1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
|
/* __builtin_object_size (ptr, object_size_type) computation
Copyright (C) 2004-2022 Free Software Foundation, Inc.
Contributed by Jakub Jelinek <jakub@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "tree-object-size.h"
#include "gimple-fold.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "stringpool.h"
#include "attribs.h"
#include "builtins.h"
#include "gimplify-me.h"
struct object_size_info
{
int object_size_type;
unsigned char pass;
bool changed;
bitmap visited, reexamine, unknowns;
unsigned int *depths;
unsigned int *stack, *tos;
};
struct GTY(()) object_size
{
/* Estimate of bytes till the end of the object. */
tree size;
/* Estimate of the size of the whole object. */
tree wholesize;
};
static tree compute_object_offset (const_tree, const_tree);
static bool addr_object_size (struct object_size_info *,
const_tree, int, tree *, tree *t = NULL);
static tree alloc_object_size (const gcall *, int);
static tree pass_through_call (const gcall *);
static void collect_object_sizes_for (struct object_size_info *, tree);
static void expr_object_size (struct object_size_info *, tree, tree);
static bool merge_object_sizes (struct object_size_info *, tree, tree);
static bool plus_stmt_object_size (struct object_size_info *, tree, gimple *);
static bool cond_expr_object_size (struct object_size_info *, tree, gimple *);
static void init_offset_limit (void);
static void check_for_plus_in_loops (struct object_size_info *, tree);
static void check_for_plus_in_loops_1 (struct object_size_info *, tree,
unsigned int);
/* object_sizes[0] is upper bound for the object size and number of bytes till
the end of the object.
object_sizes[1] is upper bound for the object size and number of bytes till
the end of the subobject (innermost array or field with address taken).
object_sizes[2] is lower bound for the object size and number of bytes till
the end of the object and object_sizes[3] lower bound for subobject.
For static object sizes, the object size and the bytes till the end of the
object are both INTEGER_CST. In the dynamic case, they are finally either a
gimple variable or an INTEGER_CST. */
static vec<object_size> object_sizes[OST_END];
/* Bitmaps what object sizes have been computed already. */
static bitmap computed[OST_END];
/* Maximum value of offset we consider to be addition. */
static unsigned HOST_WIDE_INT offset_limit;
/* Return true if VAL represents an initial size for OBJECT_SIZE_TYPE. */
static inline bool
size_initval_p (tree val, int object_size_type)
{
return ((object_size_type & OST_MINIMUM)
? integer_all_onesp (val) : integer_zerop (val));
}
/* Return true if VAL represents an unknown size for OBJECT_SIZE_TYPE. */
static inline bool
size_unknown_p (tree val, int object_size_type)
{
return ((object_size_type & OST_MINIMUM)
? integer_zerop (val) : integer_all_onesp (val));
}
/* Return true if VAL represents a valid size for OBJECT_SIZE_TYPE. */
static inline bool
size_valid_p (tree val, int object_size_type)
{
return ((object_size_type & OST_DYNAMIC) || TREE_CODE (val) == INTEGER_CST);
}
/* Return true if VAL is usable as an object size in the object_sizes
vectors. */
static inline bool
size_usable_p (tree val)
{
return TREE_CODE (val) == SSA_NAME || TREE_CODE (val) == INTEGER_CST;
}
/* Return a tree with initial value for OBJECT_SIZE_TYPE. */
static inline tree
size_initval (int object_size_type)
{
return ((object_size_type & OST_MINIMUM)
? TYPE_MAX_VALUE (sizetype) : size_zero_node);
}
/* Return a tree with unknown value for OBJECT_SIZE_TYPE. */
static inline tree
size_unknown (int object_size_type)
{
return ((object_size_type & OST_MINIMUM)
? size_zero_node : TYPE_MAX_VALUE (sizetype));
}
/* Grow object_sizes[OBJECT_SIZE_TYPE] to num_ssa_names. */
static inline void
object_sizes_grow (int object_size_type)
{
if (num_ssa_names > object_sizes[object_size_type].length ())
object_sizes[object_size_type].safe_grow (num_ssa_names, true);
}
/* Release object_sizes[OBJECT_SIZE_TYPE]. */
static inline void
object_sizes_release (int object_size_type)
{
object_sizes[object_size_type].release ();
}
/* Return true if object_sizes[OBJECT_SIZE_TYPE][VARNO] is unknown. */
static inline bool
object_sizes_unknown_p (int object_size_type, unsigned varno)
{
return size_unknown_p (object_sizes[object_size_type][varno].size,
object_size_type);
}
/* Return the raw size expression for VARNO corresponding to OSI. This returns
the TREE_VEC as is and should only be used during gimplification. */
static inline object_size
object_sizes_get_raw (struct object_size_info *osi, unsigned varno)
{
gcc_assert (osi->pass != 0);
return object_sizes[osi->object_size_type][varno];
}
/* Return a size tree for VARNO corresponding to OSI. If WHOLE is true, return
the whole object size. Use this for building size expressions based on size
of VARNO. */
static inline tree
object_sizes_get (struct object_size_info *osi, unsigned varno,
bool whole = false)
{
tree ret;
int object_size_type = osi->object_size_type;
if (whole)
ret = object_sizes[object_size_type][varno].wholesize;
else
ret = object_sizes[object_size_type][varno].size;
if (object_size_type & OST_DYNAMIC)
{
if (TREE_CODE (ret) == MODIFY_EXPR)
return TREE_OPERAND (ret, 0);
else if (TREE_CODE (ret) == TREE_VEC)
return TREE_VEC_ELT (ret, TREE_VEC_LENGTH (ret) - 1);
else
gcc_checking_assert (size_usable_p (ret));
}
return ret;
}
/* Set size for VARNO corresponding to OSI to VAL. */
static inline void
object_sizes_initialize (struct object_size_info *osi, unsigned varno,
tree val, tree wholeval)
{
int object_size_type = osi->object_size_type;
object_sizes[object_size_type][varno].size = val;
object_sizes[object_size_type][varno].wholesize = wholeval;
}
/* Return a MODIFY_EXPR for cases where SSA and EXPR have the same type. The
TREE_VEC is returned only in case of PHI nodes. */
static tree
bundle_sizes (tree name, tree expr)
{
gcc_checking_assert (TREE_TYPE (name) == sizetype);
if (TREE_CODE (expr) == TREE_VEC)
{
TREE_VEC_ELT (expr, TREE_VEC_LENGTH (expr) - 1) = name;
return expr;
}
gcc_checking_assert (types_compatible_p (TREE_TYPE (expr), sizetype));
return build2 (MODIFY_EXPR, sizetype, name, expr);
}
/* Set size for VARNO corresponding to OSI to VAL if it is the new minimum or
maximum. For static sizes, each element of TREE_VEC is always INTEGER_CST
throughout the computation. For dynamic sizes, each element may either be a
gimple variable, a MODIFY_EXPR or a TREE_VEC. The MODIFY_EXPR is for
expressions that need to be gimplified. TREE_VECs are special, they're
emitted only for GIMPLE_PHI and the PHI result variable is the last element
of the vector. */
static bool
object_sizes_set (struct object_size_info *osi, unsigned varno, tree val,
tree wholeval)
{
int object_size_type = osi->object_size_type;
object_size osize = object_sizes[object_size_type][varno];
