber_group> (next);
  // Finish setting up GROUP1, making sure that the roots and extremities
  // have a correct group pointer.  Leave the rest to be updated lazily.
  group1->set_last_clobber (prev);
  tree1->set_group (group1);
  prev->set_group (group1);
  // Finish setting up GROUP2, with the same approach as for GROUP1.
  group2->set_first_clobber (next);
  group2->set_last_clobber (last_clobber);
  next->set_group (group2);
  tree2->set_group (group2);
  last_clobber->set_group (group2);
  return prev;
}
// Add DEF to the end of the function's list of definitions of
// DEF->resource ().  There is known to be no associated splay tree yet.
void
function_info::append_def (def_info *def)
{
  gcc_checking_assert (!def->has_def_links ());
  def_info **head = &m_defs[def->regno () + 1];
  def_info *first = *head;
  if (!first)
    {
      // This is the only definition of the resource.
      def->set_last_def (def);
      *head = def;
      return;
    }
  def_info *prev = first->last_def ();
  gcc_checking_assert (!prev->splay_root ());
  // Maintain the invariant that two clobbers must not appear in
  // neighboring nodes of the splay tree.
  auto *clobber = dyn_cast<clobber_info *> (def);
  auto *prev_clobber = dyn_cast<clobber_info *> (prev);
  if (clobber && prev_clobber)
    append_clobber_to_group (clobber, need_clobber_group (prev_clobber));
  prev->set_next_def (def);
  def->set_prev_def (prev);
  first->set_last_def (def);
}
// Add DEF to the function's list of definitions of DEF->resource ().
// Also insert it into the associated splay tree, if there is one.
// DEF is not currently part of the list and is not in the splay tree.
void
function_info::add_def (def_info *def)
{
  gcc_checking_assert (!def->has_def_links ()
		       && !def->m_is_temp
		       && !def->m_has_been_superceded);
  def_info **head = &m_defs[def->regno () + 1];
  def_info *first = *head;
  if (!first)
    {
      // This is the only definition of the resource.
      def->set_last_def (def);
      *head = def;
      return;
    }
  def_info *last = first->last_def ();
  insn_info *insn = def->insn ();
  int comparison;
  def_node *root = nullptr;
  def_info *prev = nullptr;
  def_info *next = nullptr;
  if (*insn > *last->insn ())
    {
      // This definition comes after all other definitions.
      comparison = 1;
      if (def_splay_tree tree = last->splay_root ())
	{
	  tree.splay_max_node ();
	  root = tree.root ();
	  last->set_splay_root (root);
	}
      prev = last;
    }
  else if (*insn < *first->insn ())
    {
      // This definition comes before all other definitions.
      comparison = -1;
      if (def_splay_tree tree = last->splay_root ())
	{
	  tree.splay_min_node ();
	  root = tree.root ();
	  last->set_splay_root (root);
	}
      next = first;
    }
  else
    {
      // Search the splay tree for an insertion point.
      def_splay_tree tree = need_def_splay_tree (last);
      comparison = lookup_def (tree, insn);
      root = tree.root ();
      last->set_splay_root (root);
      // Deal with cases in which we found an overlapping live range.
      if (comparison == 0)
	{
	  auto *group = as_a<clobber_group *> (tree.root ());
	  if (auto *clobber = dyn_cast<clobber_info *> (def))
	    {
	      add_clobber (clobber, group);
	      return;
	    }
	  prev = split_clobber_group (group, insn);
	  next = prev->next_def ();
	}
      // COMPARISON is < 0 if DEF comes before ROOT or > 0 if DEF comes
      // after ROOT.
      else if (comparison < 0)
	{
	  next = first_def (root);
	  prev = next->prev_def ();
	}
      else
	{
	  prev = last_def (root);
	  next = prev->next_def ();
	}
    }
  // See if we should merge CLOBBER with a neighboring clobber.
  auto *clobber = dyn_cast<clobber_info *> (def);
  auto *prev_clobber = safe_dyn_cast<clobber_info *> (prev);
  auto *next_clobber = safe_dyn_cast<clobber_info *> (next);
  // We shouldn't have consecutive clobber_groups.
