1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
/* Operations with affine combinations of trees.
Copyright (C) 2005-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "tree-pretty-print.h"
#include "fold-const.h"
#include "tree-affine.h"
#include "gimplify.h"
#include "dumpfile.h"
#include "cfgexpand.h"
#include "value-query.h"
/* Extends CST as appropriate for the affine combinations COMB. */
static widest_int
wide_int_ext_for_comb (const widest_int &cst, tree type)
{
return wi::sext (cst, TYPE_PRECISION (type));
}
/* Likewise for polynomial offsets. */
static poly_widest_int
wide_int_ext_for_comb (const poly_widest_int &cst, tree type)
{
return wi::sext (cst, TYPE_PRECISION (type));
}
/* Initializes affine combination COMB so that its value is zero in TYPE. */
static void
aff_combination_zero (aff_tree *comb, tree type)
{
int i;
comb->type = type;
comb->offset = 0;
comb->n = 0;
for (i = 0; i < MAX_AFF_ELTS; i++)
comb->elts[i].coef = 0;
comb->rest = NULL_TREE;
}
/* Sets COMB to CST. */
void
aff_combination_const (aff_tree *comb, tree type, const poly_widest_int &cst)
{
aff_combination_zero (comb, type);
comb->offset = wide_int_ext_for_comb (cst, comb->type);;
}
/* Sets COMB to single element ELT. */
void
aff_combination_elt (aff_tree *comb, tree type, tree elt)
{
aff_combination_zero (comb, type);
comb->n = 1;
comb->elts[0].val = elt;
comb->elts[0].coef = 1;
}
/* Scales COMB by SCALE. */
void
aff_combination_scale (aff_tree *comb, const widest_int &scale_in)
{
unsigned i, j;
widest_int scale = wide_int_ext_for_comb (scale_in, comb->type);
if (scale == 1)
return;
if (scale == 0)
{
aff_combination_zero (comb, comb->type);
return;
}
comb->offset = wide_int_ext_for_comb (scale * comb->offset, comb->type);
for (i = 0, j = 0; i < comb->n; i++)
{
widest_int new_coef
= wide_int_ext_for_comb (scale * comb->elts[i].coef, comb->type);
/* A coefficient may become zero due to overflow. Remove the zero
elements. */
if (new_coef == 0)
continue;
comb->elts[j].coef = new_coef;
comb->elts[j].val = comb->elts[i].val;
j++;
}
comb->n = j;
if (comb->rest)
{
tree type = comb->type;
if (POINTER_TYPE_P (type))
type = sizetype;
if (comb->n < MAX_AFF_ELTS)
{
comb->elts[comb->n].coef = scale;
comb->elts[comb->n].val = comb->rest;
comb->rest = NULL_TREE;
comb->n++;
}
else
comb->rest = fold_build2 (MULT_EXPR, type, comb->rest,
wide_int_to_tree (type, scale));
}
}
/* Adds ELT * SCALE to COMB. */
void
aff_combination_add_elt (aff_tree *comb, tree elt, const widest_int &scale_in)
{
unsigned i;
tree type;
widest_int scale = wide_int_ext_for_comb (scale_in, comb->type);
if (scale == 0)
return;
for (i = 0; i < comb->n; i++)
if (operand_equal_p (comb->elts[i].val, elt, 0))
{
widest_int new_coef
= wide_int_ext_for_comb (comb->elts[i].coef + scale, comb->type);
if (new_coef != 0)
{
comb->elts[i].coef = new_coef;
return;
}
comb->n--;
comb->elts[i] = comb->elts[comb->n];
if (comb->rest)
{
gcc_assert (comb->n == MAX_AFF_ELTS - 1);
comb->elts[comb->n].coef = 1;
comb->elts[comb->n].val = comb->rest;
comb->rest = NULL_TREE;
comb->n++;
}
return;
}
if (comb->n < MAX_AFF_ELTS)
{
comb->elts[comb->n].coef = scale;
comb->elts[comb->n].val = elt;
comb->n++;
return;
}
type = comb->type;
if (POINTER_TYPE_P (type))
type = sizetype;
if (scale == 1)
elt = fold_convert (type, elt);
else
elt = fold_build2 (MULT_EXPR, type,
fold_convert (type, elt),
