1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
// Splay tree utilities -*- C++ -*-
// Copyright (C) 2020-2022 Free Software Foundation, Inc.
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
//
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// INDEX is either 0 or 1. If it is 0, return NODE's left child,
// otherwise return NODE's right child.
template<typename Accessors>
inline typename base_splay_tree<Accessors>::node_type
base_splay_tree<Accessors>::get_child (node_type node, unsigned int index)
{
return Accessors::child (node, index);
}
// INDEX is either 0 or 1. If it is 0, change NODE's left child to CHILD,
// otherwise change NODE's right child to CHILD. If CHILD has a parent
// field, record that its parent is now NODE.
template<typename Accessors>
inline void
base_splay_tree<Accessors>::set_child (node_type node, unsigned int index,
node_type child)
{
Accessors::child (node, index) = child;
if (child)
set_parent (child, node);
}
// Rotate the tree to promote child number INDEX of NODE, so that that
// child becomes a parent of NODE. Return the promoted node.
//
// The caller has the responsibility of assigning a correct parent
// to the returned node.
template<typename Accessors>
inline typename base_splay_tree<Accessors>::node_type
base_splay_tree<Accessors>::promote_child (node_type node, unsigned int index)
{
node_type promoted = get_child (node, index);
set_child (node, index, get_child (promoted, 1 - index));
set_child (promoted, 1 - index, node);
return promoted;
}
// Treat child number INDEX of NODE as being CHILD and rotate the tree
// so that CHILD becomes a parent of NODE.
//
// The caller has the responsibility of assigning a correct parent to CHILD.
template<typename Accessors>
inline void
base_splay_tree<Accessors>::promote_child (node_type node, unsigned int index,
node_type child)
{
set_child (node, index, get_child (child, 1 - index));
set_child (child, 1 - index, node);
}
// Print NODE to PP, using PRINTER (PP, N) to print the contents of node N.
// Prefix each new line with INDENT_STRING. CODE is 'T' if NODE is the root
// node, 'L' if NODE is the left child of its parent, or 'R' if NODE is the
// right child of its parent.
template<typename Accessors>
template<typename Printer>
void
base_splay_tree<Accessors>::print (pretty_printer *pp, node_type node,
Printer printer, char code,
vec<char> &indent_string)
{
// In the comments below, PREFIX refers to the incoming contents
// of INDENT_STRING.
node_type left = get_child (node, 0);
node_type right = get_child (node, 1);
auto orig_indent_len = indent_string.length ();
indent_string.safe_grow (orig_indent_len + 3);
char *extra_indent = indent_string.address () + orig_indent_len;
// Print [T], [L], or [R].
extra_indent[0] = '[';
extra_indent[1] = code;
extra_indent[2] = ']';
pp_append_text (pp, extra_indent, indent_string.end ());
pp_space (pp);
// Print the node itself, using PREFIX + " | " or PREFIX + " " to indent
// new lines under the "[_]" that we just printed.
extra_indent[0] = ' ';
extra_indent[1] = (left || right ? '|' : ' ');
extra_indent[2] = ' ';
{
pretty_printer sub_pp;
printer (&sub_pp, node);
const char *text = pp_formatted_text (&sub_pp);
while (const char *end = strchr (text, '\n'))
{
pp_append_text (pp, text, end);
pp_newline_and_indent (pp, 0);
pp_append_text (pp, indent_string.begin (), indent_string.end ());
text = end + 1;
}
pp_string (pp, text);
}
if (left)
{
// Print PREFIX + " +-" for the first line of the left subtree,
// to be followed by "[L]".
extra_indent[1] = '+';
extra_indent[2] = '-';
pp_newline_and_indent (pp, 0);
pp_append_text (pp, indent_string.begin (), indent_string.end ());
// Print the left subtree, using PREFIX + " | " or PREFIX + " "
// to indent under the PREFIX + " +-" that we just printed.
extra_indent[1] = right ? '|' : ' ';
extra_indent[2] = ' ';
print (pp, left, printer, 'L', indent_string);
extra_indent = indent_string.address () + orig_indent_len;
// If LEFT is not a leaf and we also have a right subtree, use a
// PREFIX + " |" line to separate them.