bool changed = true;
tree oldval = osize.size;
tree old_wholeval = osize.wholesize;
if (object_size_type & OST_DYNAMIC)
{
if (bitmap_bit_p (osi->reexamine, varno))
{
if (size_unknown_p (val, object_size_type))
{
oldval = object_sizes_get (osi, varno);
old_wholeval = object_sizes_get (osi, varno, true);
bitmap_set_bit (osi->unknowns, SSA_NAME_VERSION (oldval));
bitmap_set_bit (osi->unknowns, SSA_NAME_VERSION (old_wholeval));
bitmap_clear_bit (osi->reexamine, varno);
}
else
{
val = bundle_sizes (oldval, val);
wholeval = bundle_sizes (old_wholeval, wholeval);
}
}
else
{
gcc_checking_assert (size_initval_p (oldval, object_size_type));
gcc_checking_assert (size_initval_p (old_wholeval,
object_size_type));
/* For dynamic object sizes, all object sizes that are not gimple
variables will need to be gimplified. */
if (wholeval != val && !size_usable_p (wholeval))
{
bitmap_set_bit (osi->reexamine, varno);
wholeval = bundle_sizes (make_ssa_name (sizetype), wholeval);
}
if (!size_usable_p (val))
{
bitmap_set_bit (osi->reexamine, varno);
tree newval = bundle_sizes (make_ssa_name (sizetype), val);
if (val == wholeval)
wholeval = newval;
val = newval;
}
/* If the new value is a temporary variable, mark it for
reexamination. */
else if (TREE_CODE (val) == SSA_NAME && !SSA_NAME_DEF_STMT (val))
bitmap_set_bit (osi->reexamine, varno);
}
}
else
{
enum tree_code code = (object_size_type & OST_MINIMUM
? MIN_EXPR : MAX_EXPR);
val = size_binop (code, val, oldval);
wholeval = size_binop (code, wholeval, old_wholeval);
changed = (tree_int_cst_compare (val, oldval) != 0
|| tree_int_cst_compare (old_wholeval, wholeval) != 0);
}
object_sizes[object_size_type][varno].size = val;
object_sizes[object_size_type][varno].wholesize = wholeval;
return changed;
}
/* Set temporary SSA names for object size and whole size to resolve dependency
loops in dynamic size computation. */
static inline void
object_sizes_set_temp (struct object_size_info *osi, unsigned varno)
{
tree val = object_sizes_get (osi, varno);
if (size_initval_p (val, osi->object_size_type))
object_sizes_set (osi, varno,
make_ssa_name (sizetype),
make_ssa_name (sizetype));
}
/* Initialize OFFSET_LIMIT variable. */
static void
init_offset_limit (void)
{
if (tree_fits_uhwi_p (TYPE_MAX_VALUE (sizetype)))
offset_limit = tree_to_uhwi (TYPE_MAX_VALUE (sizetype));
else
offset_limit = -1;
offset_limit /= 2;
}
/* Bytes at end of the object with SZ from offset OFFSET. If WHOLESIZE is not
NULL_TREE, use it to get the net offset of the pointer, which should always
be positive and hence, be within OFFSET_LIMIT for valid offsets. */
static tree
size_for_offset (tree sz, tree offset, tree wholesize = NULL_TREE)
{
gcc_checking_assert (types_compatible_p (TREE_TYPE (sz), sizetype));
/* For negative offsets, if we have a distinct WHOLESIZE, use it to get a net
offset from the whole object. */
if (wholesize && wholesize != sz
&& (TREE_CODE (sz) != INTEGER_CST
|| TREE_CODE (wholesize) != INTEGER_CST
|| tree_int_cst_compare (sz, wholesize)))
{
gcc_checking_assert (types_compatible_p (TREE_TYPE (wholesize),
sizetype));
/* Restructure SZ - OFFSET as
WHOLESIZE - (WHOLESIZE + OFFSET - SZ) so that the offset part, i.e.
WHOLESIZE + OFFSET - SZ is only allowed to be positive. */
tree tmp = size_binop (MAX_EXPR, wholesize, sz);
offset = fold_build2 (PLUS_EXPR, sizetype, tmp, offset);
offset = fold_build2 (MINUS_EXPR, sizetype, offset, sz);
sz = tmp;
}
/* Safe to convert now, since a valid net offset should be non-negative. */
if (!useless_type_conversion_p (sizetype, TREE_TYPE (offset)))
offset = fold_convert (sizetype, offset);
if (TREE_CODE (offset) == INTEGER_CST)
{
if (integer_zerop (offset))
return sz;
/* Negative or too large offset even after adjustment, cannot be within
bounds of an object. */
if (compare_tree_int (offset, offset_limit) > 0)
return size_zero_node;
}
return size_binop (MINUS_EXPR, size_binop (MAX_EXPR, sz, offset), offset);
}
/* Compute offset of EXPR within VAR. Return error_mark_node
if unknown. */
static tree
compute_object_offset (const_tree expr, const_tree var)
{
enum tree_code code = PLUS_EXPR;
tree base, off, t;
if (expr == var)
return size_zero_node;
switch (TREE_CODE (expr))
{
case COMPONENT_REF:
base = compute_object_offset (TREE_OPERAND (expr, 0), var);
if (base == error_mark_node)
return base;
t = TREE_OPERAND (expr, 1);
off = size_binop (PLUS_EXPR, DECL_FIELD_OFFSET (t),
size_int (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (t))
/ BITS_PER_UNIT));
break;
case REALPART_EXPR:
CASE_CONVERT:
case VIEW_CONVERT_EXPR:
case NON_LVALUE_EXPR:
return compute_object_offset (TREE_OPERAND (expr, 0), var);
case IMAGPART_EXPR:
base = compute_object_offset (TREE_OPERAND (expr, 0), var);
if (base == error_mark_node)
return base;
off = TYPE_SIZE_UNIT (TREE_TYPE (expr));
break;
case ARRAY_REF:
base = compute_object_offset (TREE_OPERAND (expr, 0), var);
if (base == error_mark_node)
return base;
t = TREE_OPERAND (expr, 1);
tree low_bound, unit_size;
low_bound = array_ref_low_bound (CONST_CAST_TREE (expr));
unit_size = array_ref_element_size (CONST_CAST_TREE (expr));
if (! integer_zerop (low_bound))
t = fold_build2 (MINUS_EXPR, TREE_TYPE (t), t, low_bound);
if (TREE_CODE (t) == INTEGER_CST && tree_int_cst_sgn (t) < 0)
{
code = MINUS_EXPR;
t = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t);
}
t = fold_convert (sizetype, t);
off = size_binop (MULT_EXPR, unit_size, t);
break;
case MEM_REF:
gcc_assert (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR);
return wide_int_to_tree (sizetype, mem_ref_offset (expr));
default:
return error_mark_node;
}
return size_binop (code, base, off);
}
/* Returns the size of the object designated by DECL considering its
initializer if it either has one or if it would not affect its size,
otherwise the size of the object without the initializer when MIN
is true, else null. An object's initializer affects the object's
size if it's a struct type with a flexible array member. */
tree
decl_init_size (tree decl, bool min)
{
tree size = DECL_SIZE_UNIT (decl);
tree type = TREE_TYPE (decl);
if (TREE_CODE (type) != RECORD_TYPE)
return size;
tree last = last_field (type);
if (!last)
return size;
tree last_type = TREE_TYPE (last);
if (TREE_CODE (last_type) != ARRAY_TYPE
|| TYPE_SIZE (last_type))
return size;
/* Use TYPE_SIZE_UNIT; DECL_SIZE_UNIT sometimes reflects the size
of the initializer and sometimes doesn't. */
size = TYPE_SIZE_UNIT (type);
tree ref = build3 (COMPONENT_REF, type, decl, last, NULL_TREE);
tree compsize = component_ref_size (ref);
if (!compsize)
return min ? size : NULL_TREE;
/* The size includes tail padding and initializer elements. */
tree pos = byte_position (last);
size = fold_build2 (PLUS_EXPR, TREE_TYPE (size), pos, compsize);
return size;
}
/* Compute __builtin_object_size for PTR, which is a ADDR_EXPR.
OBJECT_SIZE_TYPE is the second argument from __builtin_object_size.