wide_int_to_tree (type, scale));
if (comb->rest)
comb->rest = fold_build2 (PLUS_EXPR, type, comb->rest,
elt);
else
comb->rest = elt;
}
/* Adds CST to C. */
static void
aff_combination_add_cst (aff_tree *c, const poly_widest_int &cst)
{
c->offset = wide_int_ext_for_comb (c->offset + cst, c->type);
}
/* Adds COMB2 to COMB1. */
void
aff_combination_add (aff_tree *comb1, aff_tree *comb2)
{
unsigned i;
aff_combination_add_cst (comb1, comb2->offset);
for (i = 0; i < comb2->n; i++)
aff_combination_add_elt (comb1, comb2->elts[i].val, comb2->elts[i].coef);
if (comb2->rest)
aff_combination_add_elt (comb1, comb2->rest, 1);
}
/* Converts affine combination COMB to TYPE. */
void
aff_combination_convert (aff_tree *comb, tree type)
{
unsigned i, j;
tree comb_type = comb->type;
if (TYPE_PRECISION (type) > TYPE_PRECISION (comb_type))
{
tree val = fold_convert (type, aff_combination_to_tree (comb));
tree_to_aff_combination (val, type, comb);
return;
}
comb->type = type;
if (comb->rest && !POINTER_TYPE_P (type))
comb->rest = fold_convert (type, comb->rest);
if (TYPE_PRECISION (type) == TYPE_PRECISION (comb_type))
return;
comb->offset = wide_int_ext_for_comb (comb->offset, comb->type);
for (i = j = 0; i < comb->n; i++)
{
if (comb->elts[i].coef == 0)
continue;
comb->elts[j].coef = comb->elts[i].coef;
comb->elts[j].val = fold_convert (type, comb->elts[i].val);
j++;
}
comb->n = j;
if (comb->n < MAX_AFF_ELTS && comb->rest)
{
comb->elts[comb->n].coef = 1;
comb->elts[comb->n].val = comb->rest;
comb->rest = NULL_TREE;
comb->n++;
}
}
/* Tries to handle OP0 CODE OP1 as affine combination of parts. Returns
true when that was successful and returns the combination in COMB. */
static bool
expr_to_aff_combination (aff_tree *comb, tree_code code, tree type,
tree op0, tree op1 = NULL_TREE)
{
aff_tree tmp;
poly_int64 bitpos, bitsize, bytepos;
switch (code)
{
case POINTER_PLUS_EXPR:
tree_to_aff_combination (op0, type, comb);
tree_to_aff_combination (op1, sizetype, &tmp);
aff_combination_add (comb, &tmp);
return true;
case PLUS_EXPR:
case MINUS_EXPR:
tree_to_aff_combination (op0, type, comb);
tree_to_aff_combination (op1, type, &tmp);
if (code == MINUS_EXPR)
aff_combination_scale (&tmp, -1);
aff_combination_add (comb, &tmp);
return true;
case MULT_EXPR:
if (TREE_CODE (op1) != INTEGER_CST)
break;
tree_to_aff_combination (op0, type, comb);
aff_combination_scale (comb, wi::to_widest (op1));
return true;
case NEGATE_EXPR:
tree_to_aff_combination (op0, type, comb);
aff_combination_scale (comb, -1);
return true;
case BIT_NOT_EXPR:
/* ~x = -x - 1 */
tree_to_aff_combination (op0, type, comb);
aff_combination_scale (comb, -1);
aff_combination_add_cst (comb, -1);
return true;
CASE_CONVERT:
{
tree otype = type;
tree inner = op0;
tree itype = TREE_TYPE (inner);
enum tree_code icode = TREE_CODE (inner);
/* STRIP_NOPS */
if (tree_nop_conversion_p (otype, itype))
{
tree_to_aff_combination (op0, type, comb);
return true;
}
/* In principle this is a valid folding, but it isn't necessarily
an optimization, so do it here and not in fold_unary. */
if ((icode == PLUS_EXPR || icode == MINUS_EXPR || icode == MULT_EXPR)
&& TREE_CODE (itype) == INTEGER_TYPE
&& TREE_CODE (otype) == INTEGER_TYPE
&& TYPE_PRECISION (otype) > TYPE_PRECISION (itype))
{
tree op0 = TREE_OPERAND (inner, 0), op1 = TREE_OPERAND (inner, 1);
/* If inner type has undefined overflow behavior, fold conversion
