1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/* Template class for Dijkstra's algorithm on directed graphs.
Copyright (C) 2019-2022 Free Software Foundation, Inc.
Contributed by David Malcolm <dmalcolm@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_SHORTEST_PATHS_H
#define GCC_SHORTEST_PATHS_H
#include "timevar.h"
enum shortest_path_sense
{
/* Find the shortest path from the given origin node to each
node in the graph. */
SPS_FROM_GIVEN_ORIGIN,
/* Find the shortest path from each node in the graph to the
given target node. */
SPS_TO_GIVEN_TARGET
};
/* A record of the shortest path for each node relative to a special
"given node", either:
SPS_FROM_GIVEN_ORIGIN:
from the given origin node to each node in a graph, or
SPS_TO_GIVEN_TARGET:
from each node in a graph to the given target node.
The constructor runs Dijkstra's algorithm, and the results are
stored in this class. */
template <typename GraphTraits, typename Path_t>
class shortest_paths
{
public:
typedef typename GraphTraits::graph_t graph_t;
typedef typename GraphTraits::node_t node_t;
typedef typename GraphTraits::edge_t edge_t;
typedef Path_t path_t;
shortest_paths (const graph_t &graph, const node_t *given_node,
enum shortest_path_sense sense);
path_t get_shortest_path (const node_t *other_node) const;
int get_shortest_distance (const node_t *other_node) const;
private:
const graph_t &m_graph;
enum shortest_path_sense m_sense;
/* For each node (by index), the minimal distance between that node
and the given node (with direction depending on m_sense). */
auto_vec<int> m_dist;
/* For each node (by index):
SPS_FROM_GIVEN_ORIGIN:
the previous edge in the shortest path from the origin,
SPS_TO_GIVEN_TARGET:
the next edge in the shortest path to the target. */
auto_vec<const edge_t *> m_best_edge;
};
/* shortest_paths's constructor.
Use Dijkstra's algorithm relative to GIVEN_NODE to populate m_dist and
m_best_edge with enough information to be able to generate Path_t instances
to give the shortest path...
SPS_FROM_GIVEN_ORIGIN: to each node in a graph from the origin node, or
SPS_TO_GIVEN_TARGET: from each node in a graph to the target node. */
template <typename GraphTraits, typename Path_t>
inline
shortest_paths<GraphTraits, Path_t>::
shortest_paths (const graph_t &graph,
const node_t *given_node,
enum shortest_path_sense sense)
: m_graph (graph),
m_sense (sense),
m_dist (graph.m_nodes.length ()),
m_best_edge (graph.m_nodes.length ())
{
auto_timevar tv (TV_ANALYZER_SHORTEST_PATHS);
auto_vec<int> queue (graph.m_nodes.length ());
for (unsigned i = 0; i < graph.m_nodes.length (); i++)
{
m_dist.quick_push (INT_MAX);
m_best_edge.quick_push (NULL);
queue.quick_push (i);
}
m_dist[given_node->m_index] = 0;
while (queue.length () > 0)
{
/* Get minimal distance in queue.
FIXME: this is O(N^2); replace with a priority queue. */
int idx_with_min_dist = -1;
int idx_in_queue_with_min_dist = -1;
int min_dist = INT_MAX;
for (unsigned i = 0; i < queue.length (); i++)
{
int idx = queue[i];
if (m_dist[queue[i]] < min_dist)
{
min_dist = m_dist[idx];
idx_with_min_dist = idx;
idx_in_queue_with_min_dist = i;
}
}
if (idx_with_min_dist == -1)
break;
gcc_assert (idx_in_queue_with_min_dist != -1);
// FIXME: this is confusing: there are two indices here
queue.unordered_remove (idx_in_queue_with_min_dist);
node_t *n
= static_cast <node_t *> (m_graph.m_nodes[idx_with_min_dist]);
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
{
int i;
edge_t *succ;
FOR_EACH_VEC_ELT (n->m_succs, i, succ)
{
// TODO: only for dest still in queue
node_t *dest = succ->m_dest;
int alt = m_dist[n->m_index] + 1;
if (alt < m_dist[dest->m_index])
{
m_dist[dest->m_index] = alt;
m_best_edge[dest->m_index] = succ;
}
}
}
else
{
int i;
edge_t *pred;
FOR_EACH_VEC_ELT (n->m_preds, i, pred)
{
// TODO: only for dest still in queue
node_t *src = pred->m_src;
int alt = m_dist[n->m_index] + 1;
if (alt < m_dist[src->m_index])
{
m_dist[src->m_index] = alt;
m_best_edge[src->m_index] = pred;
}
}
}
}
}
/* Generate an Path_t instance giving the shortest path between OTHER_NODE
and the given node.
SPS_FROM_GIVEN_ORIGIN: shortest path from given origin node to OTHER_NODE
SPS_TO_GIVEN_TARGET: shortest path from OTHER_NODE to given target node.
If no such path exists, return an empty path. */
template <typename GraphTraits, typename Path_t>
inline Path_t
shortest_paths<GraphTraits, Path_t>::
get_shortest_path (const node_t *other_node) const
{
Path_t result;
while (m_best_edge[other_node->m_index])
{
result.m_edges.safe_push (m_best_edge[other_node->m_index]);
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
other_node = m_best_edge[other_node->m_index]->m_src;
else
other_node = m_best_edge[other_node->m_index]->m_dest;
}
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
result.m_edges.reverse ();
return result;
}
/* Get the shortest distance...
SPS_FROM_GIVEN_ORIGIN: ...from given origin node to OTHER_NODE
SPS_TO_GIVEN_TARGET: ...from OTHER_NODE to given target node. */
template <typename GraphTraits, typename Path_t>
inline int
shortest_paths<GraphTraits, Path_t>::
get_shortest_distance (const node_t *other_node) const
{
return m_dist[other_node->m_index];
}
#endif /* GCC_SHORTEST_PATHS_H */
|