If unknown, return size_unknown (object_size_type). */
static bool
addr_object_size (struct object_size_info *osi, const_tree ptr,
int object_size_type, tree *psize, tree *pwholesize)
{
tree pt_var, pt_var_size = NULL_TREE, pt_var_wholesize = NULL_TREE;
tree var_size, bytes, wholebytes;
gcc_assert (TREE_CODE (ptr) == ADDR_EXPR);
/* Set to unknown and overwrite just before returning if the size
could be determined. */
*psize = size_unknown (object_size_type);
if (pwholesize)
*pwholesize = size_unknown (object_size_type);
pt_var = TREE_OPERAND (ptr, 0);
while (handled_component_p (pt_var))
pt_var = TREE_OPERAND (pt_var, 0);
if (!pt_var)
return false;
if (TREE_CODE (pt_var) == MEM_REF)
{
tree sz, wholesize;
if (!osi || (object_size_type & OST_SUBOBJECT) != 0
|| TREE_CODE (TREE_OPERAND (pt_var, 0)) != SSA_NAME)
{
compute_builtin_object_size (TREE_OPERAND (pt_var, 0),
object_size_type & ~OST_SUBOBJECT, &sz);
wholesize = sz;
}
else
{
tree var = TREE_OPERAND (pt_var, 0);
if (osi->pass == 0)
collect_object_sizes_for (osi, var);
if (bitmap_bit_p (computed[object_size_type],
SSA_NAME_VERSION (var)))
{
sz = object_sizes_get (osi, SSA_NAME_VERSION (var));
wholesize = object_sizes_get (osi, SSA_NAME_VERSION (var), true);
}
else
sz = wholesize = size_unknown (object_size_type);
}
if (!size_unknown_p (sz, object_size_type))
sz = size_for_offset (sz, TREE_OPERAND (pt_var, 1), wholesize);
if (!size_unknown_p (sz, object_size_type)
&& (TREE_CODE (sz) != INTEGER_CST
|| compare_tree_int (sz, offset_limit) < 0))
{
pt_var_size = sz;
pt_var_wholesize = wholesize;
}
}
else if (DECL_P (pt_var))
{
pt_var_size = pt_var_wholesize
= decl_init_size (pt_var, object_size_type & OST_MINIMUM);
if (!pt_var_size)
return false;
}
else if (TREE_CODE (pt_var) == STRING_CST)
pt_var_size = pt_var_wholesize = TYPE_SIZE_UNIT (TREE_TYPE (pt_var));
else
return false;
if (pt_var_size)
{
/* Validate the size determined above if it is a constant. */
if (TREE_CODE (pt_var_size) == INTEGER_CST
&& compare_tree_int (pt_var_size, offset_limit) >= 0)
return false;
}
if (pt_var != TREE_OPERAND (ptr, 0))
{
tree var;
if (object_size_type & OST_SUBOBJECT)
{
var = TREE_OPERAND (ptr, 0);
while (var != pt_var
&& TREE_CODE (var) != BIT_FIELD_REF
&& TREE_CODE (var) != COMPONENT_REF
&& TREE_CODE (var) != ARRAY_REF
&& TREE_CODE (var) != ARRAY_RANGE_REF
&& TREE_CODE (var) != REALPART_EXPR
&& TREE_CODE (var) != IMAGPART_EXPR)
var = TREE_OPERAND (var, 0);
if (var != pt_var && TREE_CODE (var) == ARRAY_REF)
var = TREE_OPERAND (var, 0);
if (! TYPE_SIZE_UNIT (TREE_TYPE (var))
|| ! tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (var)))
|| (pt_var_size && TREE_CODE (pt_var_size) == INTEGER_CST
&& tree_int_cst_lt (pt_var_size,
TYPE_SIZE_UNIT (TREE_TYPE (var)))))
var = pt_var;
else if (var != pt_var && TREE_CODE (pt_var) == MEM_REF)
{
tree v = var;
/* For &X->fld, compute object size only if fld isn't the last
field, as struct { int i; char c[1]; } is often used instead
of flexible array member. */
while (v && v != pt_var)
switch (TREE_CODE (v))
{
case ARRAY_REF:
if (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (v, 0))))
{
tree domain
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (v, 0)));
if (domain && TYPE_MAX_VALUE (domain))
{
v = NULL_TREE;
break;
}
}
v = TREE_OPERAND (v, 0);
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
v = NULL_TREE;
break;
case COMPONENT_REF:
if (TREE_CODE (TREE_TYPE (v)) != ARRAY_TYPE)
{
v = NULL_TREE;
break;
}
while (v != pt_var && TREE_CODE (v) == COMPONENT_REF)
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0)))
!= UNION_TYPE
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0)))
!= QUAL_UNION_TYPE)
break;
else
v = TREE_OPERAND (v, 0);
if (TREE_CODE (v) == COMPONENT_REF
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0)))
== RECORD_TYPE)
{
tree fld_chain = DECL_CHAIN (TREE_OPERAND (v, 1));
for (; fld_chain; fld_chain = DECL_CHAIN (fld_chain))
if (TREE_CODE (fld_chain) == FIELD_DECL)
break;
if (fld_chain)
{
v = NULL_TREE;
break;
}
v = TREE_OPERAND (v, 0);
}
while (v != pt_var && TREE_CODE (v) == COMPONENT_REF)
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0)))
!= UNION_TYPE
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0)))
!= QUAL_UNION_TYPE)
break;
else
v = TREE_OPERAND (v, 0);
if (v != pt_var)
v = NULL_TREE;
else
v = pt_var;
break;
default:
v = pt_var;
break;
}
if (v == pt_var)
var = pt_var;
}
}
else
var = pt_var;
if (var != pt_var)
{
var_size = TYPE_SIZE_UNIT (TREE_TYPE (var));
if (!TREE_CONSTANT (var_size))
var_size = get_or_create_ssa_default_def (cfun, var_size);
if (!var_size)
return false;
}
else if (!pt_var_size)
return false;
else
var_size = pt_var_size;
bytes = compute_object_offset (TREE_OPERAND (ptr, 0), var);
if (bytes != error_mark_node)
{
bytes = size_for_offset (var_size, bytes);
if (var != pt_var && pt_var_size && TREE_CODE (pt_var) == MEM_REF)
{
tree bytes2 = compute_object_offset (TREE_OPERAND (ptr, 0),
pt_var);
if (bytes2 != error_mark_node)
{
bytes2 = size_for_offset (pt_var_size, bytes2);
bytes = size_binop (MIN_EXPR, bytes, bytes2);
}
}
}
else
bytes = size_unknown (object_size_type);
wholebytes
= object_size_type & OST_SUBOBJECT ? var_size : pt_var_wholesize;
}
else if (!pt_var_size)
return false;
else
{
bytes = pt_var_size;
wholebytes = pt_var_wholesize;
}
if (!size_unknown_p (bytes, object_size_type)
&& size_valid_p (bytes, object_size_type)
&& !size_unknown_p (bytes, object_size_type)
&& size_valid_p (wholebytes, object_size_type))
{
*psize = bytes;
if (pwholesize)
*pwholesize = wholebytes;
return true;
}
return false;
}
/* Compute __builtin_object_size for CALL, which is a GIMPLE_CALL.
Handles calls to functions declared with attribute alloc_size.
OBJECT_SIZE_TYPE is the second argument from __builtin_object_size.
If unknown, return size_unknown (object_size_type). */
static tree
alloc_object_size (const gcall *call, int object_size_type)
{
gcc_assert (is_gimple_call (call));
tree calltype;
tree callfn = gimple_call_fndecl (call);
if (callfn)
calltype = TREE_TYPE (callfn);
else
calltype = gimple_call_fntype (call);
if (!calltype)
return size_unknown (object_size_type);
/* Set to positions of alloc_size arguments. */
int arg1 = -1, arg2 = -1;
tree alloc_size = lookup_attribute ("alloc_size",
TYPE_ATTRIBUTES (calltype));
if (alloc_size && TREE_VALUE (alloc_size))
{
tree p = TREE_VALUE (alloc_size);
arg1 = TREE_INT_CST_LOW (TREE_VALUE (p))-1;
if (TREE_CHAIN (p))
arg2 = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (p)))-1;
}
else if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
&& callfn && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callfn)))
arg1 = 0;
/* Non-const arguments are OK here, let the caller handle constness. */
if (arg1 < 0 || arg1 >= (int) gimple_call_num_args (call)
|| arg2 >= (int) gimple_call_num_args (call))
return size_unknown (object_size_type);
tree bytes = NULL_TREE;
if (arg2 >= 0)
bytes = size_binop (MULT_EXPR,
fold_convert (sizetype, gimple_call_arg (call, arg1)),
fold_convert (sizetype, gimple_call_arg (call, arg2)));
else if (arg1 >= 0)
bytes = fold_convert (sizetype, gimple_call_arg (call, arg1));
return bytes ? bytes : size_unknown (object_size_type);
}
/* If object size is propagated from one of function's arguments directly
to its return value, return that argument for GIMPLE_CALL statement CALL.