if (right && (get_child (left, 0) || get_child (left, 1)))
{
pp_newline_and_indent (pp, 0);
pp_append_text (pp, indent_string.begin (), &extra_indent[2]);
}
}
if (right)
{
// Print PREFIX + " +-" for the first line of the right subtree,
// to be followed by "[R]".
extra_indent[1] = '+';
extra_indent[2] = '-';
pp_newline_and_indent (pp, 0);
pp_append_text (pp, indent_string.begin (), indent_string.end ());
// Print the right subtree, using PREFIX + " " to indent under the
// PREFIX + " +-" that we just printed.
extra_indent[1] = ' ';
extra_indent[2] = ' ';
print (pp, right, printer, 'R', indent_string);
}
indent_string.truncate (orig_indent_len);
}
// See the comment above the declaration.
template<typename Accessors>
template<typename Printer>
void
base_splay_tree<Accessors>::print (pretty_printer *pp, node_type node,
Printer printer)
{
if (!node)
{
pp_string (pp, "null");
return;
}
auto_vec<char, 64> indent_string;
print (pp, node, printer, 'T', indent_string);
}
// If N is 1, splay the last (rightmost) node reachable from START
// to the position that START current holds and return the splayed node.
// START is not itself the last node.
//
// If N is 0, splay the first (leftmost) node reachable from START
// to the position that START current holds and return the splayed node.
// START is not itself the first node.
//
// The caller has the responsibility of updating the parent of the
// returned node.
template<typename Accessors>
template<unsigned int N>
typename base_splay_tree<Accessors>::node_type
base_splay_tree<Accessors>::splay_limit (node_type start)
{
// This essentially follows the simpilfied top-down method described
// in Sleator and Tarjan's "Self-adjusting Binary Search Trees", but
// specialized for the case in which the comparison result is fixed.
// The first iteration is peeled to avoid the need for stack temporaries.
//
// The comments and names reflect the behavior for N == 1, but the
// N == 0 case behaves analogously.
// Rotate the tree to promote the right child of START to the root.
node_type node = promote_child (start, N);
if (node_type right = get_child (node, N))
{
// Perform the link left step, which for this first iteration
// means making NODE the root of the left tree.
//
// NODE will become left child of the final node. For a right
// spine starting at NODE of the form:
//
// 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> ... -> N
// | | | | | | | |
// V V V V V V V V
// A B C D E F G NL
//
// the next step is to create a subtree of N whose right spine contains
// the odd-numbered nodes, as follows:
//
// N
// |
// V
// 1 ------> 3 ------> 5 ------> 7 -> .... -> NL
// | | | |
// V V V V
// A 2 -> C 4 -> E 6 -> G
// | | |
// V V V
// B D F
//
// First record 1 as the left child of the final root (N) and move
// on to node 2.
node_type final_child = node;
node_type new_spine_end = node;
node = right;
while (node_type right = get_child (node, N))
{
// Perform another rotate left step.
//
// We've built the tree rooted at 1 in the diagram above up to,
// but not including, an even-numbered node NODE on the original
// right spine. Rotate the tree at NODE to promote the following
// odd-numbered node.
promote_child (node, N, right);
node = right;
if (node_type right = get_child (node, N))
{
// Perform another link left step.
//
// Add the promoted odd-numbered node to the right spine of the
// tree rooted at 1 and move on to the next even-numbered node.
set_child (new_spine_end, N, node);
new_spine_end = node;
node = right;
}
}
// Perform the assembly step.
//
// Add NL to the new spine and make N the new root.
set_child (new_spine_end, N, get_child (node, 1 - N));
set_child (node, 1 - N, final_child);
}
return node;
}
// Remove NODE from its position in the splay tree. If NODE has at least
// one child node, return the node that should now hold NODE's position in
// the splay tree. If NODE has no children, return null.