  gcc_checking_assert (!(clobber && prev_clobber && next_clobber));
  if (clobber && prev_clobber)
    append_clobber_to_group (clobber, need_clobber_group (prev_clobber));
  else if (clobber && next_clobber)
    prepend_clobber_to_group (clobber, need_clobber_group (next_clobber));
  else if (root)
    {
      // If DEF comes before ROOT, insert DEF to ROOT's left,
      // otherwise insert DEF to ROOT's right.
      def_node *node = need_def_node (def);
      def_splay_tree::insert_child (root, comparison >= 0, node);
    }
  if (prev)
    insert_def_after (def, prev);
  else
    insert_def_before (def, next);
}
// Remove DEF from the function's list of definitions of DEF->resource ().
// Also remove DEF from the associated splay tree, if there is one.
void
function_info::remove_def (def_info *def)
{
  def_info **head = &m_defs[def->regno () + 1];
  def_info *first = *head;
  gcc_checking_assert (first);
  if (first->is_last_def ())
    {
      // DEF is the only definition of the resource.
      gcc_checking_assert (first == def);
      *head = nullptr;
      def->clear_def_links ();
      return;
    }
  // If CLOBBER belongs to a clobber_group that contains other clobbers
  // too, then we need to update the clobber_group and the list, but any
  // splay tree that contains the clobber_group is unaffected.
  if (auto *clobber = dyn_cast<clobber_info *> (def))
    if (clobber->is_in_group ())
      {
	clobber_group *group = clobber->group ();
	if (group->first_clobber () != group->last_clobber ())
	  {
	    remove_clobber (clobber, group);
	    return;
	  }
      }
  // If we've created a splay tree for this resource, remove the entry
  // for DEF.
  def_info *last = first->last_def ();
  if (def_splay_tree tree = last->splay_root ())
    {
      int comparison = lookup_def (tree, def->insn ());
      gcc_checking_assert (comparison == 0);
      tree.remove_root ();
      last->set_splay_root (tree.root ());
    }
  // If the definition came between two clobbers, merge them into a single
  // group.
  auto *prev_clobber = safe_dyn_cast<clobber_info *> (def->prev_def ());
  auto *next_clobber = safe_dyn_cast<clobber_info *> (def->next_def ());
  if (prev_clobber && next_clobber)
    merge_clobber_groups (prev_clobber, next_clobber, last);
  remove_def_from_list (def);
}
// Require DEF to have a splay tree that contains all non-phi uses.
void
function_info::need_use_splay_tree (set_info *def)
{
  if (!def->m_use_tree)
    for (use_info *use : def->all_insn_uses ())
      {
	auto *use_node = allocate<splay_tree_node<use_info *>> (use);
	def->m_use_tree.insert_max_node (use_node);
      }
}
// Compare two instructions by their position in a use splay tree.  Return >0
// if INSN1 comes after INSN2, <0 if INSN1 comes before INSN2, or 0 if they are
// the same instruction.
static inline int
compare_use_insns (insn_info *insn1, insn_info *insn2)
{
  // Debug instructions go after nondebug instructions.
  int diff = insn1->is_debug_insn () - insn2->is_debug_insn ();
  if (diff != 0)
    return diff;
  return insn1->compare_with (insn2);
}
// Search TREE for a use in INSN.  If such a use exists, install it as
// the root of TREE and return 0.  Otherwise arbitrarily choose between:
//
// (1) Installing the closest preceding use as the root and returning 1.
// (2) Installing the closest following use as the root and returning -1.
int
rtl_ssa::lookup_use (splay_tree<use_info *> &tree, insn_info *insn)
{
  auto compare = [&](splay_tree_node<use_info *> *node)
    {
      return compare_use_insns (insn, node->value ()->insn ());
    };
  return tree.lookup (compare);
}
// Add USE to USE->def ()'s list of uses. inserting USE immediately before
// BEFORE.  USE is not currently in the list.