Otherwise return NULL. */
static tree
pass_through_call (const gcall *call)
{
unsigned rf = gimple_call_return_flags (call);
if (rf & ERF_RETURNS_ARG)
{
unsigned argnum = rf & ERF_RETURN_ARG_MASK;
if (argnum < gimple_call_num_args (call))
return gimple_call_arg (call, argnum);
}
/* __builtin_assume_aligned is intentionally not marked RET1. */
if (gimple_call_builtin_p (call, BUILT_IN_ASSUME_ALIGNED))
return gimple_call_arg (call, 0);
return NULL_TREE;
}
/* Emit PHI nodes for size expressions fo. */
static void
emit_phi_nodes (gimple *stmt, tree size, tree wholesize)
{
tree phires;
gphi *wholephi = NULL;
if (wholesize != size)
{
phires = TREE_VEC_ELT (wholesize, TREE_VEC_LENGTH (wholesize) - 1);
wholephi = create_phi_node (phires, gimple_bb (stmt));
}
phires = TREE_VEC_ELT (size, TREE_VEC_LENGTH (size) - 1);
gphi *phi = create_phi_node (phires, gimple_bb (stmt));
gphi *obj_phi = as_a <gphi *> (stmt);
gcc_checking_assert (TREE_CODE (wholesize) == TREE_VEC);
gcc_checking_assert (TREE_CODE (size) == TREE_VEC);
for (unsigned i = 0; i < gimple_phi_num_args (stmt); i++)
{
gimple_seq seq = NULL;
tree wsz = TREE_VEC_ELT (wholesize, i);
tree sz = TREE_VEC_ELT (size, i);
/* If we built an expression, we will need to build statements
and insert them on the edge right away. */
if (TREE_CODE (wsz) != SSA_NAME)
wsz = force_gimple_operand (wsz, &seq, true, NULL);
if (TREE_CODE (sz) != SSA_NAME)
{
gimple_seq s;
sz = force_gimple_operand (sz, &s, true, NULL);
gimple_seq_add_seq (&seq, s);
}
if (seq)
gsi_insert_seq_on_edge (gimple_phi_arg_edge (obj_phi, i), seq);
if (wholephi)
add_phi_arg (wholephi, wsz,
gimple_phi_arg_edge (obj_phi, i),
gimple_phi_arg_location (obj_phi, i));
add_phi_arg (phi, sz,
gimple_phi_arg_edge (obj_phi, i),
gimple_phi_arg_location (obj_phi, i));
}
}
/* Descend through EXPR and return size_unknown if it uses any SSA variable
object_size_set or object_size_set_temp generated, which turned out to be
size_unknown, as noted in UNKNOWNS. */
static tree
propagate_unknowns (object_size_info *osi, tree expr)
{
int object_size_type = osi->object_size_type;
switch (TREE_CODE (expr))
{
case SSA_NAME:
if (bitmap_bit_p (osi->unknowns, SSA_NAME_VERSION (expr)))
return size_unknown (object_size_type);
return expr;
case MIN_EXPR:
case MAX_EXPR:
{
tree res = propagate_unknowns (osi, TREE_OPERAND (expr, 0));
if (size_unknown_p (res, object_size_type))
return res;
res = propagate_unknowns (osi, TREE_OPERAND (expr, 1));
if (size_unknown_p (res, object_size_type))
return res;
return expr;
}
case MODIFY_EXPR:
{
tree res = propagate_unknowns (osi, TREE_OPERAND (expr, 1));
if (size_unknown_p (res, object_size_type))
return res;
return expr;
}
case TREE_VEC:
for (int i = 0; i < TREE_VEC_LENGTH (expr); i++)
{
tree res = propagate_unknowns (osi, TREE_VEC_ELT (expr, i));
if (size_unknown_p (res, object_size_type))
return res;
}
return expr;
case PLUS_EXPR:
case MINUS_EXPR:
{
tree res = propagate_unknowns (osi, TREE_OPERAND (expr, 0));
if (size_unknown_p (res, object_size_type))
return res;
return expr;
}
default:
return expr;
}
}
/* Walk through size expressions that need reexamination and generate
statements for them. */
static void
gimplify_size_expressions (object_size_info *osi)
{
int object_size_type = osi->object_size_type;
bitmap_iterator bi;
unsigned int i;
bool changed;
/* Step 1: Propagate unknowns into expressions. */
bitmap reexamine = BITMAP_ALLOC (NULL);
bitmap_copy (reexamine, osi->reexamine);
do
{
changed = false;
EXECUTE_IF_SET_IN_BITMAP (reexamine, 0, i, bi)
{
object_size cur = object_sizes_get_raw (osi, i);
if (size_unknown_p (propagate_unknowns (osi, cur.size),
object_size_type)
|| size_unknown_p (propagate_unknowns (osi, cur.wholesize),
object_size_type))
{
object_sizes_set (osi, i,
size_unknown (object_size_type),
size_unknown (object_size_type));
changed = true;
}
}
bitmap_copy (reexamine, osi->reexamine);
}
while (changed);
/* Release all unknowns. */
EXECUTE_IF_SET_IN_BITMAP (osi->unknowns, 0, i, bi)
release_ssa_name (ssa_name (i));
/* Expand all size expressions to put their definitions close to the objects
for which size is being computed. */
EXECUTE_IF_SET_IN_BITMAP (osi->reexamine, 0, i, bi)
{
gimple_seq seq = NULL;
object_size osize = object_sizes_get_raw (osi, i);
gimple *stmt = SSA_NAME_DEF_STMT (ssa_name (i));
enum gimple_code code = gimple_code (stmt);
/* PHI nodes need special attention. */
if (code == GIMPLE_PHI)
emit_phi_nodes (stmt, osize.size, osize.wholesize);
else
{
tree size_expr = NULL_TREE;
/* Bundle wholesize in with the size to gimplify if needed. */
if (osize.wholesize != osize.size
&& !size_usable_p (osize.wholesize))
size_expr = size_binop (COMPOUND_EXPR,
osize.wholesize,
osize.size);
else if (!size_usable_p (osize.size))
size_expr = osize.size;
if (size_expr)
{
gimple_stmt_iterator gsi;
if (code == GIMPLE_NOP)
gsi = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
else
gsi = gsi_for_stmt (stmt);
force_gimple_operand (size_expr, &seq, true, NULL);
gsi_insert_seq_before (&gsi, seq, GSI_CONTINUE_LINKING);
}
}
/* We're done, so replace the MODIFY_EXPRs with the SSA names. */
object_sizes_initialize (osi, i,
object_sizes_get (osi, i),
object_sizes_get (osi, i, true));
}
}
/* Compute __builtin_object_size value for PTR and set *PSIZE to
the resulting value. If the declared object is known and PDECL
is nonnull, sets *PDECL to the object's DECL. OBJECT_SIZE_TYPE
is the second argument to __builtin_object_size.
