1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
|
/* Lower complex number operations to scalar operations.
Copyright (C) 2004-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "tree-ssa-propagate.h"
#include "tree-hasher.h"
#include "cfgloop.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "diagnostic-core.h"
/* For each complex ssa name, a lattice value. We're interested in finding
out whether a complex number is degenerate in some way, having only real
or only complex parts. */
enum
{
UNINITIALIZED = 0,
ONLY_REAL = 1,
ONLY_IMAG = 2,
VARYING = 3
};
/* The type complex_lattice_t holds combinations of the above
constants. */
typedef int complex_lattice_t;
#define PAIR(a, b) ((a) << 2 | (b))
class complex_propagate : public ssa_propagation_engine
{
enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
};
static vec<complex_lattice_t> complex_lattice_values;
/* For each complex variable, a pair of variables for the components exists in
the hashtable. */
static int_tree_htab_type *complex_variable_components;
/* For each complex SSA_NAME, a pair of ssa names for the components. */
static vec<tree> complex_ssa_name_components;
/* Vector of PHI triplets (original complex PHI and corresponding real and
imag PHIs if real and/or imag PHIs contain temporarily
non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
static vec<gphi *> phis_to_revisit;
/* BBs that need EH cleanup. */
static bitmap need_eh_cleanup;
/* Lookup UID in the complex_variable_components hashtable and return the
associated tree. */
static tree
cvc_lookup (unsigned int uid)
{
struct int_tree_map in;
in.uid = uid;
return complex_variable_components->find_with_hash (in, uid).to;
}
/* Insert the pair UID, TO into the complex_variable_components hashtable. */
static void
cvc_insert (unsigned int uid, tree to)
{
int_tree_map h;
int_tree_map *loc;
h.uid = uid;
loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
loc->uid = uid;
loc->to = to;
}
/* Return true if T is not a zero constant. In the case of real values,
we're only interested in +0.0. */
static int
some_nonzerop (tree t)
{
int zerop = false;
/* Operations with real or imaginary part of a complex number zero
cannot be treated the same as operations with a real or imaginary
operand if we care about the signs of zeros in the result. */
if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
else if (TREE_CODE (t) == FIXED_CST)
zerop = fixed_zerop (t);
else if (TREE_CODE (t) == INTEGER_CST)
zerop = integer_zerop (t);
return !zerop;
}
/* Compute a lattice value from the components of a complex type REAL
and IMAG. */
static complex_lattice_t
find_lattice_value_parts (tree real, tree imag)
{
int r, i;
complex_lattice_t ret;
r = some_nonzerop (real);
i = some_nonzerop (imag);
ret = r * ONLY_REAL + i * ONLY_IMAG;
/* ??? On occasion we could do better than mapping 0+0i to real, but we
certainly don't want to leave it UNINITIALIZED, which eventually gets
mapped to VARYING. */
if (ret == UNINITIALIZED)
ret = ONLY_REAL;
return ret;
}
/* Compute a lattice value from gimple_val T. */
static complex_lattice_t
find_lattice_value (tree t)
{
tree real, imag;
switch (TREE_CODE (t))
{
case SSA_NAME:
return complex_lattice_values[SSA_NAME_VERSION (t)];
case COMPLEX_CST:
real = TREE_REALPART (t);
imag = TREE_IMAGPART (t);
break;
default:
gcc_unreachable ();
}
return find_lattice_value_parts (real, imag);
}
/* Determine if LHS is something for which we're interested in seeing
simulation results. */
static bool
is_complex_reg (tree lhs)
{
return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
}
/* Mark the incoming parameters to the function as VARYING. */
static void
init_parameter_lattice_values (void)
{
tree parm, ssa_name;
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
if (is_complex_reg (parm)
&& (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
}
/* Initialize simulation state for each statement. Return false if we
found no statements we want to simulate, and thus there's nothing
for the entire pass to do. */
static bool
init_dont_simulate_again (void)
{
basic_block bb;
bool saw_a_complex_op = false;
FOR_EACH_BB_FN (bb, cfun)
{
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
prop_set_simulate_again (phi,
is_complex_reg (gimple_phi_result (phi)));
}
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple *stmt;
tree op0, op1;
bool sim_again_p;
stmt = gsi_stmt (gsi);
op0 = op1 = NULL_TREE;
/* Most control-altering statements must be initially
simulated, else we won't cover the entire cfg. */
sim_again_p = stmt_ends_bb_p (stmt);
switch (gimple_code (stmt))
{
case GIMPLE_CALL:
if (gimple_call_lhs (stmt))
sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
break;
case GIMPLE_ASSIGN:
sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
else
op0 = gimple_assign_rhs1 (stmt);
if (gimple_num_ops (stmt) > 2)
op1 = gimple_assign_rhs2 (stmt);
break;
case GIMPLE_COND:
op0 = gimple_cond_lhs (stmt);
op1 = gimple_cond_rhs (stmt);
break;
default:
break;
}
if (op0 || op1)
switch (gimple_expr_code (stmt))
{
case EQ_EXPR:
case NE_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
|| TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
saw_a_complex_op = true;
break;
case NEGATE_EXPR:
case CONJ_EXPR:
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
saw_a_complex_op = true;
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
/* The total store transformation performed during
gimplification creates such uninitialized loads
and we need to lower the statement to be able
to fix things up. */
if (TREE_CODE (op0) == SSA_NAME
&& ssa_undefined_value_p (op0))
saw_a_complex_op = true;
break;
default:
break;
}
prop_set_simulate_again (stmt, sim_again_p);
}
}
return saw_a_complex_op;
}
/* Evaluate statement STMT against the complex lattice defined above. */