//
// This routine should not be used for inserting phi uses.
void
function_info::insert_use_before (use_info *use, use_info *before)
{
  gcc_checking_assert (!use->has_use_links () && use->is_in_any_insn ());
  set_info *def = use->def ();
  use->copy_prev_from (before);
  use->set_next_use (before);
  if (use_info *prev = use->prev_use ())
    prev->set_next_use (use);
  else
    use->def ()->set_first_use (use);
  before->set_prev_use (use);
  if (use->is_in_nondebug_insn () && before->is_in_debug_insn_or_phi ())
    def->last_use ()->set_last_nondebug_insn_use (use);
  gcc_checking_assert (use->check_integrity () && before->check_integrity ());
}
// Add USE to USE->def ()'s list of uses. inserting USE immediately after
// AFTER.  USE is not currently in the list.
//
// This routine should not be used for inserting phi uses.
void
function_info::insert_use_after (use_info *use, use_info *after)
{
  set_info *def = use->def ();
  gcc_checking_assert (after->is_in_any_insn ()
		       && !use->has_use_links ()
		       && use->is_in_any_insn ());
  use->set_prev_use (after);
  use->copy_next_from (after);
  after->set_next_use (use);
  if (use_info *next = use->next_use ())
    {
      // The last node doesn't change, but we might need to update its
      // last_nondebug_insn_use record.
      if (use->is_in_nondebug_insn () && next->is_in_debug_insn_or_phi ())
	def->last_use ()->set_last_nondebug_insn_use (use);
      next->set_prev_use (use);
    }
  else
    {
      // USE is now the last node.
      if (use->is_in_nondebug_insn ())
	use->set_last_nondebug_insn_use (use);
      def->first_use ()->set_last_use (use);
    }
  gcc_checking_assert (use->check_integrity () && after->check_integrity ());
}
// If USE has a known definition, add USE to that definition's list of uses.
// Also update the associated splay tree, if any.
void
function_info::add_use (use_info *use)
{
  gcc_checking_assert (!use->has_use_links ()
		       && !use->m_is_temp
		       && !use->m_has_been_superceded);
  set_info *def = use->def ();
  if (!def)
    return;
  use_info *first = def->first_use ();
  if (!first)
    {
      // This is the only use of the definition.
      use->set_last_use (use);
      if (use->is_in_nondebug_insn ())
	use->set_last_nondebug_insn_use (use);
      def->set_first_use (use);
      gcc_checking_assert (use->check_integrity ());
      return;
    }
  if (use->is_in_phi ())
    {
      // Add USE at the end of the list, as the new first phi.
      use_info *last = first->last_use ();
      use->set_prev_use (last);
      use->copy_next_from (last);
      last->set_next_use (use);
      first->set_last_use (use);
      gcc_checking_assert (use->check_integrity ());
      return;
    }
  // If there is currently no splay tree for this definition, see if can
  // get away with a pure list-based update.
  insn_info *insn = use->insn ();
  auto quick_path = [&]()
    {
      // Check if USE should come before all current uses.
      if (first->is_in_phi () || compare_use_insns (insn, first->insn ()) < 0)
	{
	  insert_use_before (use, first);
	  return true;
	}
      // Check if USE should come after all current uses in the same
      // subsequence (i.e. the list of nondebug insn uses or the list
      // of debug insn uses).
      use_info *last = first->last_use ();
      if (use->is_in_debug_insn ())
	{
	  if (last->is_in_phi ())
	    return false;
	}
      else
	last = last->last_nondebug_insn_use ();
      if (compare_use_insns (insn, last->insn ()) > 0)
	{
	  insert_use_after (use, last);
	  return true;
	}
      return false;
    };
  if (!def->m_use_tree && quick_path ())
    return;
  // Search the splay tree for an insertion point.  COMPARISON is less
  // than zero if USE should come before NEIGHBOR, or greater than zero
  // if USE should come after NEIGHBOR.
  need_use_splay_tree (def);
  int comparison = lookup_use (def->m_use_tree, insn);
  gcc_checking_assert (comparison != 0);
  splay_tree_node<use_info *> *neighbor = def->m_use_tree.root ();
  // If USE comes before NEIGHBOR, insert USE to NEIGHBOR's left,
  // otherwise insert USE to NEIGHBOR's right.