for below two cases:
(T1)(X *+- CST) -> (T1)X *+- (T1)CST
(T1)(X + X) -> (T1)X + (T1)X. */
if (TYPE_OVERFLOW_UNDEFINED (itype)
&& (TREE_CODE (op1) == INTEGER_CST
|| (icode == PLUS_EXPR && operand_equal_p (op0, op1, 0))))
{
op0 = fold_convert (otype, op0);
op1 = fold_convert (otype, op1);
return expr_to_aff_combination (comb, icode, otype, op0, op1);
}
wide_int minv, maxv;
/* If inner type has wrapping overflow behavior, fold conversion
for below case:
(T1)(X *+- CST) -> (T1)X *+- (T1)CST
if X *+- CST doesn't overflow by range information. */
value_range vr;
if (TYPE_UNSIGNED (itype)
&& TYPE_OVERFLOW_WRAPS (itype)
&& TREE_CODE (op1) == INTEGER_CST
&& get_range_query (cfun)->range_of_expr (vr, op0)
&& vr.kind () == VR_RANGE)
{
wide_int minv = vr.lower_bound ();
wide_int maxv = vr.upper_bound ();
wi::overflow_type overflow = wi::OVF_NONE;
signop sign = UNSIGNED;
if (icode == PLUS_EXPR)
wi::add (maxv, wi::to_wide (op1), sign, &overflow);
else if (icode == MULT_EXPR)
wi::mul (maxv, wi::to_wide (op1), sign, &overflow);
else
wi::sub (minv, wi::to_wide (op1), sign, &overflow);
if (overflow == wi::OVF_NONE)
{
op0 = fold_convert (otype, op0);
op1 = fold_convert (otype, op1);
return expr_to_aff_combination (comb, icode, otype, op0,
op1);
}
}
}
}
break;
default:;
}
return false;
}
/* Splits EXPR into an affine combination of parts. */
void
tree_to_aff_combination (tree expr, tree type, aff_tree *comb)
{
aff_tree tmp;
enum tree_code code;
tree core, toffset;
poly_int64 bitpos, bitsize, bytepos;
machine_mode mode;
int unsignedp, reversep, volatilep;
STRIP_NOPS (expr);
code = TREE_CODE (expr);
switch (code)
{
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
if (expr_to_aff_combination (comb, code, type, TREE_OPERAND (expr, 0),
TREE_OPERAND (expr, 1)))
return;
break;
case NEGATE_EXPR:
case BIT_NOT_EXPR:
if (expr_to_aff_combination (comb, code, type, TREE_OPERAND (expr, 0)))
return;
break;
CASE_CONVERT:
/* ??? TREE_TYPE (expr) should be equal to type here, but IVOPTS
calls this with not showing an outer widening cast. */
if (expr_to_aff_combination (comb, code,
TREE_TYPE (expr), TREE_OPERAND (expr, 0)))
{
aff_combination_convert (comb, type);
return;
}
break;
case ADDR_EXPR:
/* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
{
expr = TREE_OPERAND (expr, 0);
tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
aff_combination_add (comb, &tmp);
return;
}
core = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos,
&toffset, &mode, &unsignedp, &reversep,
&volatilep);
if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
break;
aff_combination_const (comb, type, bytepos);
if (TREE_CODE (core) == MEM_REF)
{
tree mem_offset = TREE_OPERAND (core, 1);
aff_combination_add_cst (comb, wi::to_poly_widest (mem_offset));
core = TREE_OPERAND (core, 0);
}
else
core = build_fold_addr_expr (core);
if (TREE_CODE (core) == ADDR_EXPR)
aff_combination_add_elt (comb, core, 1);
else
{
tree_to_aff_combination (core, type, &tmp);
aff_combination_add (comb, &tmp);
}
if (toffset)
{
tree_to_aff_combination (toffset, type, &tmp);
aff_combination_add (comb, &tmp);
}
return;
default:
{
if (poly_int_tree_p (expr))
{
aff_combination_const (comb, type, wi::to_poly_widest (expr));
return;
}
break;
}
}
aff_combination_elt (comb, type, expr);
}
/* Creates EXPR + ELT * SCALE in TYPE. EXPR is taken from affine