Returns true on success and false when the object size could not
be determined. */
bool
compute_builtin_object_size (tree ptr, int object_size_type,
tree *psize)
{
gcc_assert (object_size_type >= 0 && object_size_type < OST_END);
/* Set to unknown and overwrite just before returning if the size
could be determined. */
*psize = size_unknown (object_size_type);
if (! offset_limit)
init_offset_limit ();
if (TREE_CODE (ptr) == ADDR_EXPR)
return addr_object_size (NULL, ptr, object_size_type, psize);
if (TREE_CODE (ptr) != SSA_NAME
|| !POINTER_TYPE_P (TREE_TYPE (ptr)))
return false;
if (computed[object_size_type] == NULL)
{
if (optimize || object_size_type & OST_SUBOBJECT)
return false;
/* When not optimizing, rather than failing, make a small effort
to determine the object size without the full benefit of
the (costly) computation below. */
gimple *def = SSA_NAME_DEF_STMT (ptr);
if (gimple_code (def) == GIMPLE_ASSIGN)
{
tree_code code = gimple_assign_rhs_code (def);
if (code == POINTER_PLUS_EXPR)
{
tree offset = gimple_assign_rhs2 (def);
ptr = gimple_assign_rhs1 (def);
if (((object_size_type & OST_DYNAMIC)
|| (tree_fits_shwi_p (offset)
&& compare_tree_int (offset, offset_limit) <= 0))
&& compute_builtin_object_size (ptr, object_size_type,
psize))
{
*psize = size_for_offset (*psize, offset);
return true;
}
}
}
return false;
}
struct object_size_info osi;
osi.object_size_type = object_size_type;
if (!bitmap_bit_p (computed[object_size_type], SSA_NAME_VERSION (ptr)))
{
bitmap_iterator bi;
unsigned int i;
object_sizes_grow (object_size_type);
if (dump_file)
{
fprintf (dump_file, "Computing %s %s%sobject size for ",
(object_size_type & OST_MINIMUM) ? "minimum" : "maximum",
(object_size_type & OST_DYNAMIC) ? "dynamic " : "",
(object_size_type & OST_SUBOBJECT) ? "sub" : "");
print_generic_expr (dump_file, ptr, dump_flags);
fprintf (dump_file, ":\n");
}
osi.visited = BITMAP_ALLOC (NULL);
osi.reexamine = BITMAP_ALLOC (NULL);
if (object_size_type & OST_DYNAMIC)
osi.unknowns = BITMAP_ALLOC (NULL);
else
{
osi.depths = NULL;
osi.stack = NULL;
osi.tos = NULL;
}
/* First pass: walk UD chains, compute object sizes that
can be computed. osi.reexamine bitmap at the end will
contain what variables were found in dependency cycles
and therefore need to be reexamined. */
osi.pass = 0;
osi.changed = false;
collect_object_sizes_for (&osi, ptr);
if (object_size_type & OST_DYNAMIC)
{
osi.pass = 1;
gimplify_size_expressions (&osi);
BITMAP_FREE (osi.unknowns);
bitmap_clear (osi.reexamine);
}
/* Second pass: keep recomputing object sizes of variables
that need reexamination, until no object sizes are
increased or all object sizes are computed. */
if (! bitmap_empty_p (osi.reexamine))
{
bitmap reexamine = BITMAP_ALLOC (NULL);
/* If looking for minimum instead of maximum object size,
detect cases where a pointer is increased in a loop.
Although even without this detection pass 2 would eventually
terminate, it could take a long time. If a pointer is
increasing this way, we need to assume 0 object size.
E.g. p = &buf[0]; while (cond) p = p + 4; */
if (object_size_type & OST_MINIMUM)
{
osi.depths = XCNEWVEC (unsigned int, num_ssa_names);
osi.stack = XNEWVEC (unsigned int, num_ssa_names);
osi.tos = osi.stack;
osi.pass = 1;
/* collect_object_sizes_for is changing
osi.reexamine bitmap, so iterate over a copy. */
bitmap_copy (reexamine, osi.reexamine);
EXECUTE_IF_SET_IN_BITMAP (reexamine, 0, i, bi)
if (bitmap_bit_p (osi.reexamine, i))
check_for_plus_in_loops (&osi, ssa_name (i));
free (osi.depths);
osi.depths = NULL;
free (osi.stack);
osi.stack = NULL;
osi.tos = NULL;
}
do
{
osi.pass = 2;
osi.changed = false;
/* collect_object_sizes_for is changing
osi.reexamine bitmap, so iterate over a copy. */
bitmap_copy (reexamine, osi.reexamine);
EXECUTE_IF_SET_IN_BITMAP (reexamine, 0, i, bi)
if (bitmap_bit_p (osi.reexamine, i))
{
collect_object_sizes_for (&osi, ssa_name (i));
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Reexamining ");
print_generic_expr (dump_file, ssa_name (i),
dump_flags);
fprintf (dump_file, "\n");
}
}
}
while (osi.changed);
BITMAP_FREE (reexamine);
}
EXECUTE_IF_SET_IN_BITMAP (osi.reexamine, 0, i, bi)
bitmap_set_bit (computed[object_size_type], i);
/* Debugging dumps. */
if (dump_file)
{
EXECUTE_IF_SET_IN_BITMAP (osi.visited, 0, i, bi)
if (!object_sizes_unknown_p (object_size_type, i))
{
print_generic_expr (dump_file, ssa_name (i),
dump_flags);
fprintf (dump_file,
": %s %s%sobject size ",
((object_size_type & OST_MINIMUM) ? "minimum"
: "maximum"),
(object_size_type & OST_DYNAMIC) ? "dynamic " : "",
(object_size_type & OST_SUBOBJECT) ? "sub" : "");
print_generic_expr (dump_file, object_sizes_get (&osi, i),
dump_flags);
fprintf (dump_file, "\n");
}
}
BITMAP_FREE (osi.reexamine);
BITMAP_FREE (osi.visited);
}
*psize = object_sizes_get (&osi, SSA_NAME_VERSION (ptr));
return !size_unknown_p (*psize, object_size_type);
}
/* Compute object_sizes for PTR, defined to VALUE, which is not an SSA_NAME. */
static void
expr_object_size (struct object_size_info *osi, tree ptr, tree value)
{
int object_size_type = osi->object_size_type;
unsigned int varno = SSA_NAME_VERSION (ptr);
tree bytes, wholesize;
gcc_assert (!object_sizes_unknown_p (object_size_type, varno));
gcc_assert (osi->pass == 0);
if (TREE_CODE (value) == WITH_SIZE_EXPR)
value = TREE_OPERAND (value, 0);
/* Pointer variables should have been handled by merge_object_sizes. */
gcc_assert (TREE_CODE (value) != SSA_NAME
|| !POINTER_TYPE_P (TREE_TYPE (value)));
if (TREE_CODE (value) == ADDR_EXPR)
addr_object_size (osi, value, object_size_type, &bytes, &wholesize);
else
bytes = wholesize = size_unknown (object_size_type);
object_sizes_set (osi, varno, bytes, wholesize);
}
/* Compute object_sizes for PTR, defined to the result of a call. */
static void
call_object_size (struct object_size_info *osi, tree ptr, gcall *call)
{
int object_size_type = osi->object_size_type;
unsigned int varno = SSA_NAME_VERSION (ptr);
gcc_assert (is_gimple_call (call));
gcc_assert (!object_sizes_unknown_p (object_size_type, varno));
gcc_assert (osi->pass == 0);
tree bytes = alloc_object_size (call, object_size_type);
if (!size_valid_p (bytes, object_size_type))
bytes = size_unknown (object_size_type);
object_sizes_set (osi, varno, bytes, bytes);
}
/* Compute object_sizes for PTR, defined to an unknown value. */
static void
unknown_object_size (struct object_size_info *osi, tree ptr)
{
int object_size_type = osi->object_size_type;
unsigned int varno = SSA_NAME_VERSION (ptr);
gcc_checking_assert (!object_sizes_unknown_p (object_size_type, varno));
gcc_checking_assert (osi->pass == 0);
tree bytes = size_unknown (object_size_type);
object_sizes_set (osi, varno, bytes, bytes);
}
/* Merge object sizes of ORIG + OFFSET into DEST. Return true if
the object size might need reexamination later. */
static bool
merge_object_sizes (struct object_size_info *osi, tree dest, tree orig)
{
int object_size_type = osi->object_size_type;
unsigned int varno = SSA_NAME_VERSION (dest);
tree orig_bytes, wholesize;
if (object_sizes_unknown_p (object_size_type, varno))
return false;
if (osi->pass == 0)
collect_object_sizes_for (osi, orig);
orig_bytes = object_sizes_get (osi, SSA_NAME_VERSION (orig));
wholesize = object_sizes_get (osi, SSA_NAME_VERSION (orig), true);
if (object_sizes_set (osi, varno, orig_bytes, wholesize))
osi->changed = true;
return bitmap_bit_p (osi->reexamine, SSA_NAME_VERSION (orig));
}
/* Compute object_sizes for VAR, defined to the result of an assignment