//
// The caller has the responsibility of updating the parent of the
// returned node.
template<typename Accessors>
inline typename base_splay_tree<Accessors>::node_type
base_splay_tree<Accessors>::remove_node_internal (node_type node)
{
node_type left = get_child (node, 0);
node_type right = get_child (node, 1);
if (!left)
return right;
if (!right)
return left;
if (get_child (left, 1))
{
left = splay_limit<1> (left);
gcc_checking_assert (!get_child (left, 1));
}
set_child (left, 1, right);
return left;
}
// See the comment above the declaration.
template<typename Accessors>
inline void
base_splay_tree<Accessors>::insert_child (node_type node, unsigned int index,
node_type child)
{
gcc_checking_assert (!get_child (child, 0) && !get_child (child, 1));
set_child (child, index, get_child (node, index));
set_child (node, index, child);
}
// Implement splay_next_node if N == 1 and splay_prev_node if N == 0.
template<typename Accessors>
template<unsigned int N>
bool
rooted_splay_tree<Accessors>::splay_neighbor ()
{
node_type node = m_root;
node_type new_root = get_child (node, N);
if (!new_root)
return false;
if (get_child (new_root, 1 - N))
{
// NEW_ROOT is not itself the required node, so splay the required
// node into its place.
new_root = parent::template splay_limit<1 - N> (new_root);
gcc_checking_assert (!get_child (new_root, 1 - N));
set_child (node, N, node_type ());
set_child (new_root, 1 - N, node);
}
else
promote_child (node, N, new_root);
set_parent (new_root, node_type ());
m_root = new_root;
return true;
}
// See the comment above the declaration.
template<typename Accessors>
template<typename Comparator>
bool
rooted_splay_tree<Accessors>::insert (node_type new_node, Comparator compare)
{
gcc_checking_assert (!get_child (new_node, 0) && !get_child (new_node, 1));
if (!m_root)
{
m_root = new_node;
return true;
}
int comparison = lookup (compare);
if (comparison == 0)
return false;
// Insert NEW_NODE before M_ROOT if COMPARISON < 0 and after M_ROOT
// otherwise.
set_child (new_node, comparison < 0, m_root);
set_child (new_node, comparison > 0, get_child (m_root, comparison > 0));
set_child (m_root, comparison > 0, nullptr);
m_root = new_node;
return true;
}
// See the comment above the declaration.
template<typename Accessors>
inline void
rooted_splay_tree<Accessors>::insert_max_node (node_type new_node)
{
gcc_checking_assert (!get_child (new_node, 0) && !get_child (new_node, 1));
set_child (new_node, 0, m_root);
m_root = new_node;
}
// See the comment above the declaration.
template<typename Accessors>
inline void
rooted_splay_tree<Accessors>::splice_next_tree (rooted_splay_tree next_tree)
{
splay_max_node ();
set_child (m_root, 1, next_tree.m_root);
}
// See the comment above the declaration.
template<typename Accessors>
inline void
rooted_splay_tree<Accessors>::replace_max_node_at_root (node_type new_node)
{
node_type old_node = m_root;
gcc_checking_assert (!get_child (new_node, 0)
&& !get_child (new_node, 1)
&& !get_child (old_node, 1));
set_child (new_node, 0, get_child (old_node, 0));
// Clear the links from OLD_NODE. Its parent and right child are
// already node_type ().
set_child (old_node, 0, node_type ());
m_root = new_node;
}
// See the comment above the declaration.
template<typename Accessors>
inline void
rooted_splay_tree<Accessors>::remove_root ()
{
node_type node = m_root;
m_root = parent::remove_node_internal (node);
if (m_root)
set_parent (m_root, node_type ());
// Clear the links from NODE. Its parent is already node_type ().
set_child (node, 0, node_type ());
set_child (node, 1, node_type ());
}
// See the comment above the declaration.
template<typename Accessors>
inline rooted_splay_tree<Accessors>
rooted_splay_tree<Accessors>::split_before_root ()
{
node_type new_root = get_child (m_root, 0);
set_child (m_root, 0, node_type ());
set_parent (new_root, node_type ());
return new_root;
}
// See the comment above the declaration.
template<typename Accessors>
inline rooted_splay_tree<Accessors>
rooted_splay_tree<Accessors>::split_after_root ()
{
node_type new_root = get_child (m_root, 1);
set_child (m_root, 1, node_type ());
set_parent (new_root, node_type ());
return new_root;
}
// See the comment above the declaration.
template<typename Accessors>
inline bool
rooted_splay_tree<Accessors>::splay_prev_node ()
{
return splay_neighbor<0> ();
}
// See the comment above the declaration.
template<typename Accessors>
inline bool
rooted_splay_tree<Accessors>::splay_next_node ()
{
return splay_neighbor<1> ();
}
// See the comment above the declaration.