combination COMB. */
static tree
add_elt_to_tree (tree expr, tree type, tree elt, const widest_int &scale_in)
{
enum tree_code code;
widest_int scale = wide_int_ext_for_comb (scale_in, type);
elt = fold_convert (type, elt);
if (scale == 1)
{
if (!expr)
return elt;
return fold_build2 (PLUS_EXPR, type, expr, elt);
}
if (scale == -1)
{
if (!expr)
return fold_build1 (NEGATE_EXPR, type, elt);
return fold_build2 (MINUS_EXPR, type, expr, elt);
}
if (!expr)
return fold_build2 (MULT_EXPR, type, elt, wide_int_to_tree (type, scale));
if (wi::neg_p (scale))
{
code = MINUS_EXPR;
scale = -scale;
}
else
code = PLUS_EXPR;
elt = fold_build2 (MULT_EXPR, type, elt, wide_int_to_tree (type, scale));
return fold_build2 (code, type, expr, elt);
}
/* Makes tree from the affine combination COMB. */
tree
aff_combination_to_tree (aff_tree *comb)
{
tree type = comb->type, base = NULL_TREE, expr = NULL_TREE;
unsigned i;
poly_widest_int off;
int sgn;
gcc_assert (comb->n == MAX_AFF_ELTS || comb->rest == NULL_TREE);
i = 0;
if (POINTER_TYPE_P (type))
{
type = sizetype;
if (comb->n > 0 && comb->elts[0].coef == 1
&& POINTER_TYPE_P (TREE_TYPE (comb->elts[0].val)))
{
base = comb->elts[0].val;
++i;
}
}
for (; i < comb->n; i++)
expr = add_elt_to_tree (expr, type, comb->elts[i].val, comb->elts[i].coef);
if (comb->rest)
expr = add_elt_to_tree (expr, type, comb->rest, 1);
/* Ensure that we get x - 1, not x + (-1) or x + 0xff..f if x is
unsigned. */
if (known_lt (comb->offset, 0))
{
off = -comb->offset;
sgn = -1;
}
else
{
off = comb->offset;
sgn = 1;
}
expr = add_elt_to_tree (expr, type, wide_int_to_tree (type, off), sgn);
if (base)
return fold_build_pointer_plus (base, expr);
else
return fold_convert (comb->type, expr);
}
/* Copies the tree elements of COMB to ensure that they are not shared. */
void
unshare_aff_combination (aff_tree *comb)
{
unsigned i;
for (i = 0; i < comb->n; i++)
comb->elts[i].val = unshare_expr (comb->elts[i].val);
if (comb->rest)
comb->rest = unshare_expr (comb->rest);
}
/* Remove M-th element from COMB. */
void
aff_combination_remove_elt (aff_tree *comb, unsigned m)
{
comb->n--;
if (m <= comb->n)
comb->elts[m] = comb->elts[comb->n];
if (comb->rest)
{
comb->elts[comb->n].coef = 1;
comb->elts[comb->n].val = comb->rest;
comb->rest = NULL_TREE;
comb->n++;
}
}
/* Adds C * COEF * VAL to R. VAL may be NULL, in that case only
C * COEF is added to R. */
static void
aff_combination_add_product (aff_tree *c, const widest_int &coef, tree val,
aff_tree *r)
{
unsigned i;
tree aval, type;
for (i = 0; i < c->n; i++)
{
aval = c->elts[i].val;
if (val)
{
type = TREE_TYPE (aval);
aval = fold_build2 (MULT_EXPR, type, aval,
fold_convert (type, val));
}
aff_combination_add_elt (r, aval, coef * c->elts[i].coef);
}
if (c->rest)
{
aval = c->rest;
if (val)
{
type = TREE_TYPE (aval);
aval = fold_build2 (MULT_EXPR, type, aval,
fold_convert (type, val));
}
aff_combination_add_elt (r, aval, coef);
}
if (val)
{
if (c->offset.is_constant ())
/* Access coeffs[0] directly, for efficiency. */
aff_combination_add_elt (r, val, coef * c->offset.coeffs[0]);
else
{
/* c->offset is polynomial, so multiply VAL rather than COEF
by it. */
tree offset = wide_int_to_tree (TREE_TYPE (val), c->offset);
val = fold_build2 (MULT_EXPR, TREE_TYPE (val), val, offset);
aff_combination_add_elt (r, val, coef);
}
}
else
aff_combination_add_cst (r, coef * c->offset);
