1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
// Instruction-related RTL SSA classes -*- C++ -*-
// Copyright (C) 2020-2022 Free Software Foundation, Inc.
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
//
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
namespace rtl_ssa {
// A fake cost for instructions that we haven't costed yet.
const int UNKNOWN_COST = INT_MAX;
// Enumerates the kinds of note that can be added to an instruction.
// See the comment above insn_info for details.
enum class insn_note_kind : uint8_t
{
ORDER_NODE,
CALL_CLOBBERS
};
// The base class for notes that can be added to an instruction.
// See the comment above insn_info for details.
class insn_note
{
// Size: 2 LP64 words.
friend class insn_info;
friend class function_info;
public:
// Return what kind of note this is.
insn_note_kind kind () const { return m_kind; }
// Return the next note in the list, or null if none.
insn_note *next_note () const { return m_next_note; }
// Used with T = Derived *, where Derived is derived from insn_note.
// Convert the note to Derived, asserting that it has the right kind.
template<typename T>
T as_a ();
// Used with T = Derived *, where Derived is derived from insn_note.
// If the note is a Derived note, return it in that form, otherwise
// return null.
template<typename T>
T dyn_cast ();
protected:
// Construct a note with the given kind.
insn_note (insn_note_kind);
private:
// The next note in the list, or null if none.
insn_note *m_next_note;
// The kind of note this is.
insn_note_kind m_kind : 8;
protected:
// Fill in the remaining LP64 word with data that derived classes can use.
unsigned int m_data8 : 8;
unsigned int m_data16 : 16;
unsigned int m_data32 : 32;
};
// Instructions have one of these notes if insn_info::has_call_clobbers ()
// is true. All such instructions in an EBB are first grouped together
// by the predefined_function_abis of the functions that they call.
// Then, for each such predefined ABI, the call_clobbers notes are put
// into a splay tree whose nodes follow execution order.
class insn_call_clobbers_note : public insn_note
{
friend class function_info;
friend class default_splay_tree_accessors<insn_call_clobbers_note *>;
public:
static const insn_note_kind kind = insn_note_kind::CALL_CLOBBERS;
// Return the identifier of the predefined_function_abi.
unsigned int abi_id () const { return m_data32; }
// Return the instruction to which the note is attached.
insn_info *insn () const { return m_insn; }
protected:
insn_call_clobbers_note (unsigned int abi_id, insn_info *insn);
// The splay tree pointers.
insn_call_clobbers_note *m_children[2];
// The value returned by insn ().
insn_info *m_insn;
};
// A splay tree of insn_call_clobbers_notes.
using insn_call_clobbers_tree = default_splay_tree<insn_call_clobbers_note *>;
// SSA-related information about an instruction. It also represents
// artificial instructions that are added to make the dataflow correct;
// these artificial instructions fall into three categories:
//
// - Instructions that hold the phi nodes for an extended basic block (is_phi).
//
// - Instructions that represent the head of a basic block and that hold
// all the associated artificial uses and definitions.
//
// - Instructions that represent the end of a basic block and that again
// hold all the associated artificial uses and definitions.
//
// Dataflow-wise, each instruction goes through three stages:
//
// (1) Use all the values in uses ().
//
// (2) If has_call_clobbers (), clobber the registers indicated by
// insn_callee_abi.
//
// (3) Define all the values in defs ().
//
// Having stage (2) is a trade-off: it makes processing the instructions
// more complicated, but it saves having to allocate memory for every
// individual call clobber. Without it, clobbers for calls would often
// make up a large proportion of the total definitions in a function.
//
// All the instructions in a function are chained together in a list
// that follows a reverse postorder traversal of the CFG. The list
// contains both debug and nondebug instructions, but it is possible
// to hop from one nondebug instruction to the next with constant complexity.