enum ssa_prop_result
complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
tree *result_p)
{
complex_lattice_t new_l, old_l, op1_l, op2_l;
unsigned int ver;
tree lhs;
lhs = gimple_get_lhs (stmt);
/* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
return SSA_PROP_VARYING;
/* These conditions should be satisfied due to the initial filter
set up in init_dont_simulate_again. */
gcc_assert (TREE_CODE (lhs) == SSA_NAME);
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
*result_p = lhs;
ver = SSA_NAME_VERSION (lhs);
old_l = complex_lattice_values[ver];
switch (gimple_expr_code (stmt))
{
case SSA_NAME:
case COMPLEX_CST:
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
break;
case COMPLEX_EXPR:
new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt));
break;
case PLUS_EXPR:
case MINUS_EXPR:
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
/* We've set up the lattice values such that IOR neatly
models addition. */
new_l = op1_l | op2_l;
break;
case MULT_EXPR:
case RDIV_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
/* Obviously, if either varies, so does the result. */
if (op1_l == VARYING || op2_l == VARYING)
new_l = VARYING;
/* Don't prematurely promote variables if we've not yet seen
their inputs. */
else if (op1_l == UNINITIALIZED)
new_l = op2_l;
else if (op2_l == UNINITIALIZED)
new_l = op1_l;
else
{
/* At this point both numbers have only one component. If the
numbers are of opposite kind, the result is imaginary,
otherwise the result is real. The add/subtract translates
the real/imag from/to 0/1; the ^ performs the comparison. */
new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
/* Don't allow the lattice value to flip-flop indefinitely. */
new_l |= old_l;
}
break;
case NEGATE_EXPR:
case CONJ_EXPR:
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
break;
default:
new_l = VARYING;
break;
}
/* If nothing changed this round, let the propagator know. */
if (new_l == old_l)
return SSA_PROP_NOT_INTERESTING;
complex_lattice_values[ver] = new_l;
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
}
/* Evaluate a PHI node against the complex lattice defined above. */
enum ssa_prop_result
complex_propagate::visit_phi (gphi *phi)
{
complex_lattice_t new_l, old_l;
unsigned int ver;
tree lhs;
int i;
lhs = gimple_phi_result (phi);
/* This condition should be satisfied due to the initial filter
set up in init_dont_simulate_again. */
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
return SSA_PROP_VARYING;
/* We've set up the lattice values such that IOR neatly models PHI meet. */
new_l = UNINITIALIZED;
for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
ver = SSA_NAME_VERSION (lhs);
old_l = complex_lattice_values[ver];
if (new_l == old_l)
return SSA_PROP_NOT_INTERESTING;
complex_lattice_values[ver] = new_l;
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
}
/* Create one backing variable for a complex component of ORIG. */
static tree
create_one_component_var (tree type, tree orig, const char *prefix,
const char *suffix, enum tree_code code)
{
tree r = create_tmp_var (type, prefix);
DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
DECL_ARTIFICIAL (r) = 1;
if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
{
const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
name = ACONCAT ((name, suffix, NULL));
DECL_NAME (r) = get_identifier (name);
SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
DECL_HAS_DEBUG_EXPR_P (r) = 1;
DECL_IGNORED_P (r) = 0;
copy_warning (r, orig);
}
else
{
DECL_IGNORED_P (r) = 1;
suppress_warning (r);
}
return r;
}
/* Retrieve a value for a complex component of VAR. */
static tree
get_component_var (tree var, bool imag_p)
{
size_t decl_index = DECL_UID (var) * 2 + imag_p;
tree ret = cvc_lookup (decl_index);
if (ret == NULL)
{
ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
imag_p ? "CI" : "CR",
imag_p ? "$imag" : "$real",
imag_p ? IMAGPART_EXPR : REALPART_EXPR);
cvc_insert (decl_index, ret);
}
return ret;
}
/* Retrieve a value for a complex component of SSA_NAME. */
static tree
get_component_ssa_name (tree ssa_name, bool imag_p)
{
complex_lattice_t lattice = find_lattice_value (ssa_name);
size_t ssa_name_index;
tree ret;
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
{
tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
if (SCALAR_FLOAT_TYPE_P (inner_type))
return build_real (inner_type, dconst0);
else
return build_int_cst (inner_type, 0);
}
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
ret = complex_ssa_name_components[ssa_name_index];
if (ret == NULL)
{
if (SSA_NAME_VAR (ssa_name))
ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
else
ret = TREE_TYPE (TREE_TYPE (ssa_name));
ret = make_ssa_name (ret);
/* Copy some properties from the original. In particular, whether it
is used in an abnormal phi, and whether it's uninitialized. */
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
&& TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
{
SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
}
complex_ssa_name_components[ssa_name_index] = ret;
}
return ret;
}
/* Set a value for a complex component of SSA_NAME, return a
gimple_seq of stuff that needs doing. */
static gimple_seq
set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
{
complex_lattice_t lattice = find_lattice_value (ssa_name);
size_t ssa_name_index;
tree comp;
gimple *last;
gimple_seq list;
/* We know the value must be zero, else there's a bug in our lattice
analysis. But the value may well be a variable known to contain
zero. We should be safe ignoring it. */
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
return NULL;
/* If we've already assigned an SSA_NAME to this component, then this
means that our walk of the basic blocks found a use before the set.