}
/* Multiplies C1 by C2, storing the result to R */
void
aff_combination_mult (aff_tree *c1, aff_tree *c2, aff_tree *r)
{
unsigned i;
gcc_assert (TYPE_PRECISION (c1->type) == TYPE_PRECISION (c2->type));
aff_combination_zero (r, c1->type);
for (i = 0; i < c2->n; i++)
aff_combination_add_product (c1, c2->elts[i].coef, c2->elts[i].val, r);
if (c2->rest)
aff_combination_add_product (c1, 1, c2->rest, r);
if (c2->offset.is_constant ())
/* Access coeffs[0] directly, for efficiency. */
aff_combination_add_product (c1, c2->offset.coeffs[0], NULL, r);
else
{
/* c2->offset is polynomial, so do the multiplication in tree form. */
tree offset = wide_int_to_tree (c2->type, c2->offset);
aff_combination_add_product (c1, 1, offset, r);
}
}
/* Returns the element of COMB whose value is VAL, or NULL if no such
element exists. If IDX is not NULL, it is set to the index of VAL in
COMB. */
static class aff_comb_elt *
aff_combination_find_elt (aff_tree *comb, tree val, unsigned *idx)
{
unsigned i;
for (i = 0; i < comb->n; i++)
if (operand_equal_p (comb->elts[i].val, val, 0))
{
if (idx)
*idx = i;
return &comb->elts[i];
}
return NULL;
}
/* Element of the cache that maps ssa name NAME to its expanded form
as an affine expression EXPANSION. */
class name_expansion
{
public:
aff_tree expansion;
/* True if the expansion for the name is just being generated. */
unsigned in_progress : 1;
};
/* Expands SSA names in COMB recursively. CACHE is used to cache the
results. */
void
aff_combination_expand (aff_tree *comb ATTRIBUTE_UNUSED,
hash_map<tree, name_expansion *> **cache)
{
unsigned i;
aff_tree to_add, current, curre;
tree e;
gimple *def;
widest_int scale;
class name_expansion *exp;
aff_combination_zero (&to_add, comb->type);
for (i = 0; i < comb->n; i++)
{
tree type, name;
enum tree_code code;
e = comb->elts[i].val;
type = TREE_TYPE (e);
name = e;
/* Look through some conversions. */
if (CONVERT_EXPR_P (e)
&& (TYPE_PRECISION (type)
>= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (e, 0)))))
name = TREE_OPERAND (e, 0);
if (TREE_CODE (name) != SSA_NAME)
continue;
def = SSA_NAME_DEF_STMT (name);
if (!is_gimple_assign (def) || gimple_assign_lhs (def) != name)
continue;
code = gimple_assign_rhs_code (def);
if (code != SSA_NAME
&& !IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
&& (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
|| !is_gimple_min_invariant (gimple_assign_rhs1 (def))))
continue;
/* We do not know whether the reference retains its value at the
place where the expansion is used. */
if (TREE_CODE_CLASS (code) == tcc_reference)
continue;
name_expansion **slot = NULL;
if (*cache)
slot = (*cache)->get (name);
exp = slot ? *slot : NULL;
if (!exp)
{
/* Only bother to handle cases tree_to_aff_combination will. */
switch (code)
{
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
if (!expr_to_aff_combination (¤t, code, TREE_TYPE (name),
gimple_assign_rhs1 (def),
gimple_assign_rhs2 (def)))
continue;
break;
case NEGATE_EXPR:
case BIT_NOT_EXPR:
if (!expr_to_aff_combination (¤t, code, TREE_TYPE (name),
gimple_assign_rhs1 (def)))
continue;
break;
CASE_CONVERT:
if (!expr_to_aff_combination (¤t, code, TREE_TYPE (name),
gimple_assign_rhs1 (def)))
/* This makes us always expand conversions which we did
in the past and makes gcc.dg/tree-ssa/ivopts-lt-2.c
PASS, eliminating one induction variable in IVOPTs.