  auto *use_node = allocate<splay_tree_node<use_info *>> (use);
  def->m_use_tree.insert_child (neighbor, comparison > 0, use_node);
  if (comparison > 0)
    insert_use_after (use, neighbor->value ());
  else
    insert_use_before (use, neighbor->value ());
}
// If USE has a known definition, remove USE from that definition's list
// of uses.  Also remove if it from the associated splay tree, if any.
void
function_info::remove_use (use_info *use)
{
  set_info *def = use->def ();
  if (!def)
    return;
  // Remove USE from the splay tree.
  if (def->m_use_tree && use->is_in_any_insn ())
    {
      int comparison = lookup_use (def->m_use_tree, use->insn ());
      gcc_checking_assert (comparison == 0);
      def->m_use_tree.remove_root ();
    }
  use_info *prev = use->prev_use ();
  use_info *next = use->next_use ();
  use_info *first = def->first_use ();
  use_info *last = first->last_use ();
  if (last->last_nondebug_insn_use () == use)
    last->set_last_nondebug_insn_use (prev);
  if (next)
    next->copy_prev_from (use);
  else
    first->set_last_use (prev);
  if (prev)
    prev->copy_next_from (use);
  else
    def->set_first_use (next);
  use->clear_use_links ();
  gcc_checking_assert ((!prev || prev->check_integrity ())
		       && (!next || next->check_integrity ()));
}
// Allocate a temporary clobber_info for register REGNO in insn INSN,
// including it in the region of the obstack governed by WATERMARK.
// Return a new def_array that contains OLD_DEFS and the new clobber.
//
// OLD_DEFS is known not to define REGNO.
def_array
function_info::insert_temp_clobber (obstack_watermark &watermark,
				    insn_info *insn, unsigned int regno,
				    def_array old_defs)
{
  gcc_checking_assert (watermark == &m_temp_obstack);
  auto *clobber = allocate_temp<clobber_info> (insn, regno);
  clobber->m_is_temp = true;
  return insert_access (watermark, clobber, old_defs);
}
// A subroutine of make_uses_available.  Try to make USE's definition
// available at the head of BB.  WILL_BE_DEBUG_USE is true if the
// definition will be used only in debug instructions.
//
// On success:
//
// - If the use would have the same def () as USE, return USE.
//
// - If BB already has a degenerate phi for the same definition,
//   return a temporary use of that phi.
//
// - Otherwise, the use would need a new degenerate phi.  Allocate a
//   temporary phi and return a temporary use of it.
//
// Return null on failure.
use_info *
function_info::make_use_available (use_info *use, bb_info *bb,
				   bool will_be_debug_use)
{
  set_info *def = use->def ();
  if (!def)
    return use;
  if (is_single_dominating_def (def))
    return use;
  // FIXME: Deliberately limited for fwprop compatibility testing.
  basic_block cfg_bb = bb->cfg_bb ();
  bb_info *use_bb = use->bb ();
  if (single_pred_p (cfg_bb)
      && single_pred (cfg_bb) == use_bb->cfg_bb ()
      && remains_available_on_exit (def, use_bb))
    {
      if (def->ebb () == bb->ebb () || will_be_debug_use)
	return use;
      resource_info resource = use->resource ();
      set_info *ultimate_def = look_through_degenerate_phi (def);
      // See if there is already a (degenerate) phi for DEF.
      insn_info *phi_insn = bb->ebb ()->phi_insn ();
      phi_info *phi;
      def_lookup dl = find_def (resource, phi_insn);
      if (set_info *set = dl.matching_set ())
	{
	  // There is an existing phi.
	  phi = as_a<phi_info *> (set);
	  gcc_checking_assert (phi->input_value (0) == ultimate_def);
	}
      else
	{
	  // Create a temporary placeholder phi.  This will become
	  // permanent if the change is later committed.
	  phi = allocate_temp<phi_info> (phi_insn, resource, 0);
	  auto *input = allocate_temp<use_info> (phi, resource, ultimate_def);
	  input->m_is_temp = true;
	  phi->m_is_temp = true;
	  phi->make_degenerate (input);
	  if (def_info *prev = dl.prev_def (phi_insn))
	    phi->set_prev_def (prev);
	  if (def_info *next = dl.next_def (phi_insn))
	    phi->set_next_def (next);
	}
      // Create a temporary use of the phi at the head of the first
      // block, since we know for sure that it's available there.