This is fine. Now we should create an initialization for the value
we created earlier. */
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
comp = complex_ssa_name_components[ssa_name_index];
if (comp)
;
/* If we've nothing assigned, and the value we're given is already stable,
then install that as the value for this SSA_NAME. This preemptively
copy-propagates the value, which avoids unnecessary memory allocation. */
else if (is_gimple_min_invariant (value)
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
{
complex_ssa_name_components[ssa_name_index] = value;
return NULL;
}
else if (TREE_CODE (value) == SSA_NAME
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
{
/* Replace an anonymous base value with the variable from cvc_lookup.
This should result in better debug info. */
if (!SSA_NAME_IS_DEFAULT_DEF (value)
&& SSA_NAME_VAR (ssa_name)
&& (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
&& !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
{
comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
replace_ssa_name_symbol (value, comp);
}
complex_ssa_name_components[ssa_name_index] = value;
return NULL;
}
/* Finally, we need to stabilize the result by installing the value into
a new ssa name. */
else
comp = get_component_ssa_name (ssa_name, imag_p);
/* Do all the work to assign VALUE to COMP. */
list = NULL;
value = force_gimple_operand (value, &list, false, NULL);
last = gimple_build_assign (comp, value);
gimple_seq_add_stmt (&list, last);
gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
return list;
}
/* Extract the real or imaginary part of a complex variable or constant.
Make sure that it's a proper gimple_val and gimplify it if not.
Emit any new code before gsi. */
static tree
extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
bool gimple_p, bool phiarg_p = false)
{
switch (TREE_CODE (t))
{
case COMPLEX_CST:
return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
case COMPLEX_EXPR:
gcc_unreachable ();
case BIT_FIELD_REF:
{
tree inner_type = TREE_TYPE (TREE_TYPE (t));
t = unshare_expr (t);
TREE_TYPE (t) = inner_type;
TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
if (imagpart_p)
TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
TYPE_SIZE (inner_type));
if (gimple_p)
t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
GSI_SAME_STMT);
return t;
}
case VAR_DECL:
case RESULT_DECL:
case PARM_DECL:
case COMPONENT_REF:
case ARRAY_REF:
case VIEW_CONVERT_EXPR:
case MEM_REF:
{
tree inner_type = TREE_TYPE (TREE_TYPE (t));
t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
inner_type, unshare_expr (t));
if (gimple_p)
t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
GSI_SAME_STMT);
return t;
}
case SSA_NAME:
t = get_component_ssa_name (t, imagpart_p);
if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
gcc_assert (phiarg_p);
return t;
default:
gcc_unreachable ();
}
}
/* Update the complex components of the ssa name on the lhs of STMT. */
static void
update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
tree i)
{
tree lhs;
gimple_seq list;
lhs = gimple_get_lhs (stmt);
list = set_component_ssa_name (lhs, false, r);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
list = set_component_ssa_name (lhs, true, i);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
}
static void
update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
{
gimple_seq list;
list = set_component_ssa_name (lhs, false, r);
if (list)
gsi_insert_seq_on_edge (e, list);
list = set_component_ssa_name (lhs, true, i);
if (list)
gsi_insert_seq_on_edge (e, list);
}
/* Update an assignment to a complex variable in place. */
static void
update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
{
gimple *old_stmt = gsi_stmt (*gsi);
gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
gimple *stmt = gsi_stmt (*gsi);
update_stmt (stmt);
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
update_complex_components (gsi, gsi_stmt (*gsi), r, i);
}
/* Generate code at the entry point of the function to initialize the
component variables for a complex parameter. */
static void
update_parameter_components (void)
{
edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
tree parm;
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
{
tree type = TREE_TYPE (parm);
tree ssa_name, r, i;
if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
continue;
type = TREE_TYPE (type);
ssa_name = ssa_default_def (cfun, parm);
if (!ssa_name)
continue;
r = build1 (REALPART_EXPR, type, ssa_name);
i = build1 (IMAGPART_EXPR, type, ssa_name);
update_complex_components_on_edge (entry_edge, ssa_name, r, i);
}
}
/* Generate code to set the component variables of a complex variable
to match the PHI statements in block BB. */
static void
update_phi_components (basic_block bb)
{
gphi_iterator gsi;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
if (is_complex_reg (gimple_phi_result (phi)))