template<typename Accessors>
inline void
rooted_splay_tree<Accessors>::splay_min_node ()
{
if (m_root && get_child (m_root, 0))
{
m_root = parent::template splay_limit<0> (m_root);
set_parent (m_root, node_type ());
}
}
// See the comment above the declaration.
template<typename Accessors>
inline void
rooted_splay_tree<Accessors>::splay_max_node ()
{
if (m_root && get_child (m_root, 1))
{
m_root = parent::template splay_limit<1> (m_root);
set_parent (m_root, node_type ());
}
}
// See the comment above the declaration.
template<typename Accessors>
inline typename rooted_splay_tree<Accessors>::node_type
rooted_splay_tree<Accessors>::min_node ()
{
splay_min_node ();
return m_root;
}
// See the comment above the declaration.
template<typename Accessors>
inline typename rooted_splay_tree<Accessors>::node_type
rooted_splay_tree<Accessors>::max_node ()
{
splay_max_node ();
return m_root;
}
// See the comment above the declaration.
template<typename Accessors>
template<typename Comparator>
auto
rooted_splay_tree<Accessors>::lookup (Comparator compare)
-> decltype (compare (m_root))
{
// This essentially follows the simpilfied top-down method described
// in Sleator and Tarjan's "Self-adjusting Binary Search Trees", but
// with the complication that the comparisons are done only once.
using result_type = decltype (compare (m_root));
// The roots of the left and right trees.
node_type link_left_root = node_type ();
node_type link_right_root = node_type ();
// Where to add new nodes to the left and right trees.
node_type *link_left_ptr = &link_left_root;
node_type *link_right_ptr = &link_right_root;
// The nodes that contain *LINK_LEFT_PTR and *LINK_RIGHT_PTR,
// once they no longer point to the roots above.
node_type link_left_parent = node_type ();
node_type link_right_parent = node_type ();
auto link_left = [&](node_type node)
{
*link_left_ptr = node;
link_left_ptr = &Accessors::child (node, 1);
set_parent (node, link_left_parent);
link_left_parent = node;
};
auto link_right = [&](node_type node)
{
*link_right_ptr = node;
link_right_ptr = &Accessors::child (node, 0);
set_parent (node, link_right_parent);
link_right_parent = node;
};
node_type node = m_root;
node_type parent = node_type ();
result_type result;
result_type old_result = 0;
while (1)
{
// OLD_RESULT is 0 if NODE is the root of the middle tree.
// Otherwise, PARENT is the root of the middle tree and OLD_RESULT
// is how it compared.
//
// Results are:
// < 0 if we want something smaller.
// = 0 if we found the right node.
// > 0 if we want something bigger.
result = compare (node);
if (old_result < 0)
{
if (result < 0)
{
// SEARCH < NODE < PARENT
//
// Promote NODE (rotate right).
promote_child (parent, 0, node);
node_type next = get_child (node, 0);
if (!next)
break;
link_right (node);
// NEXT is now the root of the middle tree.
node = next;
old_result = 0;
continue;
}
// SEARCH >= NODE, NODE < PARENT
link_right (parent);
}
else if (old_result > 0)
{
if (result > 0)
{
// SEARCH > NODE > PARENT
//
// Promote NODE (rotate left).
promote_child (parent, 1, node);
node_type next = get_child (node, 1);
if (!next)
break;
link_left (node);
// NEXT is now the root of the middle tree.
node = next;
old_result = 0;
continue;
}
// SEARCH <= NODE, NODE > PARENT
link_left (parent);
}
// Microoptimization to allow NODE to be read even if RESULT == 0.
node_type next = get_child (node, result >= 0);
if (result == 0 || !next)
break;
// NODE is now the root of the tree.
parent = node;
node = next;
old_result = result;
}
node_type new_left = link_left_root;
node_type new_right = link_right_root;
if (new_left)
{
node_type old_left = get_child (node, 0);
*link_left_ptr = old_left;
if (old_left)
set_parent (old_left, link_left_parent);
set_child (node, 0, new_left);
}
if (new_right)
{
node_type old_right = get_child (node, 1);
*link_right_ptr = old_right;
if (old_right)
set_parent (old_right, link_right_parent);
set_child (node, 1, new_right);
}
set_parent (node, node_type ());
m_root = node;
return result;
}
// See the comment above the declaration.
template<typename Accessors>
template<typename LeftPredicate, typename RightPredicate>
int
rooted_splay_tree<Accessors>::lookup (LeftPredicate want_something_smaller,
RightPredicate want_something_bigger)
{
// This essentially follows the simpilfied top-down method described
// in Sleator and Tarjan's "Self-adjusting Binary Search Trees"
// (and follows it more closely than the single-comparator version above).