//
// Instructions can have supplemental information attached in the form
// of "notes", a bit like REG_NOTES for the underlying RTL insns.
class insn_info
{
// Size: 8 LP64 words.
friend class ebb_info;
friend class function_info;
public:
// Compare instructions by their positions in the function list described
// above. Thus for two instructions in the same basic block, I1 < I2 if
// I1 comes before I2 in the block.
bool operator< (const insn_info &) const;
bool operator<= (const insn_info &) const;
bool operator>= (const insn_info &) const;
bool operator> (const insn_info &) const;
// Return -1 if this instruction comes before INSN in the reverse
// postorder, 0 if this instruction is INSN, or 1 if this instruction
// comes after INSN in the reverse postorder.
int compare_with (const insn_info *insn) const;
// Return the previous and next instructions in the list described above,
// or null if there are no such instructions.
insn_info *prev_any_insn () const;
insn_info *next_any_insn () const;
// Only valid if !is_debug_insn (). Return the previous and next
// nondebug instructions in the list described above, skipping over
// any intervening debug instructions. These are constant-time operations.
insn_info *prev_nondebug_insn () const;
insn_info *next_nondebug_insn () const;
// Return the underlying RTL insn. This instruction is null if is_phi ()
// or is_bb_end () are true. The instruction is a basic block note if
// is_bb_head () is true.
rtx_insn *rtl () const { return m_rtl; }
// Return true if the instruction is a real insn with an rtl pattern.
// Return false if it is an artificial instruction that represents the
// phi nodes in an extended basic block or the head or end of a basic block.
bool is_real () const { return m_cost_or_uid >= 0; }
// Return the opposite of is_real ().
bool is_artificial () const { return m_cost_or_uid < 0; }
// Return true if the instruction was a real instruction but has now
// been deleted. In this case the instruction is no longer part of
// the SSA information.
bool has_been_deleted () const { return m_rtl && !INSN_P (m_rtl); }
// Return true if the instruction is a debug instruction (and thus
// also a real instruction).
bool is_debug_insn () const { return m_is_debug_insn; }
// Return true if the instruction is something that we can optimize.
// This implies that it is a real instruction that contains an asm
// or that contains something that matches an .md define_insn pattern.
bool can_be_optimized () const { return m_can_be_optimized; }
// Return true if the instruction is a call instruction.
//
// ??? We could cache this information, but since most callers would
// go on to access PATTERN (rtl ()), a cache might not be helpful and
// could even be counterproductive.
bool is_call () const { return CALL_P (m_rtl); }
// Return true if the instruction is a jump instruction.
//
// ??? See is_call for the reason we don't cache this.
bool is_jump () const { return JUMP_P (m_rtl); }
// Return true if the instruction is real and contains an inline asm.
bool is_asm () const { return m_is_asm; }
// Return true if the instruction is real and includes an RTX_AUTOINC
// operation.
bool has_pre_post_modify () const { return m_has_pre_post_modify; }
// Return true if the instruction is real and has volatile references,
// in the sense of volatile_refs_p. This includes volatile memory,
// volatile asms and UNSPEC_VOLATILEs.
bool has_volatile_refs () const { return m_has_volatile_refs; }
// Return true if the instruction is aritificial and if its (sole)
// purpose is to hold the phi nodes in an extended basic block.
bool is_phi () const;
// Return true if the instruction is artificial and if it represents
// the head of a basic block. If so, the instruction conceptually
// executes before the real instructions in the block. The uses
// and definitions represent the df_get_artificial_uses and
// df_get_artificial_defs entries for the head of the block.
bool is_bb_head () const;
// Return true if the instruction is artificial and if it represents
// the end of a basic block. The uses and definitions represent the
// the df_get_artificial_uses and df_get_artificial_defs entries for
// the end of the block.
bool is_bb_end () const;
// Return the basic block that the instruction is in.
bb_info *bb () const { return m_bb; }
// Return the extended basic block that the instruction is in;
// see bb_info for details.
ebb_info *ebb () const;
// If the instruction is real, return the unique identifier of the
// underlying RTL insn. If the instruction is artificial, return
// a unique negative identifier for the instructions.