{
gphi *p[2] = { NULL, NULL };
unsigned int i, j, n;
bool revisit_phi = false;
for (j = 0; j < 2; j++)
{
tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
if (TREE_CODE (l) == SSA_NAME)
p[j] = create_phi_node (l, bb);
}
for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
{
tree comp, arg = gimple_phi_arg_def (phi, i);
for (j = 0; j < 2; j++)
if (p[j])
{
comp = extract_component (NULL, arg, j > 0, false, true);
if (TREE_CODE (comp) == SSA_NAME
&& SSA_NAME_DEF_STMT (comp) == NULL)
{
/* For the benefit of any gimple simplification during
this pass that might walk SSA_NAME def stmts,
don't add SSA_NAMEs without definitions into the
PHI arguments, but put a decl in there instead
temporarily, and revisit this PHI later on. */
if (SSA_NAME_VAR (comp))
comp = SSA_NAME_VAR (comp);
else
comp = create_tmp_reg (TREE_TYPE (comp),
get_name (comp));
revisit_phi = true;
}
SET_PHI_ARG_DEF (p[j], i, comp);
}
}
if (revisit_phi)
{
phis_to_revisit.safe_push (phi);
phis_to_revisit.safe_push (p[0]);
phis_to_revisit.safe_push (p[1]);
}
}
}
}
/* Expand a complex move to scalars. */
static void
expand_complex_move (gimple_stmt_iterator *gsi, tree type)
{
tree inner_type = TREE_TYPE (type);
tree r, i, lhs, rhs;
gimple *stmt = gsi_stmt (*gsi);
if (is_gimple_assign (stmt))
{
lhs = gimple_assign_lhs (stmt);
if (gimple_num_ops (stmt) == 2)
rhs = gimple_assign_rhs1 (stmt);
else
rhs = NULL_TREE;
}
else if (is_gimple_call (stmt))
{
lhs = gimple_call_lhs (stmt);
rhs = NULL_TREE;
}
else
gcc_unreachable ();
if (TREE_CODE (lhs) == SSA_NAME)
{
if (is_ctrl_altering_stmt (stmt))
{
edge e;
/* The value is not assigned on the exception edges, so we need not
concern ourselves there. We do need to update on the fallthru
edge. Find it. */
e = find_fallthru_edge (gsi_bb (*gsi)->succs);
if (!e)
gcc_unreachable ();
r = build1 (REALPART_EXPR, inner_type, lhs);
i = build1 (IMAGPART_EXPR, inner_type, lhs);
update_complex_components_on_edge (e, lhs, r, i);
}
else if (is_gimple_call (stmt)
|| gimple_has_side_effects (stmt)
|| gimple_assign_rhs_code (stmt) == PAREN_EXPR)
{
r = build1 (REALPART_EXPR, inner_type, lhs);
i = build1 (IMAGPART_EXPR, inner_type, lhs);
update_complex_components (gsi, stmt, r, i);
}
else
{
if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
{
r = extract_component (gsi, rhs, 0, true);
i = extract_component (gsi, rhs, 1, true);
}
else
{
r = gimple_assign_rhs1 (stmt);
i = gimple_assign_rhs2 (stmt);
}
update_complex_assignment (gsi, r, i);
}
}
else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
{
tree x;
gimple *t;
location_t loc;
loc = gimple_location (stmt);
r = extract_component (gsi, rhs, 0, false);
i = extract_component (gsi, rhs, 1, false);
x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
t = gimple_build_assign (x, r);
gimple_set_location (t, loc);
gsi_insert_before (gsi, t, GSI_SAME_STMT);
if (stmt == gsi_stmt (*gsi))
{
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
gimple_assign_set_lhs (stmt, x);
gimple_assign_set_rhs1 (stmt, i);
}
else
{
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
t = gimple_build_assign (x, i);
gimple_set_location (t, loc);
gsi_insert_before (gsi, t, GSI_SAME_STMT);
stmt = gsi_stmt (*gsi);
gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
}
update_stmt (stmt);
}
}
/* Expand complex addition to scalars:
a + b = (ar + br) + i(ai + bi)
a - b = (ar - br) + i(ai + bi)
*/
static void
expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code,
complex_lattice_t al, complex_lattice_t bl)
{
tree rr, ri;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
switch (PAIR (al, bl))
{
case PAIR (ONLY_REAL, ONLY_REAL):
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = ai;
break;
case PAIR (ONLY_REAL, ONLY_IMAG):
rr = ar;
if (code == MINUS_EXPR)
ri = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, bi);
else
ri = bi;
break;
case PAIR (ONLY_IMAG, ONLY_REAL):
if (code == MINUS_EXPR)
rr = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ar, br);
else
rr = br;
ri = ai;
break;
case PAIR (ONLY_IMAG, ONLY_IMAG):
rr = ar;
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
break;
case PAIR (VARYING, ONLY_REAL):
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = ai;
break;
case PAIR (VARYING, ONLY_IMAG):
rr = ar;
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
break;
case PAIR (ONLY_REAL, VARYING):
if (code == MINUS_EXPR)
goto general;
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = bi;
break;
case PAIR (ONLY_IMAG, VARYING):
if (code == MINUS_EXPR)
goto general;
rr = br;
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
break;
case PAIR (VARYING, VARYING):
general:
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
break;
default:
gcc_unreachable ();
}
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Expand a complex multiplication or division to a libcall to the c99
compliant routines. TYPE is the complex type of the operation.