// The roots of the left and right trees.
node_type link_left_root = node_type ();
node_type link_right_root = node_type ();
// Where to add new nodes to the left and right trees.
node_type *link_left_ptr = &link_left_root;
node_type *link_right_ptr = &link_right_root;
// The nodes that contain *LINK_LEFT_PTR and *LINK_RIGHT_PTR,
// once they no longer point to the roots above.
node_type link_left_parent = node_type ();
node_type link_right_parent = node_type ();
node_type node = m_root;
int result;
for (;;)
{
// NODE is the root of the middle tree.
if (want_something_smaller (node))
{
result = -1;
node_type next = get_child (node, 0);
if (!next)
break;
if (want_something_smaller (next))
{
// Promote NODE (rotate right).
promote_child (node, 0, next);
node = next;
next = get_child (node, 0);
if (!next)
break;
}
// Add NODE to the right tree (link right).
*link_right_ptr = node;
link_right_ptr = &Accessors::child (node, 0);
set_parent (node, link_right_parent);
link_right_parent = node;
node = next;
}
else if (want_something_bigger (node))
{
result = 1;
node_type next = get_child (node, 1);
if (!next)
break;
if (want_something_bigger (next))
{
// Promote NODE (rotate left).
promote_child (node, 1, next);
node = next;
next = get_child (node, 1);
if (!next)
break;
}
// Add NODE to the left tree (link left).
*link_left_ptr = node;
link_left_ptr = &Accessors::child (node, 1);
set_parent (node, link_left_parent);
link_left_parent = node;
node = next;
}
else
{
result = 0;
break;
}
}
node_type new_left = link_left_root;
node_type new_right = link_right_root;
if (new_left)
{
node_type old_left = get_child (node, 0);
*link_left_ptr = old_left;
if (old_left)
set_parent (old_left, link_left_parent);
set_child (node, 0, new_left);
}
if (new_right)
{
node_type old_right = get_child (node, 1);
*link_right_ptr = old_right;
if (old_right)
set_parent (old_right, link_right_parent);
set_child (node, 1, new_right);
}
set_parent (node, node_type ());
m_root = node;
return result;
}
// See the comment above the declaration.
template<typename Accessors>
template<typename Printer>
inline void
rooted_splay_tree<Accessors>::print (pretty_printer *pp, Printer printer) const
{
print (pp, m_root, printer);
}
// Return NODE's current parent.
template<typename Accessors>
inline typename rootless_splay_tree<Accessors>::node_type
rootless_splay_tree<Accessors>::get_parent (node_type node)
{
return Accessors::parent (node);
}
// CHILD is known to be a child of PARENT. Return which index it has.
template<typename Accessors>
inline unsigned int
rootless_splay_tree<Accessors>::child_index (node_type parent, node_type child)
{
return get_child (parent, 1) == child;
}
// If N == 1, implement splay_known_max_node, otherwise implement
// splay_known_min_node.
template<typename Accessors>
template<unsigned int N>
inline void
rootless_splay_tree<Accessors>::splay_known_limit (node_type node)
{
node_type child = node;
node_type parent = get_parent (child);
if (!parent)
return;
do
// At this point, NODE conceptually replaces CHILD as a child of
// PARENT, but we haven't yet updated PARENT accordingly.
if (node_type grandparent = get_parent (parent))
{
node_type greatgrandparent = get_parent (grandparent);
promote_child (grandparent, N, parent);
promote_child (parent, N, node);
child = grandparent;
parent = greatgrandparent;
}
else
{
promote_child (parent, N, node);
break;
}
while (parent);
set_parent (node, node_type ());
}
// See the comment above the declaration.