with operator POINTER_PLUS_EXPR. Return true if the object size might
need reexamination later. */
static bool
plus_stmt_object_size (struct object_size_info *osi, tree var, gimple *stmt)
{
int object_size_type = osi->object_size_type;
unsigned int varno = SSA_NAME_VERSION (var);
tree bytes, wholesize;
tree op0, op1;
bool reexamine = false;
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
{
op0 = gimple_assign_rhs1 (stmt);
op1 = gimple_assign_rhs2 (stmt);
}
else if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
{
tree rhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
gcc_assert (TREE_CODE (rhs) == MEM_REF);
op0 = TREE_OPERAND (rhs, 0);
op1 = TREE_OPERAND (rhs, 1);
}
else
gcc_unreachable ();
if (object_sizes_unknown_p (object_size_type, varno))
return false;
/* Handle PTR + OFFSET here. */
if (size_valid_p (op1, object_size_type)
&& (TREE_CODE (op0) == SSA_NAME || TREE_CODE (op0) == ADDR_EXPR))
{
if (TREE_CODE (op0) == SSA_NAME)
{
if (osi->pass == 0)
collect_object_sizes_for (osi, op0);
bytes = object_sizes_get (osi, SSA_NAME_VERSION (op0));
wholesize = object_sizes_get (osi, SSA_NAME_VERSION (op0), true);
reexamine = bitmap_bit_p (osi->reexamine, SSA_NAME_VERSION (op0));
}
else
{
/* op0 will be ADDR_EXPR here. We should never come here during
reexamination. */
gcc_checking_assert (osi->pass == 0);
addr_object_size (osi, op0, object_size_type, &bytes, &wholesize);
}
/* size_for_offset doesn't make sense for -1 size, but it does for size 0
since the wholesize could be non-zero and a negative offset could give
a non-zero size. */
if (size_unknown_p (bytes, 0))
;
else if ((object_size_type & OST_DYNAMIC)
|| compare_tree_int (op1, offset_limit) <= 0)
bytes = size_for_offset (bytes, op1, wholesize);
/* In the static case, with a negative offset, the best estimate for
minimum size is size_unknown but for maximum size, the wholesize is a
better estimate than size_unknown. */
else if (object_size_type & OST_MINIMUM)
bytes = size_unknown (object_size_type);
else
bytes = wholesize;
}
else
bytes = wholesize = size_unknown (object_size_type);
if (!size_valid_p (bytes, object_size_type)
|| !size_valid_p (wholesize, object_size_type))
bytes = wholesize = size_unknown (object_size_type);
if (object_sizes_set (osi, varno, bytes, wholesize))
osi->changed = true;
return reexamine;
}
/* Compute the dynamic object size for VAR. Return the result in SIZE and
WHOLESIZE. */
static void
dynamic_object_size (struct object_size_info *osi, tree var,
tree *size, tree *wholesize)
{
int object_size_type = osi->object_size_type;
if (TREE_CODE (var) == SSA_NAME)
{
unsigned varno = SSA_NAME_VERSION (var);
collect_object_sizes_for (osi, var);
*size = object_sizes_get (osi, varno);
*wholesize = object_sizes_get (osi, varno, true);
}
else if (TREE_CODE (var) == ADDR_EXPR)
addr_object_size (osi, var, object_size_type, size, wholesize);
else
*size = *wholesize = size_unknown (object_size_type);
}
/* Compute object_sizes for VAR, defined at STMT, which is
a COND_EXPR. Return true if the object size might need reexamination
later. */
static bool
cond_expr_object_size (struct object_size_info *osi, tree var, gimple *stmt)
{
tree then_, else_;
int object_size_type = osi->object_size_type;
unsigned int varno = SSA_NAME_VERSION (var);
bool reexamine = false;
gcc_assert (gimple_assign_rhs_code (stmt) == COND_EXPR);
if (object_sizes_unknown_p (object_size_type, varno))
return false;
then_ = gimple_assign_rhs2 (stmt);
else_ = gimple_assign_rhs3 (stmt);
if (object_size_type & OST_DYNAMIC)
{
tree then_size, then_wholesize, else_size, else_wholesize;
dynamic_object_size (osi, then_, &then_size, &then_wholesize);
if (!size_unknown_p (then_size, object_size_type))
dynamic_object_size (osi, else_, &else_size, &else_wholesize);
tree cond_size, cond_wholesize;
if (size_unknown_p (then_size, object_size_type)
|| size_unknown_p (else_size, object_size_type))
cond_size = cond_wholesize = size_unknown (object_size_type);
else
{
cond_size = fold_build3 (COND_EXPR, sizetype,
gimple_assign_rhs1 (stmt),
then_size, else_size);
cond_wholesize = fold_build3 (COND_EXPR, sizetype,
gimple_assign_rhs1 (stmt),
then_wholesize, else_wholesize);
}
object_sizes_set (osi, varno, cond_size, cond_wholesize);
return false;
}
if (TREE_CODE (then_) == SSA_NAME)
reexamine |= merge_object_sizes (osi, var, then_);
else
expr_object_size (osi, var, then_);
if (object_sizes_unknown_p (object_size_type, varno))
return reexamine;
if (TREE_CODE (else_) == SSA_NAME)
reexamine |= merge_object_sizes (osi, var, else_);
else
expr_object_size (osi, var, else_);
return reexamine;
}
/* Find size of an object passed as a parameter to the function. */
static void
parm_object_size (struct object_size_info *osi, tree var)
{
int object_size_type = osi->object_size_type;
tree parm = SSA_NAME_VAR (var);
if (!(object_size_type & OST_DYNAMIC) || !POINTER_TYPE_P (TREE_TYPE (parm)))
{
expr_object_size (osi, var, parm);
return;
}
/* Look for access attribute. */
rdwr_map rdwr_idx;
tree fndecl = cfun->decl;
const attr_access *access = get_parm_access (rdwr_idx, parm, fndecl);
tree typesize = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (parm)));
tree sz = NULL_TREE;
/* If we have an explicit access attribute with a usable size argument... */
if (access && access->sizarg != UINT_MAX && !access->internal_p
/* ... and either PARM is void * or has a type that is complete and has a
constant size... */
&& ((typesize && poly_int_tree_p (typesize))
|| (!typesize && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))))
{
tree fnargs = DECL_ARGUMENTS (fndecl);
tree arg = NULL_TREE;
unsigned argpos = 0;
/* ... then walk through the parameters to pick the size parameter and
safely scale it by the type size if needed. */
for (arg = fnargs; arg; arg = TREE_CHAIN (arg), ++argpos)
if (argpos == access->sizarg && INTEGRAL_TYPE_P (TREE_TYPE (arg)))
{
sz = get_or_create_ssa_default_def (cfun, arg);
if (sz != NULL_TREE)
{
sz = fold_convert (sizetype, sz);
if (typesize)
sz = size_binop (MULT_EXPR, sz, typesize);
}
break;
}
}
if (!sz)
sz = size_unknown (object_size_type);
object_sizes_set (osi, SSA_NAME_VERSION (var), sz, sz);
}
/* Compute an object size expression for VAR, which is the result of a PHI
node. */
static void
phi_dynamic_object_size (struct object_size_info *osi, tree var)
{
int object_size_type = osi->object_size_type;
unsigned int varno = SSA_NAME_VERSION (var);
gimple *stmt = SSA_NAME_DEF_STMT (var);
unsigned i, num_args = gimple_phi_num_args (stmt);
bool wholesize_needed = false;
/* The extra space is for the PHI result at the end, which object_sizes_set
sets for us. */
tree sizes = make_tree_vec (num_args + 1);
tree wholesizes = make_tree_vec (num_args + 1);
/* Bail out if the size of any of the PHI arguments cannot be
determined. */
for (i = 0; i < num_args; i++)
{
edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt), i);
if (e->flags & EDGE_COMPLEX)
break;
tree rhs = gimple_phi_arg_def (stmt, i);
tree size, wholesize;
dynamic_object_size (osi, rhs, &size, &wholesize);
if (size_unknown_p (size, object_size_type))
break;
if (size != wholesize)
wholesize_needed = true;
TREE_VEC_ELT (sizes, i) = size;
TREE_VEC_ELT (wholesizes, i) = wholesize;
}
if (i < num_args)
{
ggc_free (sizes);
ggc_free (wholesizes);
sizes = wholesizes = size_unknown (object_size_type);
}
/* Point to the same TREE_VEC so that we can avoid emitting two PHI
nodes. */
else if (!wholesize_needed)
{
ggc_free (wholesizes);
wholesizes = sizes;
}
object_sizes_set (osi, varno, sizes, wholesizes);
}
/* Compute object sizes for VAR.