If INPLACE_P replace the statement at GSI with
the libcall and return NULL_TREE. Else insert the call, assign its
result to an output variable and return that variable. If INPLACE_P
is true then the statement being replaced should be an assignment
statement. */
static tree
expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
tree br, tree bi, enum tree_code code, bool inplace_p)
{
machine_mode mode;
enum built_in_function bcode;
tree fn, lhs;
gcall *stmt;
mode = TYPE_MODE (type);
gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
if (code == MULT_EXPR)
bcode = ((enum built_in_function)
(BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
else if (code == RDIV_EXPR)
bcode = ((enum built_in_function)
(BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
else
gcc_unreachable ();
fn = builtin_decl_explicit (bcode);
stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
if (inplace_p)
{
gimple *old_stmt = gsi_stmt (*gsi);
gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt));
lhs = gimple_assign_lhs (old_stmt);
gimple_call_set_lhs (stmt, lhs);
gsi_replace (gsi, stmt, true);
type = TREE_TYPE (type);
if (stmt_can_throw_internal (cfun, stmt))
{
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
if (!(e->flags & EDGE_EH))
break;
basic_block bb = split_edge (e);
gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
update_complex_components (&gsi2, stmt,
build1 (REALPART_EXPR, type, lhs),
build1 (IMAGPART_EXPR, type, lhs));
return NULL_TREE;
}
else
update_complex_components (gsi, stmt,
build1 (REALPART_EXPR, type, lhs),
build1 (IMAGPART_EXPR, type, lhs));
SSA_NAME_DEF_STMT (lhs) = stmt;
return NULL_TREE;
}
gimple_call_set_nothrow (stmt, true);
lhs = make_ssa_name (type);
gimple_call_set_lhs (stmt, lhs);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
return lhs;
}
/* Perform a complex multiplication on two complex constants A, B represented
by AR, AI, BR, BI of type TYPE.
The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
Insert the GIMPLE statements into GSI. Store the real and imaginary
components of the result into RR and RI. */
static void
expand_complex_multiplication_components (gimple_seq *stmts, location_t loc,
tree type, tree ar, tree ai,
tree br, tree bi,
tree *rr, tree *ri)
{
tree t1, t2, t3, t4;
t1 = gimple_build (stmts, loc, MULT_EXPR, type, ar, br);
t2 = gimple_build (stmts, loc, MULT_EXPR, type, ai, bi);
t3 = gimple_build (stmts, loc, MULT_EXPR, type, ar, bi);
/* Avoid expanding redundant multiplication for the common
case of squaring a complex number. */
if (ar == br && ai == bi)
t4 = t3;
else
t4 = gimple_build (stmts, loc, MULT_EXPR, type, ai, br);
*rr = gimple_build (stmts, loc, MINUS_EXPR, type, t1, t2);
*ri = gimple_build (stmts, loc, PLUS_EXPR, type, t3, t4);
}
/* Expand complex multiplication to scalars:
a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
*/
static void
expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
tree ar, tree ai, tree br, tree bi,
complex_lattice_t al, complex_lattice_t bl)
{
tree rr, ri;
tree inner_type = TREE_TYPE (type);
location_t loc = gimple_location (gsi_stmt (*gsi));
gimple_seq stmts = NULL;
if (al < bl)
{
complex_lattice_t tl;
rr = ar, ar = br, br = rr;
ri = ai, ai = bi, bi = ri;
tl = al, al = bl, bl = tl;
}
switch (PAIR (al, bl))
{
case PAIR (ONLY_REAL, ONLY_REAL):
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
ri = ai;
break;
case PAIR (ONLY_IMAG, ONLY_REAL):
rr = ar;
if (TREE_CODE (ai) == REAL_CST
&& real_identical (&TREE_REAL_CST (ai), &dconst1))
ri = br;
else
ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
break;
case PAIR (ONLY_IMAG, ONLY_IMAG):
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
ri = ar;
break;
case PAIR (VARYING, ONLY_REAL):
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
break;
case PAIR (VARYING, ONLY_IMAG):
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
break;
case PAIR (VARYING, VARYING):
if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
{
/* If optimizing for size or not at all just do a libcall.
Same if there are exception-handling edges or signaling NaNs. */
if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
|| stmt_can_throw_internal (cfun, gsi_stmt (*gsi))
|| flag_signaling_nans)
{
expand_complex_libcall (gsi, type, ar, ai, br, bi,
MULT_EXPR, true);
return;
}
if (!HONOR_NANS (inner_type))
{
/* If we are not worrying about NaNs expand to
(ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
expand_complex_multiplication_components (&stmts, loc, inner_type,
ar, ai, br, bi,
&rr, &ri);
break;
}
/* Else, expand x = a * b into
x = (ar*br - ai*bi) + i(ar*bi + br*ai);
if (isunordered (__real__ x, __imag__ x))
x = __muldc3 (a, b); */
tree tmpr, tmpi;
expand_complex_multiplication_components (&stmts, loc,
inner_type, ar, ai,
br, bi, &tmpr, &tmpi);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
stmts = NULL;
gimple *check
= gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
NULL_TREE, NULL_TREE);
basic_block orig_bb = gsi_bb (*gsi);
/* We want to keep track of the original complex multiplication
statement as we're going to modify it later in
update_complex_assignment. Make sure that insert_cond_bb leaves
that statement in the join block. */
gsi_prev (gsi);
basic_block cond_bb
= insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
profile_probability::very_unlikely ());
gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
tree libcall_res
= expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
bi, MULT_EXPR, false);
gimple_seq stmts2 = NULL;
tree cond_real = gimple_build (&stmts2, loc, REALPART_EXPR,
inner_type, libcall_res);
tree cond_imag = gimple_build (&stmts2, loc, IMAGPART_EXPR,
inner_type, libcall_res);
gsi_insert_seq_before (&cond_bb_gsi, stmts2, GSI_SAME_STMT);
basic_block join_bb = single_succ_edge (cond_bb)->dest;
*gsi = gsi_start_nondebug_after_labels_bb (join_bb);
/* We have a conditional block with some assignments in cond_bb.