      insn_info *use_insn = bb->ebb ()->first_bb ()->head_insn ();
      auto *new_use = allocate_temp<use_info> (use_insn, resource, phi);
      new_use->m_is_temp = true;
      return new_use;
    }
  return nullptr;
}
// See the comment above the declaration.
use_array
function_info::make_uses_available (obstack_watermark &watermark,
				    use_array uses, bb_info *bb,
				    bool will_be_debug_uses)
{
  unsigned int num_uses = uses.size ();
  if (num_uses == 0)
    return uses;
  auto **new_uses = XOBNEWVEC (watermark, access_info *, num_uses);
  for (unsigned int i = 0; i < num_uses; ++i)
    {
      use_info *use = make_use_available (uses[i], bb, will_be_debug_uses);
      if (!use)
	return use_array (access_array::invalid ());
      new_uses[i] = use;
    }
  return use_array (new_uses, num_uses);
}
// Return true if ACCESS1 can represent ACCESS2 and if ACCESS2 can
// represent ACCESS1.
static bool
can_merge_accesses (access_info *access1, access_info *access2)
{
  if (access1 == access2)
    return true;
  auto *use1 = dyn_cast<use_info *> (access1);
  auto *use2 = dyn_cast<use_info *> (access2);
  return use1 && use2 && use1->def () == use2->def ();
}
// See the comment above the declaration.
access_array
rtl_ssa::merge_access_arrays_base (obstack_watermark &watermark,
				   access_array accesses1,
				   access_array accesses2)
{
  if (accesses1.empty ())
    return accesses2;
  if (accesses2.empty ())
    return accesses1;
  auto i1 = accesses1.begin ();
  auto end1 = accesses1.end ();
  auto i2 = accesses2.begin ();
  auto end2 = accesses2.end ();
  access_array_builder builder (watermark);
  builder.reserve (accesses1.size () + accesses2.size ());
  while (i1 != end1 && i2 != end2)
    {
      access_info *access1 = *i1;
      access_info *access2 = *i2;
      unsigned int regno1 = access1->regno ();
      unsigned int regno2 = access2->regno ();
      if (regno1 == regno2)
	{
	  if (!can_merge_accesses (access1, access2))
	    return access_array::invalid ();
	  builder.quick_push (access1);
	  ++i1;
	  ++i2;
	}
      else if (regno1 < regno2)
	{
	  builder.quick_push (access1);
	  ++i1;
	}
      else
	{
	  builder.quick_push (access2);
	  ++i2;
	}
    }
  for (; i1 != end1; ++i1)
    builder.quick_push (*i1);
  for (; i2 != end2; ++i2)
    builder.quick_push (*i2);
  return builder.finish ();
}
// See the comment above the declaration.
access_array
rtl_ssa::insert_access_base (obstack_watermark &watermark,
			     access_info *access1, access_array accesses2)
{
  access_array_builder builder (watermark);
  builder.reserve (1 + accesses2.size ());
  unsigned int regno1 = access1->regno ();
  auto i2 = accesses2.begin ();
  auto end2 = accesses2.end ();
  while (i2 != end2)
    {
      access_info *access2 = *i2;
      unsigned int regno2 = access2->regno ();
      if (regno1 == regno2)
	{
	  if (!can_merge_accesses (access1, access2))
	    return access_array::invalid ();
	  builder.quick_push (access1);
	  access1 = nullptr;
	  ++i2;
	  break;
	}
      else if (regno1 < regno2)
	{
	  builder.quick_push (access1);
	  access1 = nullptr;
	  break;
	}
      else
	{
	  builder.quick_push (access2);
	  ++i2;
	}
    }
  if (access1)
    builder.quick_push (access1);
  for (; i2 != end2; ++i2)
    builder.quick_push (*i2);
  return builder.finish ();
}
// See the comment above the declaration.