For ADDR_EXPR an object size is the number of remaining bytes
to the end of the object (where what is considered an object depends on
OSI->object_size_type).
For allocation GIMPLE_CALL like malloc or calloc object size is the size
of the allocation.
For POINTER_PLUS_EXPR where second operand is a constant integer,
object size is object size of the first operand minus the constant.
If the constant is bigger than the number of remaining bytes until the
end of the object, object size is 0, but if it is instead a pointer
subtraction, object size is size_unknown (object_size_type).
To differentiate addition from subtraction, ADDR_EXPR returns
size_unknown (object_size_type) for all objects bigger than half of the
address space, and constants less than half of the address space are
considered addition, while bigger constants subtraction.
For a memcpy like GIMPLE_CALL that always returns one of its arguments, the
object size is object size of that argument.
Otherwise, object size is the maximum of object sizes of variables
that it might be set to. */
static void
collect_object_sizes_for (struct object_size_info *osi, tree var)
{
int object_size_type = osi->object_size_type;
unsigned int varno = SSA_NAME_VERSION (var);
gimple *stmt;
bool reexamine;
if (bitmap_bit_p (computed[object_size_type], varno))
return;
if (osi->pass == 0)
{
if (bitmap_set_bit (osi->visited, varno))
{
/* Initialize to 0 for maximum size and M1U for minimum size so that
it gets immediately overridden. */
object_sizes_initialize (osi, varno,
size_initval (object_size_type),
size_initval (object_size_type));
}
else
{
/* Found a dependency loop. Mark the variable for later
re-examination. */
if (object_size_type & OST_DYNAMIC)
object_sizes_set_temp (osi, varno);
bitmap_set_bit (osi->reexamine, varno);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Found a dependency loop at ");
print_generic_expr (dump_file, var, dump_flags);
fprintf (dump_file, "\n");
}
return;
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Visiting use-def links for ");
print_generic_expr (dump_file, var, dump_flags);
fprintf (dump_file, "\n");
}
stmt = SSA_NAME_DEF_STMT (var);
reexamine = false;
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
{
tree rhs = gimple_assign_rhs1 (stmt);
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
|| (gimple_assign_rhs_code (stmt) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == MEM_REF))
reexamine = plus_stmt_object_size (osi, var, stmt);
else if (gimple_assign_rhs_code (stmt) == COND_EXPR)
reexamine = cond_expr_object_size (osi, var, stmt);
else if (gimple_assign_single_p (stmt)
|| gimple_assign_unary_nop_p (stmt))
{
if (TREE_CODE (rhs) == SSA_NAME
&& POINTER_TYPE_P (TREE_TYPE (rhs)))
reexamine = merge_object_sizes (osi, var, rhs);
else
expr_object_size (osi, var, rhs);
}
else
unknown_object_size (osi, var);
break;
}
case GIMPLE_CALL:
{
gcall *call_stmt = as_a <gcall *> (stmt);
tree arg = pass_through_call (call_stmt);
if (arg)
{
if (TREE_CODE (arg) == SSA_NAME
&& POINTER_TYPE_P (TREE_TYPE (arg)))
reexamine = merge_object_sizes (osi, var, arg);
else
expr_object_size (osi, var, arg);
}
else
call_object_size (osi, var, call_stmt);
break;
}
case GIMPLE_ASM:
/* Pointers defined by __asm__ statements can point anywhere. */
unknown_object_size (osi, var);
break;
case GIMPLE_NOP:
if (SSA_NAME_VAR (var)
&& TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL)
parm_object_size (osi, var);
else
/* Uninitialized SSA names point nowhere. */
unknown_object_size (osi, var);
break;
case GIMPLE_PHI:
{
unsigned i;
if (object_size_type & OST_DYNAMIC)
{
phi_dynamic_object_size (osi, var);
break;
}
for (i = 0; i < gimple_phi_num_args (stmt); i++)
{
tree rhs = gimple_phi_arg (stmt, i)->def;
if (object_sizes_unknown_p (object_size_type, varno))
break;
if (TREE_CODE (rhs) == SSA_NAME)
reexamine |= merge_object_sizes (osi, var, rhs);
else if (osi->pass == 0)
expr_object_size (osi, var, rhs);
}
break;
}
default:
gcc_unreachable ();
}
if (! reexamine || object_sizes_unknown_p (object_size_type, varno))
{
bitmap_set_bit (computed[object_size_type], varno);
if (!(object_size_type & OST_DYNAMIC))
bitmap_clear_bit (osi->reexamine, varno);
}
else
{
bitmap_set_bit (osi->reexamine, varno);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Need to reexamine ");
print_generic_expr (dump_file, var, dump_flags);
fprintf (dump_file, "\n");
}
}
}
/* Helper function for check_for_plus_in_loops. Called recursively
to detect loops. */
static void
check_for_plus_in_loops_1 (struct object_size_info *osi, tree var,
unsigned int depth)
{
gimple *stmt = SSA_NAME_DEF_STMT (var);
unsigned int varno = SSA_NAME_VERSION (var);
if (osi->depths[varno])
{
if (osi->depths[varno] != depth)
{
unsigned int *sp;
/* Found a loop involving pointer addition. */
for (sp = osi->tos; sp > osi->stack; )
{
--sp;
bitmap_clear_bit (osi->reexamine, *sp);
bitmap_set_bit (computed[osi->object_size_type], *sp);
object_sizes_set (osi, *sp, size_zero_node,
object_sizes_get (osi, *sp, true));
if (*sp == varno)
break;
}
}
return;
}
else if (! bitmap_bit_p (osi->reexamine, varno))
return;
osi->depths[varno] = depth;
*osi->tos++ = varno;
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
{
if ((gimple_assign_single_p (stmt)
|| gimple_assign_unary_nop_p (stmt))
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
{
tree rhs = gimple_assign_rhs1 (stmt);
check_for_plus_in_loops_1 (osi, rhs, depth);
}
else if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
{
tree basevar = gimple_assign_rhs1 (stmt);
tree cst = gimple_assign_rhs2 (stmt);
gcc_assert (TREE_CODE (cst) == INTEGER_CST);
check_for_plus_in_loops_1 (osi, basevar,
depth + !integer_zerop (cst));
}
else
gcc_unreachable ();
break;
}
case GIMPLE_CALL:
{
gcall *call_stmt = as_a <gcall *> (stmt);
tree arg = pass_through_call (call_stmt);
if (arg)
{
if (TREE_CODE (arg) == SSA_NAME)
check_for_plus_in_loops_1 (osi, arg, depth);
else
gcc_unreachable ();
}
break;
}
case GIMPLE_PHI:
{
unsigned i;
for (i = 0; i < gimple_phi_num_args (stmt); i++)
{
tree rhs = gimple_phi_arg (stmt, i)->def;
if (TREE_CODE (rhs) == SSA_NAME)
check_for_plus_in_loops_1 (osi, rhs, depth);
}
break;
}
default:
gcc_unreachable ();
}
osi->depths[varno] = 0;
osi->tos--;
}
/* Check if some pointer we are computing object size of is being increased
within a loop. If yes, assume all the SSA variables participating in
that loop have minimum object sizes 0. */
static void
check_for_plus_in_loops (struct object_size_info *osi, tree var)
{
gimple *stmt = SSA_NAME_DEF_STMT (var);
/* NOTE: In the pre-tuples code, we handled a CALL_EXPR here,
and looked for a POINTER_PLUS_EXPR in the pass-through
argument, if any. In GIMPLE, however, such an expression
is not a valid call operand. */
if (is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
{
tree basevar = gimple_assign_rhs1 (stmt);
tree cst = gimple_assign_rhs2 (stmt);
gcc_assert (TREE_CODE (cst) == INTEGER_CST);
/* Skip non-positive offsets. */
if (integer_zerop (cst) || compare_tree_int (cst, offset_limit) > 0)
return;
osi->depths[SSA_NAME_VERSION (basevar)] = 1;
*osi->tos++ = SSA_NAME_VERSION (basevar);
check_for_plus_in_loops_1 (osi, var, 2);
osi->depths[SSA_NAME_VERSION (basevar)] = 0;
osi->tos--;
}
}
/* Initialize data structures for the object size computation. */
void
init_object_sizes (void)
{
int object_size_type;
if (computed[0])
return;
for (object_size_type = 0; object_size_type < OST_END; object_size_type++)
{
object_sizes_grow (object_size_type);
computed[object_size_type] = BITMAP_ALLOC (NULL);
}
init_offset_limit ();
}
/* Destroy data structures after the object size computation. */
void
fini_object_sizes (void)
{
int object_size_type;
for (object_size_type = 0; object_size_type < OST_END; object_size_type++)
{
object_sizes_release (object_size_type);
BITMAP_FREE (computed[object_size_type]);
}
}
/* Dummy valueize function. */
static tree
do_valueize (tree t)
{
return t;