Wire up the PHIs to wrap up. */
rr = make_ssa_name (inner_type);
ri = make_ssa_name (inner_type);
edge cond_to_join = single_succ_edge (cond_bb);
edge orig_to_join = find_edge (orig_bb, join_bb);
gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION);
add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION);
add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
}
else
/* If we are not worrying about NaNs expand to
(ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
expand_complex_multiplication_components (&stmts, loc,
inner_type, ar, ai,
br, bi, &rr, &ri);
break;
default:
gcc_unreachable ();
}
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Keep this algorithm in sync with fold-const.cc:const_binop().
Expand complex division to scalars, straightforward algorithm.
a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
t = br*br + bi*bi
*/
static void
expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
tree rr, ri, div, t1, t2, t3;
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, br);
t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, bi);
div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
t3 = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
rr = gimple_build (&stmts, loc, code, inner_type, t3, div);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
t3 = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, t2);
ri = gimple_build (&stmts, loc, code, inner_type, t3, div);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Keep this algorithm in sync with fold-const.cc:const_binop().
Expand complex division to scalars, modified algorithm to minimize
overflow with wide input ranges. */
static void
expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
basic_block bb_cond, bb_true, bb_false, bb_join;
gimple *stmt;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
/* Examine |br| < |bi|, and branch. */
t1 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, br);
t2 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, bi);
compare = gimple_build (&stmts, loc,
LT_EXPR, boolean_type_node, t1, t2);
bb_cond = bb_true = bb_false = bb_join = NULL;
rr = ri = tr = ti = NULL;
if (TREE_CODE (compare) != INTEGER_CST)
{
edge e;
gimple *stmt;
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
stmts = NULL;
stmt = gimple_build_cond (NE_EXPR, compare, boolean_false_node,
NULL_TREE, NULL_TREE);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
/* Split the original block, and create the TRUE and FALSE blocks. */
e = split_block (gsi_bb (*gsi), stmt);
bb_cond = e->src;
bb_join = e->dest;
bb_true = create_empty_bb (bb_cond);
bb_false = create_empty_bb (bb_true);
bb_true->count = bb_false->count
= bb_cond->count.apply_probability (profile_probability::even ());
/* Wire the blocks together. */
e->flags = EDGE_TRUE_VALUE;
/* TODO: With value profile we could add an historgram to determine real
branch outcome. */
e->probability = profile_probability::even ();
redirect_edge_succ (e, bb_true);
edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
e2->probability = profile_probability::even ();
make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
add_bb_to_loop (bb_true, bb_cond->loop_father);
add_bb_to_loop (bb_false, bb_cond->loop_father);
/* Update dominance info. Note that bb_join's data was
updated by split_block. */
if (dom_info_available_p (CDI_DOMINATORS))
{
set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
}
rr = create_tmp_reg (inner_type);
ri = create_tmp_reg (inner_type);
}
else
{
gimple_seq_discard (stmts);
stmts = NULL;
}
/* In the TRUE branch, we compute
ratio = br/bi;
div = (br * ratio) + bi;
tr = (ar * ratio) + ai;
ti = (ai * ratio) - ar;
tr = tr / div;
ti = ti / div; */
if (bb_true || integer_nonzerop (compare))
{
if (bb_true)
{
*gsi = gsi_last_bb (bb_true);
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
}
ratio = gimple_build (&stmts, loc, code, inner_type, br, bi);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, ratio);
div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, bi);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ai);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, ar);
tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
stmts = NULL;
if (bb_true)
{
stmt = gimple_build_assign (rr, tr);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
stmt = gimple_build_assign (ri, ti);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
gsi_remove (gsi, true);
}
}
/* In the FALSE branch, we compute
ratio = d/c;
divisor = (d * ratio) + c;
tr = (b * ratio) + a;
ti = b - (a * ratio);
tr = tr / div;
ti = ti / div; */
if (bb_false || integer_zerop (compare))
{
if (bb_false)
{
*gsi = gsi_last_bb (bb_false);
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
}
ratio = gimple_build (&stmts, loc, code, inner_type, bi, br);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, ratio);
div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, br);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ar);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, t1);
tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
stmts = NULL;
if (bb_false)
{
stmt = gimple_build_assign (rr, tr);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
stmt = gimple_build_assign (ri, ti);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
gsi_remove (gsi, true);
}
}
if (bb_join)
*gsi = gsi_start_bb (bb_join);
else
rr = tr, ri = ti;