??? But it is really excessive and we should try
harder to do without it. */
aff_combination_elt (¤t, TREE_TYPE (name),
fold_convert (TREE_TYPE (name),
gimple_assign_rhs1 (def)));
break;
case ADDR_EXPR:
case INTEGER_CST:
case POLY_INT_CST:
tree_to_aff_combination (gimple_assign_rhs1 (def),
TREE_TYPE (name), ¤t);
break;
default:
continue;
}
exp = XNEW (class name_expansion);
exp->in_progress = 1;
if (!*cache)
*cache = new hash_map<tree, name_expansion *>;
(*cache)->put (name, exp);
aff_combination_expand (¤t, cache);
exp->expansion = current;
exp->in_progress = 0;
}
else
{
/* Since we follow the definitions in the SSA form, we should not
enter a cycle unless we pass through a phi node. */
gcc_assert (!exp->in_progress);
current = exp->expansion;
}
if (!useless_type_conversion_p (comb->type, current.type))
aff_combination_convert (¤t, comb->type);
/* Accumulate the new terms to TO_ADD, so that we do not modify
COMB while traversing it; include the term -coef * E, to remove
it from COMB. */
scale = comb->elts[i].coef;
aff_combination_zero (&curre, comb->type);
aff_combination_add_elt (&curre, e, -scale);
aff_combination_scale (¤t, scale);
aff_combination_add (&to_add, ¤t);
aff_combination_add (&to_add, &curre);
}
aff_combination_add (comb, &to_add);
}
/* Similar to tree_to_aff_combination, but follows SSA name definitions
and expands them recursively. CACHE is used to cache the expansions
of the ssa names, to avoid exponential time complexity for cases
like
a1 = a0 + a0;
a2 = a1 + a1;
a3 = a2 + a2;
... */
void
tree_to_aff_combination_expand (tree expr, tree type, aff_tree *comb,
hash_map<tree, name_expansion *> **cache)
{
tree_to_aff_combination (expr, type, comb);
aff_combination_expand (comb, cache);
}
/* Frees memory occupied by struct name_expansion in *VALUE. Callback for
hash_map::traverse. */
bool
free_name_expansion (tree const &, name_expansion **value, void *)
{
free (*value);
return true;
}
/* Frees memory allocated for the CACHE used by
tree_to_aff_combination_expand. */
void
free_affine_expand_cache (hash_map<tree, name_expansion *> **cache)
{
if (!*cache)
return;
(*cache)->traverse<void *, free_name_expansion> (NULL);
delete (*cache);
*cache = NULL;
}
/* If VAL != CST * DIV for any constant CST, returns false.