}
/* Process a __builtin_object_size or __builtin_dynamic_object_size call in
CALL early for subobjects before any object information is lost due to
optimization. Insert a MIN or MAX expression of the result and
__builtin_object_size at I so that it may be processed in the second pass.
__builtin_dynamic_object_size is treated like __builtin_object_size here
since we're only looking for constant bounds. */
static void
early_object_sizes_execute_one (gimple_stmt_iterator *i, gimple *call)
{
tree ost = gimple_call_arg (call, 1);
tree lhs = gimple_call_lhs (call);
gcc_assert (lhs != NULL_TREE);
if (!tree_fits_uhwi_p (ost))
return;
unsigned HOST_WIDE_INT object_size_type = tree_to_uhwi (ost);
tree ptr = gimple_call_arg (call, 0);
if (object_size_type != 1 && object_size_type != 3)
return;
if (TREE_CODE (ptr) != ADDR_EXPR && TREE_CODE (ptr) != SSA_NAME)
return;
tree type = TREE_TYPE (lhs);
tree bytes;
if (!compute_builtin_object_size (ptr, object_size_type, &bytes)
|| !int_fits_type_p (bytes, type))
return;
tree tem = make_ssa_name (type);
gimple_call_set_lhs (call, tem);
enum tree_code code = object_size_type & OST_MINIMUM ? MAX_EXPR : MIN_EXPR;
tree cst = fold_convert (type, bytes);
gimple *g = gimple_build_assign (lhs, code, tem, cst);
gsi_insert_after (i, g, GSI_NEW_STMT);
update_stmt (call);
}
/* Attempt to fold one __builtin_dynamic_object_size call in CALL into an
expression and insert it at I. Return true if it succeeds. */
static bool
dynamic_object_sizes_execute_one (gimple_stmt_iterator *i, gimple *call)
{
gcc_assert (gimple_call_num_args (call) == 2);
tree args[2];
args[0] = gimple_call_arg (call, 0);
args[1] = gimple_call_arg (call, 1);
location_t loc = EXPR_LOC_OR_LOC (args[0], input_location);
tree result_type = gimple_call_return_type (as_a <gcall *> (call));
tree result = fold_builtin_call_array (loc, result_type,
gimple_call_fn (call), 2, args);
if (!result)
return false;
/* fold_builtin_call_array may wrap the result inside a
NOP_EXPR. */
STRIP_NOPS (result);
gimplify_and_update_call_from_tree (i, result);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Simplified (dynamic)\n ");
print_gimple_stmt (dump_file, call, 0, dump_flags);
fprintf (dump_file, " to ");
print_generic_expr (dump_file, result);
fprintf (dump_file, "\n");
}
return true;
}
static unsigned int
object_sizes_execute (function *fun, bool early)
{
basic_block bb;
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator i;
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
{
tree result;
bool dynamic = false;
gimple *call = gsi_stmt (i);
if (gimple_call_builtin_p (call, BUILT_IN_DYNAMIC_OBJECT_SIZE))
dynamic = true;
else if (!gimple_call_builtin_p (call, BUILT_IN_OBJECT_SIZE))
continue;
tree lhs = gimple_call_lhs (call);
if (!lhs)
continue;
init_object_sizes ();
/* If early, only attempt to fold
__builtin_object_size (x, 1) and __builtin_object_size (x, 3),
and rather than folding the builtin to the constant if any,
create a MIN_EXPR or MAX_EXPR of the __builtin_object_size
call result and the computed constant. Do the same for
__builtin_dynamic_object_size too. */
if (early)
{
early_object_sizes_execute_one (&i, call);
continue;
}
if (dynamic)
{
if (dynamic_object_sizes_execute_one (&i, call))
continue;
else
{
/* If we could not find a suitable size expression, lower to
__builtin_object_size so that we may at least get a
constant lower or higher estimate. */
tree bosfn = builtin_decl_implicit (BUILT_IN_OBJECT_SIZE);
gimple_call_set_fndecl (call, bosfn);
update_stmt (call);
if (dump_file && (dump_flags & TDF_DETAILS))
{
print_generic_expr (dump_file, gimple_call_arg (call, 0),
dump_flags);
fprintf (dump_file,
": Retrying as __builtin_object_size\n");
}
}
}
result = gimple_fold_stmt_to_constant (call, do_valueize);
if (!result)
{
tree ost = gimple_call_arg (call, 1);
if (tree_fits_uhwi_p (ost))
{
unsigned HOST_WIDE_INT object_size_type = tree_to_uhwi (ost);
if (object_size_type & OST_MINIMUM)
result = build_zero_cst (size_type_node);
else if (object_size_type < OST_END)
result = fold_convert (size_type_node,
integer_minus_one_node);
}
if (!result)
continue;
}
gcc_assert (TREE_CODE (result) == INTEGER_CST);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Simplified\n ");
print_gimple_stmt (dump_file, call, 0, dump_flags);
fprintf (dump_file, " to ");
print_generic_expr (dump_file, result);
fprintf (dump_file, "\n");
}
/* Propagate into all uses and fold those stmts. */
if (!SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
replace_uses_by (lhs, result);
else
replace_call_with_value (&i, result);
}
}
fini_object_sizes ();
return 0;
}
/* Simple pass to optimize all __builtin_object_size () builtins. */
namespace {
const pass_data pass_data_object_sizes =
{
GIMPLE_PASS, /* type */
"objsz", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
PROP_objsz, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_object_sizes : public gimple_opt_pass
{
public:
pass_object_sizes (gcc::context *ctxt)
: gimple_opt_pass (pass_data_object_sizes, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_object_sizes (m_ctxt); }
virtual unsigned int execute (function *fun)
{
return object_sizes_execute (fun, false);
}
}; // class pass_object_sizes
} // anon namespace
gimple_opt_pass *
make_pass_object_sizes (gcc::context *ctxt)
{
return new pass_object_sizes (ctxt);
}
/* Early version of pass to optimize all __builtin_object_size () builtins. */
namespace {
const pass_data pass_data_early_object_sizes =
{
GIMPLE_PASS, /* type */
"early_objsz", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_early_object_sizes : public gimple_opt_pass
{
public:
pass_early_object_sizes (gcc::context *ctxt)
: gimple_opt_pass (pass_data_early_object_sizes, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *fun)
{
return object_sizes_execute (fun, true);
}
}; // class pass_object_sizes
} // anon namespace
gimple_opt_pass *
make_pass_early_object_sizes (gcc::context *ctxt)
{
return new pass_early_object_sizes (ctxt);
}
|