//
// Note that the identifiers are not linear: it can be the case that
// an instruction with a higher uid comes earlier in a block than an
// instruction with a lower uid. The identifiers are however persistent;
// the identifier remains the same after the instruction has been moved
// or changed.
int uid () const;
// Return the list of things that this instruction uses. Registers
// come first, in register number order, followed by memory.
use_array uses () const;
// Return true if the instruction is a call and if the clobbers
// described by insn_callee_abi have been omitted from the list
// of definitions.
bool has_call_clobbers () const;
// Return the list of things that this instruction sets or clobbers.
// Registers come first, in register number order, followed by memory.
//
// If has_call_clobbers () is true, the list omits both the full and
// partial register clobbers described by insn_callee_abi.
def_array defs () const;
// The number of entries in uses ().
unsigned int num_uses () const { return m_num_uses; }
// The number of entries in defs ().
unsigned int num_defs () const { return m_num_defs; }
// Return the cost of the instruction, as calculated by the target.
// For performance reasons, the cost is evaluated lazily on first use.
//
// Artificial instructions have a cost of 0.
unsigned int cost () const;
// Return the first insn_note attached to the instruction, or null
// if none.
insn_note *first_note () const { return m_first_note; }
// See if a note of type T is attached to the instruction. Return it
// if so, otherwise return null.
template<typename T>
const T *find_note () const;
// Print "i" + uid () for real instructions and "a" + -uid () for
// artificial instructions.
void print_identifier (pretty_printer *) const;
// Print a short(ish) description of where the instruction is.
void print_location (pretty_printer *) const;
// Combine print_identifier and print_location.
void print_identifier_and_location (pretty_printer *) const;
// Print a full description of the instruction.
void print_full (pretty_printer *) const;
private:
// The first-order way of representing the order between instructions
// is to assign "program points", with higher point numbers coming
// later in the reverse postorder than lower point numbers. However,
// after a sequence of instruction movements, we may end up in a situation
// that adjacent instructions have the same program point.
//
// When that happens, we put the instructions into a splay tree that
// records their relative order. Each node of the splay tree is an
// order_node note that is attached to its respective instruction.
// The root of the splay tree is not stored, since the only thing
// we need the tree for is to compare two nodes.
class order_node : public insn_note
{
public:
static const insn_note_kind kind = insn_note_kind::ORDER_NODE;
order_node (int uid);
// Return the uid of the instruction that this node describes.
int uid () const { return m_data32; }
// The splay tree pointers.
order_node *m_children[2];
order_node *m_parent;
};
using order_splay_tree = default_rootless_splay_tree<order_node *>;
// prev_insn_or_last_debug_insn represents a choice between two things:
//
// (1) A pointer to the previous instruction in the list that has the
// same is_debug_insn () value, or null if no such instruction exists.
//
// (2) A pointer to the end of a sublist of debug instructions.
//
// (2) is used if this instruction is a debug instruction and the
// previous instruction is not. (1) is used otherwise.
//
// next_nondebug_or_debug_insn points to the next instruction but also
// records whether that next instruction is a debug instruction or a
// nondebug instruction.
//
// Thus the list is chained as follows:
//
// ----> ----> ----> ----> ---->
// NONDEBUG NONDEBUG DEBUG DEBUG DEBUG NONDEBUG ...
// <---- ^ +-- <---- <---- ^ +--
// | | | |
// | +------------------------+ |
// | |
// +-----------------------------------+
using prev_insn_or_last_debug_insn = pointer_mux<insn_info>;
using next_nondebug_or_debug_insn = pointer_mux<insn_info>;
insn_info (bb_info *bb, rtx_insn *rtl, int cost_or_uid);
static void print_uid (pretty_printer *, int);
void calculate_cost () const;
void set_properties (const rtx_properties &);
void set_accesses (access_info **, unsigned int, unsigned int);
void copy_accesses (access_array, access_array);
void set_cost (unsigned int cost) { m_cost_or_uid = cost; }
void set_bb (bb_info *bb) { m_bb = bb; }
void add_note (insn_note *note);
order_node *get_order_node () const;
order_node *get_known_order_node () const;
int slow_compare_with (const insn_info &) const;
insn_info *last_debug_insn () const;
unsigned int point () const { return m_point; }
void copy_prev_from (insn_info *);
void copy_next_from (insn_info *);
void set_prev_sametype_insn (insn_info *);
void set_last_debug_insn (insn_info *);
void set_next_any_insn (insn_info *);
void set_point (unsigned int point) { m_point = point; }
void clear_insn_links ();
bool has_insn_links ();
// The values returned by the accessors above.