Otherwise, if *MULT_SET is true, additionally compares CST and MULT,
and if they are different, returns false. Finally, if neither of these
two cases occur, true is returned, and CST is stored to MULT and MULT_SET
is set to true. */
static bool
wide_int_constant_multiple_p (const poly_widest_int &val,
const poly_widest_int &div,
bool *mult_set, poly_widest_int *mult)
{
poly_widest_int rem, cst;
if (known_eq (val, 0))
{
if (*mult_set && maybe_ne (*mult, 0))
return false;
*mult_set = true;
*mult = 0;
return true;
}
if (maybe_eq (div, 0))
return false;
if (!multiple_p (val, div, &cst))
return false;
if (*mult_set && maybe_ne (*mult, cst))
return false;
*mult_set = true;
*mult = cst;
return true;
}
/* Returns true if VAL = X * DIV for some constant X. If this is the case,
X is stored to MULT. */
bool
aff_combination_constant_multiple_p (aff_tree *val, aff_tree *div,
poly_widest_int *mult)
{
bool mult_set = false;
unsigned i;
if (val->n == 0 && known_eq (val->offset, 0))
{
*mult = 0;
return true;
}
if (val->n != div->n)
return false;
if (val->rest || div->rest)
return false;
if (!wide_int_constant_multiple_p (val->offset, div->offset,
&mult_set, mult))
return false;
for (i = 0; i < div->n; i++)
{
class aff_comb_elt *elt
= aff_combination_find_elt (val, div->elts[i].val, NULL);
if (!elt)
return false;
if (!wide_int_constant_multiple_p (elt->coef, div->elts[i].coef,
&mult_set, mult))
return false;
}
gcc_assert (mult_set);
return true;
}
/* Prints the affine VAL to the FILE. */
static void
print_aff (FILE *file, aff_tree *val)
{
unsigned i;
signop sgn = TYPE_SIGN (val->type);
if (POINTER_TYPE_P (val->type))
sgn = SIGNED;
fprintf (file, "{\n type = ");
print_generic_expr (file, val->type, TDF_VOPS|TDF_MEMSYMS);
fprintf (file, "\n offset = ");
print_dec (val->offset, file, sgn);
if (val->n > 0)
{
fprintf (file, "\n elements = {\n");
for (i = 0; i < val->n; i++)
{
fprintf (file, " [%d] = ", i);
print_generic_expr (file, val->elts[i].val, TDF_VOPS|TDF_MEMSYMS);
fprintf (file, " * ");
print_dec (val->elts[i].coef, file, sgn);
if (i != val->n - 1)
fprintf (file, ", \n");
}
fprintf (file, "\n }");
}
if (val->rest)
{
fprintf (file, "\n rest = ");
print_generic_expr (file, val->rest, TDF_VOPS|TDF_MEMSYMS);
}
fprintf (file, "\n}");
}
/* Prints the affine VAL to the standard error, used for debugging. */
DEBUG_FUNCTION void
debug_aff (aff_tree *val)
{
print_aff (stderr, val);
fprintf (stderr, "\n");
}
/* Computes address of the reference REF in ADDR. The size of the accessed
location is stored to SIZE. Returns the ultimate containing object to
which REF refers. */
tree
get_inner_reference_aff (tree ref, aff_tree *addr, poly_widest_int *size)
{
poly_int64 bitsize, bitpos;
tree toff;
machine_mode mode;
int uns, rev, vol;
aff_tree tmp;
tree base = get_inner_reference (ref, &bitsize, &bitpos, &toff, &mode,
&uns, &rev, &vol);
tree base_addr = build_fold_addr_expr (base);
/* ADDR = &BASE + TOFF + BITPOS / BITS_PER_UNIT. */
tree_to_aff_combination (base_addr, sizetype, addr);
if (toff)
{
tree_to_aff_combination (toff, sizetype, &tmp);
aff_combination_add (addr, &tmp);
}
aff_combination_const (&tmp, sizetype, bits_to_bytes_round_down (bitpos));
aff_combination_add (addr, &tmp);
*size = bits_to_bytes_round_up (bitsize);
return base;
}
/* Returns true if a region of size SIZE1 at position 0 and a region of
size SIZE2 at position DIFF cannot overlap. */
bool
aff_comb_cannot_overlap_p (aff_tree *diff, const poly_widest_int &size1,
const poly_widest_int &size2)
{
/* Unless the difference is a constant, we fail. */
if (diff->n != 0)
return false;
if (!ordered_p (diff->offset, 0))
return false;
if (maybe_lt (diff->offset, 0))
{
/* The second object is before the first one, we succeed if the last
element of the second object is before the start of the first one. */
return known_le (diff->offset + size2, 0);
}
else
{
/* We succeed if the second object starts after the first one ends. */
return known_le (size1, diff->offset);
}
}
|