access_array
rtl_ssa::remove_note_accesses_base (obstack_watermark &watermark,
				    access_array accesses)
{
  for (access_info *access : accesses)
    if (access->only_occurs_in_notes ())
      {
	access_array_builder builder (watermark);
	builder.reserve (accesses.size ());
	for (access_info *access2 : accesses)
	  if (!access2->only_occurs_in_notes ())
	    builder.quick_push (access2);
	return builder.finish ();
      }
  return accesses;
}
// Print RESOURCE to PP.
void
rtl_ssa::pp_resource (pretty_printer *pp, resource_info resource)
{
  resource.print (pp);
}
// Print ACCESS to PP.  FLAGS is a bitmask of PP_ACCESS_* flags.
void
rtl_ssa::pp_access (pretty_printer *pp, const access_info *access,
		    unsigned int flags)
{
  if (!access)
    pp_string (pp, "<null>");
  else if (auto *phi = dyn_cast<const phi_info *> (access))
    phi->print (pp, flags);
  else if (auto *set = dyn_cast<const set_info *> (access))
    set->print (pp, flags);
  else if (auto *clobber = dyn_cast<const clobber_info *> (access))
    clobber->print (pp, flags);
  else if (auto *use = dyn_cast<const use_info *> (access))
    use->print (pp, flags);
  else
    pp_string (pp, "??? Unknown access");
}
// Print ACCESSES to PP.  FLAGS is a bitmask of PP_ACCESS_* flags.
void
rtl_ssa::pp_accesses (pretty_printer *pp, access_array accesses,
		      unsigned int flags)
{
  if (accesses.empty ())
    pp_string (pp, "none");
  else
    {
      bool is_first = true;
      for (access_info *access : accesses)
	{
	  if (is_first)
	    is_first = false;
	  else
	    pp_newline_and_indent (pp, 0);
	  pp_access (pp, access, flags);
	}
    }
}
// Print NODE to PP.
void
rtl_ssa::pp_def_node (pretty_printer *pp, const def_node *node)
{
  if (!node)
    pp_string (pp, "<null>");
  else if (auto *group = dyn_cast<const clobber_group *> (node))
    group->print (pp);
  else if (auto *set = dyn_cast<const set_node *> (node))
    set->print (pp);
  else
    pp_string (pp, "??? Unknown def node");
}
// Print MUX to PP.
void
rtl_ssa::pp_def_mux (pretty_printer *pp, def_mux mux)
{
  if (auto *node = mux.dyn_cast<def_node *> ())
    pp_def_node (pp, node);
  else
    pp_access (pp, mux.as_a<def_info *> ());
}
// Print DL to PP.
void
rtl_ssa::pp_def_lookup (pretty_printer *pp, def_lookup dl)
{
  pp_string (pp, "comparison result of ");
  pp_decimal_int (pp, dl.comparison);
  pp_string (pp, " for ");
  pp_newline_and_indent (pp, 0);
  pp_def_mux (pp, dl.mux);
}
// Dump RESOURCE to FILE.
void
dump (FILE *file, resource_info resource)
{
  dump_using (file, pp_resource, resource);
}
// Dump ACCESS to FILE.  FLAGS is a bitmask of PP_ACCESS_* flags.
void
dump (FILE *file, const access_info *access, unsigned int flags)
{
  dump_using (file, pp_access, access, flags);
}
// Dump ACCESSES to FILE.  FLAGS is a bitmask of PP_ACCESS_* flags.
void
dump (FILE *file, access_array accesses, unsigned int flags)
{
  dump_using (file, pp_accesses, accesses, flags);
}
// Print NODE to FILE.
void
dump (FILE *file, const def_node *node)
{
  dump_using (file, pp_def_node, node);
}
// Print MUX to FILE.
void
dump (FILE *file, def_mux mux)
{
  dump_using (file, pp_def_mux, mux);
}
// Print RESULT to FILE.
void
dump (FILE *file, def_lookup result)
{
  dump_using (file, pp_def_lookup, result);
}
// Debug interfaces to the dump routines above.
void debug (const resource_info &x) { dump (stderr, x); }
void debug (const access_info *x) { dump (stderr, x); }
void debug (const access_array &x) { dump (stderr, x); }
void debug (const def_node *x) { dump (stderr, x); }
void debug (const def_mux &x) { dump (stderr, x); }
void debug (const def_lookup &x) { dump (stderr, x); }
 
     |