prev_insn_or_last_debug_insn m_prev_insn_or_last_debug_insn;
next_nondebug_or_debug_insn m_next_nondebug_or_debug_insn;
bb_info *m_bb;
rtx_insn *m_rtl;
// The list of definitions followed by the list of uses.
access_info **m_accesses;
// The number of definitions and the number uses. FIRST_PSEUDO_REGISTER + 1
// is the maximum number of accesses to hard registers and memory, and
// MAX_RECOG_OPERANDS is the maximum number of pseudos that can be
// defined by an instruction, so the number of definitions should fit
// easily in 16 bits.
unsigned int m_num_uses;
unsigned int m_num_defs : 16;
// Flags returned by the accessors above.
unsigned int m_is_debug_insn : 1;
unsigned int m_can_be_optimized : 1;
unsigned int m_is_asm : 1;
unsigned int m_has_pre_post_modify : 1;
unsigned int m_has_volatile_refs : 1;
// For future expansion.
unsigned int m_spare : 11;
// The program point at which the instruction occurs.
//
// Note that the values of the program points are influenced by -g
// and so should not used to make codegen decisions.
unsigned int m_point;
// Negative if the instruction is artificial, nonnegative if it is real.
//
// For real instructions: the cost of the instruction, or UNKNOWN_COST
// if we haven't measured it yet.
//
// For artificial instructions: the (negative) unique identifier of the
// instruction.
mutable int m_cost_or_uid;
// The list of notes that have been attached to the instruction.
insn_note *m_first_note;
};
// Iterators for unfiltered lists of instructions.
using any_insn_iterator = list_iterator<insn_info, &insn_info::next_any_insn>;
using reverse_any_insn_iterator
= list_iterator<insn_info, &insn_info::prev_any_insn>;
// Iterators for nondebug instructions only.
using nondebug_insn_iterator
= list_iterator<insn_info, &insn_info::next_nondebug_insn>;
using reverse_nondebug_insn_iterator
= list_iterator<insn_info, &insn_info::prev_nondebug_insn>;
// A class that describes an inclusive range of instructions.
class insn_range_info
{
public:
insn_range_info () = default;
// Create a range that contains a singleton instruction.
insn_range_info (insn_info *insn) : first (insn), last (insn) {}
// Create a range [FIRST, LAST], given that *FIRST <= *LAST.
insn_range_info (insn_info *first, insn_info *last);
// Return true if the range contains at least one instruction.
explicit operator bool () const { return *first <= *last; }
bool operator== (const insn_range_info &) const;
bool operator!= (const insn_range_info &) const;
// If the range contains a single instruction, return that instruction,
// otherwise return null.
insn_info *singleton () const;
// Return true if the range includes INSN.
bool includes (insn_info *insn) const;
// If INSN is inside the range, return INSN, otherwise return the
// nearest in-range instruction.
insn_info *clamp_insn_to_range (insn_info *insn) const;
// Return true if this range is a subrange of OTHER, i.e. if OTHER
// includes every instruction that this range does.
bool is_subrange_of (const insn_range_info &other) const;
// The lower and upper bounds of the range.
insn_info *first;
insn_info *last;
};
// A class that represents a closure of operator== for instructions.
// This is used by insn_is; see there for details.
class insn_is_closure
{
public:
insn_is_closure (const insn_info *insn) : m_insn (insn) {}
bool operator() (const insn_info *other) const { return m_insn == other; }
private:
const insn_info *m_insn;
};
void pp_insn (pretty_printer *, const insn_info *);
}
void dump (FILE *, const rtl_ssa::insn_info *);
void DEBUG_FUNCTION debug (const rtl_ssa::insn_info *);
|