update_complex_assignment (gsi, rr, ri);
}
/* Expand complex division to scalars. */
static void
expand_complex_division (gimple_stmt_iterator *gsi, tree type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code,
complex_lattice_t al, complex_lattice_t bl)
{
tree rr, ri;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
tree inner_type = TREE_TYPE (type);
switch (PAIR (al, bl))
{
case PAIR (ONLY_REAL, ONLY_REAL):
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = ai;
break;
case PAIR (ONLY_REAL, ONLY_IMAG):
rr = ai;
ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
break;
case PAIR (ONLY_IMAG, ONLY_REAL):
rr = ar;
ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
break;
case PAIR (ONLY_IMAG, ONLY_IMAG):
rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
ri = ar;
break;
case PAIR (VARYING, ONLY_REAL):
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
break;
case PAIR (VARYING, ONLY_IMAG):
rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
break;
case PAIR (ONLY_REAL, VARYING):
case PAIR (ONLY_IMAG, VARYING):
case PAIR (VARYING, VARYING):
switch (flag_complex_method)
{
case 0:
/* straightforward implementation of complex divide acceptable. */
expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
break;
case 2:
if (SCALAR_FLOAT_TYPE_P (inner_type))
{
expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
break;
}
/* FALLTHRU */
case 1:
/* wide ranges of inputs must work for complex divide. */
expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
break;
default:
gcc_unreachable ();
}
return;
default:
gcc_unreachable ();
}
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Expand complex negation to scalars:
-a = (-ar) + i(-ai)
*/
static void
expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai)
{
tree rr, ri;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ar);
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Expand complex conjugate to scalars:
~a = (ar) + i(-ai)
*/
static void
expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai)
{
tree ri;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, ar, ri);
}
/* Expand complex comparison (EQ or NE only). */
static void
expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
tree br, tree bi, enum tree_code code)
{
tree cr, ci, cc, type;
gimple *stmt = gsi_stmt (*gsi);
gimple_seq stmts = NULL;
location_t loc = gimple_location (stmt);
cr = gimple_build (&stmts, loc, code, boolean_type_node, ar, br);
ci = gimple_build (&stmts, loc, code, boolean_type_node, ai, bi);
cc = gimple_build (&stmts, loc,
(code == EQ_EXPR ? BIT_AND_EXPR : BIT_IOR_EXPR),
boolean_type_node, cr, ci);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
switch (gimple_code (stmt))
{
case GIMPLE_RETURN:
{
greturn *return_stmt = as_a <greturn *> (stmt);
type = TREE_TYPE (gimple_return_retval (return_stmt));
gimple_return_set_retval (return_stmt, fold_convert (type, cc));
}
break;
case GIMPLE_ASSIGN:
type = TREE_TYPE (gimple_assign_lhs (stmt));
gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
stmt = gsi_stmt (*gsi);
break;
case GIMPLE_COND:
{
gcond *cond_stmt = as_a <gcond *> (stmt);
gimple_cond_set_code (cond_stmt, EQ_EXPR);
gimple_cond_set_lhs (cond_stmt, cc);
gimple_cond_set_rhs (cond_stmt, boolean_true_node);
}
break;
default:
gcc_unreachable ();
}
update_stmt (stmt);
if (maybe_clean_eh_stmt (stmt))
bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
}
/* Expand inline asm that sets some complex SSA_NAMEs. */
static void
expand_complex_asm (gimple_stmt_iterator *gsi)
{
gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
unsigned int i;
bool diagnosed_p = false;
for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
{
tree link = gimple_asm_output_op (stmt, i);
tree op = TREE_VALUE (link);
if (TREE_CODE (op) == SSA_NAME
&& TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
{
if (gimple_asm_nlabels (stmt) > 0)
{
if (!diagnosed_p)
{
sorry_at (gimple_location (stmt),
"%<asm goto%> with complex typed outputs");
diagnosed_p = true;
}
/* Make sure to not ICE later, see PR105165. */
tree zero = build_zero_cst (TREE_TYPE (TREE_TYPE (op)));
set_component_ssa_name (op, false, zero);
set_component_ssa_name (op, true, zero);
continue;
}
tree type = TREE_TYPE (op);
tree inner_type = TREE_TYPE (type);
tree r = build1 (REALPART_EXPR, inner_type, op);
tree i = build1 (IMAGPART_EXPR, inner_type, op);
gimple_seq list = set_component_ssa_name (op, false, r);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
list = set_component_ssa_name (op, true, i);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
}
}
}
/* Process one statement. If we identify a complex operation, expand it. */
static void
expand_complex_operations_1 (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree type, inner_type, lhs;
tree ac, ar, ai, bc, br, bi;
complex_lattice_t al, bl;
enum tree_code code;
if (gimple_code (stmt) == GIMPLE_ASM)
{
expand_complex_asm (gsi);
return;
}
lhs = gimple_get_lhs (stmt);
if (!lhs && gimple_code (stmt) != GIMPLE_COND)
return;
type = TREE_TYPE (gimple_op (stmt, 0));
code = gimple_expr_code (stmt);
/* Initial filter for operations we handle. */
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
case NEGATE_EXPR:
case CONJ_EXPR:
if (TREE_CODE (type) != COMPLEX_TYPE)
return;
inner_type = TREE_TYPE (type);
break;
case EQ_EXPR:
case NE_EXPR:
/* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