template<typename Accessors>
typename rootless_splay_tree<Accessors>::node_type
rootless_splay_tree<Accessors>::remove_node (node_type node)
{
node_type replacement = parent::remove_node_internal (node);
if (node_type parent = get_parent (node))
set_child (parent, child_index (parent, node), replacement);
else if (replacement)
set_parent (replacement, node_type ());
// Clear the links from NODE.
set_parent (node, node_type ());
set_child (node, 0, node_type ());
set_child (node, 1, node_type ());
return replacement;
}
// See the comment above the declaration.
template<typename Accessors>
void
rootless_splay_tree<Accessors>::splay (node_type node)
{
node_type child = node;
node_type parent = get_parent (child);
if (!parent)
return;
do
{
// At this point, NODE conceptually replaces CHILD as a child of
// PARENT, but we haven't yet updated PARENT accordingly.
unsigned int index = child_index (parent, child);
if (node_type grandparent = get_parent (parent))
{
node_type greatgrandparent = get_parent (grandparent);
unsigned int parent_index = child_index (grandparent, parent);
if (index == parent_index)
{
promote_child (grandparent, parent_index, parent);
promote_child (parent, index, node);
}
else
{
promote_child (parent, index, node);
promote_child (grandparent, parent_index, node);
}
child = grandparent;
parent = greatgrandparent;
}
else
{
promote_child (parent, index, node);
break;
}
}
while (parent);
set_parent (node, node_type ());
}
// See the comment above the declaration.
template<typename Accessors>
inline void
rootless_splay_tree<Accessors>::splay_known_min_node (node_type node)
{
splay_known_limit<0> (node);
}
// See the comment above the declaration.
template<typename Accessors>
inline void
rootless_splay_tree<Accessors>::splay_known_max_node (node_type node)
{
splay_known_limit<1> (node);
}
// See the comment above the declaration.
template<typename Accessors>
template<typename DefaultResult, typename Predicate>
auto
rootless_splay_tree<Accessors>::
splay_and_search (node_type node, DefaultResult default_result,
Predicate predicate)
-> decltype (predicate (node, 0))
{
using Result = decltype (predicate (node, 0));
node_type child = node;
node_type parent = get_parent (child);
if (!parent)
return default_result;
do
{
// At this point, NODE conceptually replaces CHILD as a child of
// PARENT, but we haven't yet updated PARENT accordingly.
unsigned int index = child_index (parent, child);
if (Result result = predicate (parent, index))
{
set_child (parent, index, node);
return result;
}
if (node_type grandparent = get_parent (parent))
{
node_type greatgrandparent = get_parent (grandparent);
unsigned int parent_index = child_index (grandparent, parent);
if (Result result = predicate (grandparent, parent_index))
{
set_child (parent, index, node);
return result;
}
if (index == parent_index)
{
promote_child (grandparent, parent_index, parent);
promote_child (parent, index, node);
}
else
{
promote_child (parent, index, node);
promote_child (grandparent, parent_index, node);
}
child = grandparent;
parent = greatgrandparent;
}
else
{
promote_child (parent, index, node);
break;
}
}
while (parent);
set_parent (node, node_type ());
return default_result;
}
// Splay NODE1 looking to see if one of its ancestors is NODE2. If it is,
// return -1 if NODE1 comes before NODE2 or 1 if NODE1 comes after NODE2.
// Return 0 if NODE2 is not an ancestor of NODE1.
template<typename Accessors>
int
rootless_splay_tree<Accessors>::compare_nodes_one_way (node_type node1,
node_type node2)
{
auto compare = [&](node_type parent, unsigned int index) -> int
{
if (parent == node2)
return index ? 1 : -1;
return 0;
};
return splay_and_search (node1, 0, compare);
}
// See the comment above the declaration.
template<typename Accessors>
int
rootless_splay_tree<Accessors>::compare_nodes (node_type node1,
node_type node2)
{
if (node1 == node2)
return 0;
// Splay NODE1 looking for NODE2.
int cmp = compare_nodes_one_way (node1, node2);
if (cmp)
return cmp;
// That failed, but NODE1 is now the root of the tree. Splay NODE2
// to see on which side of NODE1 it falls.
cmp = compare_nodes_one_way (node2, node1);
gcc_checking_assert (cmp);
return -cmp;
}
|