subcode, so we need to access the operands using gimple_op. */
inner_type = TREE_TYPE (gimple_op (stmt, 1));
if (TREE_CODE (inner_type) != COMPLEX_TYPE)
return;
break;
default:
{
tree rhs;
/* GIMPLE_COND may also fallthru here, but we do not need to
do anything with it. */
if (gimple_code (stmt) == GIMPLE_COND)
return;
if (TREE_CODE (type) == COMPLEX_TYPE)
expand_complex_move (gsi, type);
else if (is_gimple_assign (stmt)
&& (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
&& TREE_CODE (lhs) == SSA_NAME)
{
rhs = gimple_assign_rhs1 (stmt);
rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
gimple_assign_rhs_code (stmt)
== IMAGPART_EXPR,
false);
gimple_assign_set_rhs_from_tree (gsi, rhs);
stmt = gsi_stmt (*gsi);
update_stmt (stmt);
}
}
return;
}
/* Extract the components of the two complex values. Make sure and
handle the common case of the same value used twice specially. */
if (is_gimple_assign (stmt))
{
ac = gimple_assign_rhs1 (stmt);
bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
}
/* GIMPLE_CALL cannot get here. */
else
{
ac = gimple_cond_lhs (stmt);
bc = gimple_cond_rhs (stmt);
}
ar = extract_component (gsi, ac, false, true);
ai = extract_component (gsi, ac, true, true);
if (ac == bc)
br = ar, bi = ai;
else if (bc)
{
br = extract_component (gsi, bc, 0, true);
bi = extract_component (gsi, bc, 1, true);
}
else
br = bi = NULL_TREE;
al = find_lattice_value (ac);
if (al == UNINITIALIZED)
al = VARYING;
if (TREE_CODE_CLASS (code) == tcc_unary)
bl = UNINITIALIZED;
else if (ac == bc)
bl = al;
else
{
bl = find_lattice_value (bc);
if (bl == UNINITIALIZED)
bl = VARYING;
}
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
break;
case MULT_EXPR:
expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
break;
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
break;
case NEGATE_EXPR:
expand_complex_negation (gsi, inner_type, ar, ai);
break;
case CONJ_EXPR:
expand_complex_conjugate (gsi, inner_type, ar, ai);
break;
case EQ_EXPR:
case NE_EXPR:
expand_complex_comparison (gsi, ar, ai, br, bi, code);
break;
default:
gcc_unreachable ();
}
}
/* Entry point for complex operation lowering during optimization. */
static unsigned int
tree_lower_complex (void)
{
gimple_stmt_iterator gsi;
basic_block bb;
int n_bbs, i;
int *rpo;
if (!init_dont_simulate_again ())
return 0;
complex_lattice_values.create (num_ssa_names);
complex_lattice_values.safe_grow_cleared (num_ssa_names, true);
init_parameter_lattice_values ();
class complex_propagate complex_propagate;
complex_propagate.ssa_propagate ();
need_eh_cleanup = BITMAP_ALLOC (NULL);
complex_variable_components = new int_tree_htab_type (10);
complex_ssa_name_components.create (2 * num_ssa_names);
complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names, true);
update_parameter_components ();
rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
for (i = 0; i < n_bbs; i++)
{
bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
if (!bb)
continue;
update_phi_components (bb);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
expand_complex_operations_1 (&gsi);
}
free (rpo);
if (!phis_to_revisit.is_empty ())
{
unsigned int n = phis_to_revisit.length ();
for (unsigned int j = 0; j < n; j += 3)
for (unsigned int k = 0; k < 2; k++)
if (gphi *phi = phis_to_revisit[j + k + 1])
{
unsigned int m = gimple_phi_num_args (phi);
for (unsigned int l = 0; l < m; ++l)
{
tree op = gimple_phi_arg_def (phi, l);
if (TREE_CODE (op) == SSA_NAME
|| is_gimple_min_invariant (op))
continue;
tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
op = extract_component (NULL, arg, k > 0, false, false);
SET_PHI_ARG_DEF (phi, l, op);
}
}
phis_to_revisit.release ();
}
gsi_commit_edge_inserts ();
unsigned todo
= gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0;
BITMAP_FREE (need_eh_cleanup);
delete complex_variable_components;
complex_variable_components = NULL;
complex_ssa_name_components.release ();
complex_lattice_values.release ();
return todo;
}
namespace {
const pass_data pass_data_lower_complex =
{
GIMPLE_PASS, /* type */
"cplxlower", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
PROP_gimple_lcx, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_lower_complex : public gimple_opt_pass
{
public:
pass_lower_complex (gcc::context *ctxt)
: gimple_opt_pass (pass_data_lower_complex, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
virtual unsigned int execute (function *) { return tree_lower_complex (); }
}; // class pass_lower_complex
} // anon namespace
gimple_opt_pass *
make_pass_lower_complex (gcc::context *ctxt)
{
return new pass_lower_complex (ctxt);
}
namespace {
const pass_data pass_data_lower_complex_O0 =
{
GIMPLE_PASS, /* type */
"cplxlower0", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_cfg, /* properties_required */
PROP_gimple_lcx, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_lower_complex_O0 : public gimple_opt_pass
{
public:
pass_lower_complex_O0 (gcc::context *ctxt)
: gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *fun)
{
/* With errors, normal optimization passes are not run. If we don't
lower complex operations at all, rtl expansion will abort. */
return !(fun->curr_properties & PROP_gimple_lcx);
}
virtual unsigned int execute (function *) { return tree_lower_complex (); }
}; // class pass_lower_complex_O0
} // anon namespace
gimple_opt_pass *
make_pass_lower_complex_O0 (gcc::context *ctxt)
{
return new pass_lower_complex_O0 (ctxt);
}
|