1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
|
/* Loop autoparallelization.
Copyright (C) 2006-2022 Free Software Foundation, Inc.
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-walk.h"
#include "stor-layout.h"
#include "tree-nested.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "langhooks.h"
#include "tree-vectorizer.h"
#include "tree-hasher.h"
#include "tree-parloops.h"
#include "omp-general.h"
#include "omp-low.h"
#include "tree-ssa.h"
#include "tree-ssa-alias.h"
#include "tree-eh.h"
#include "gomp-constants.h"
#include "tree-dfa.h"
#include "stringpool.h"
#include "attribs.h"
/* This pass tries to distribute iterations of loops into several threads.
The implementation is straightforward -- for each loop we test whether its
iterations are independent, and if it is the case (and some additional
conditions regarding profitability and correctness are satisfied), we
add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
machinery do its job.
The most of the complexity is in bringing the code into shape expected
by the omp expanders:
-- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
variable and that the exit test is at the start of the loop body
-- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
variables by accesses through pointers, and breaking up ssa chains
by storing the values incoming to the parallelized loop to a structure
passed to the new function as an argument (something similar is done
in omp gimplification, unfortunately only a small part of the code
can be shared).
TODO:
-- if there are several parallelizable loops in a function, it may be
possible to generate the threads just once (using synchronization to
ensure that cross-loop dependences are obeyed).
-- handling of common reduction patterns for outer loops.
More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
/*
Reduction handling:
currently we use code inspired by vect_force_simple_reduction to detect
reduction patterns.
The code transformation will be introduced by an example.
parloop
{
int sum=1;
for (i = 0; i < N; i++)
{
x[i] = i + 3;
sum+=x[i];
}
}
gimple-like code:
header_bb:
# sum_29 = PHI <sum_11(5), 1(3)>
# i_28 = PHI <i_12(5), 0(3)>
D.1795_8 = i_28 + 3;
x[i_28] = D.1795_8;
sum_11 = D.1795_8 + sum_29;
i_12 = i_28 + 1;
if (N_6(D) > i_12)
goto header_bb;
exit_bb:
# sum_21 = PHI <sum_11(4)>
printf (&"%d"[0], sum_21);
after reduction transformation (only relevant parts):
parloop
{
....
# Storing the initial value given by the user. #
.paral_data_store.32.sum.27 = 1;
#pragma omp parallel num_threads(4)
#pragma omp for schedule(static)
# The neutral element corresponding to the particular
reduction's operation, e.g. 0 for PLUS_EXPR,
1 for MULT_EXPR, etc. replaces the user's initial value. #
# sum.27_29 = PHI <sum.27_11, 0>
sum.27_11 = D.1827_8 + sum.27_29;
GIMPLE_OMP_CONTINUE
# Adding this reduction phi is done at create_phi_for_local_result() #
# sum.27_56 = PHI <sum.27_11, 0>
GIMPLE_OMP_RETURN
# Creating the atomic operation is done at
create_call_for_reduction_1() #
#pragma omp atomic_load
D.1839_59 = *&.paral_data_load.33_51->reduction.23;
D.1840_60 = sum.27_56 + D.1839_59;
#pragma omp atomic_store (D.1840_60);
GIMPLE_OMP_RETURN
# collecting the result after the join of the threads is done at
create_loads_for_reductions().
The value computed by the threads is loaded from the
shared struct. #
.paral_data_load.33_52 = &.paral_data_store.32;
sum_37 = .paral_data_load.33_52->sum.27;
sum_43 = D.1795_41 + sum_37;
exit bb:
# sum_21 = PHI <sum_43, sum_26>
printf (&"%d"[0], sum_21);
...
}
*/
/* Error reporting helper for parloops_is_simple_reduction below. GIMPLE
statement STMT is printed with a message MSG. */
static void
report_ploop_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
{
dump_printf_loc (msg_type, vect_location, "%s%G", msg, stmt);
}
/* DEF_STMT_INFO occurs in a loop that contains a potential reduction
operation. Return true if the results of DEF_STMT_INFO are something
that can be accumulated by such a reduction. */
static bool
parloops_valid_reduction_input_p (stmt_vec_info def_stmt_info)
{
return (is_gimple_assign (def_stmt_info->stmt)
|| is_gimple_call (def_stmt_info->stmt)
|| STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_induction_def
|| (gimple_code (def_stmt_info->stmt) == GIMPLE_PHI
&& STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_internal_def
&& !is_loop_header_bb_p (gimple_bb (def_stmt_info->stmt))));
}
/* Detect SLP reduction of the form:
#a1 = phi <a5, a0>
a2 = operation (a1)
a3 = operation (a2)
a4 = operation (a3)
a5 = operation (a4)
#a = phi <a5>
PHI is the reduction phi node (#a1 = phi <a5, a0> above)
FIRST_STMT is the first reduction stmt in the chain
(a2 = operation (a1)).
Return TRUE if a reduction chain was detected. */
static bool
parloops_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
gimple *first_stmt)
{
class loop *loop = (gimple_bb (phi))->loop_father;
class loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
enum tree_code code;
gimple *loop_use_stmt = NULL;
stmt_vec_info use_stmt_info;
tree lhs;
imm_use_iterator imm_iter;
use_operand_p use_p;
int nloop_uses, size = 0, n_out_of_loop_uses;
bool found = false;
if (loop != vect_loop)
return false;
auto_vec<stmt_vec_info, 8> reduc_chain;
lhs = PHI_RESULT (phi);
code = gimple_assign_rhs_code (first_stmt);
while (1)
{
nloop_uses = 0;
n_out_of_loop_uses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
/* Check if we got back to the reduction phi. */
if (use_stmt == phi)
{
loop_use_stmt = use_stmt;
found = true;
break;
}
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
{
loop_use_stmt = use_stmt;
nloop_uses++;
}
else
n_out_of_loop_uses++;
/* There are can be either a single use in the loop or two uses in
phi nodes. */
if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
return false;
}
if (found)
break;
/* We reached a statement with no loop uses. */
if (nloop_uses == 0)
return false;
/* This is a loop exit phi, and we haven't reached the reduction phi. */
if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
return false;
if (!is_gimple_assign (loop_use_stmt)
|| code != gimple_assign_rhs_code (loop_use_stmt)
|| !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
return false;
/* Insert USE_STMT into reduction chain. */
use_stmt_info = loop_info->lookup_stmt (loop_use_stmt);
reduc_chain.safe_push (use_stmt_info);
lhs = gimple_assign_lhs (loop_use_stmt);
size++;
}
if (!found || loop_use_stmt != phi || size < 2)
return false;
/* Swap the operands, if needed, to make the reduction operand be the second
operand. */
lhs = PHI_RESULT (phi);
for (unsigned i = 0; i < reduc_chain.length (); ++i)
{
gassign *next_stmt = as_a <gassign *> (reduc_chain[i]->stmt);
if (gimple_assign_rhs2 (next_stmt) == lhs)
{
tree op = gimple_assign_rhs1 (next_stmt);
stmt_vec_info def_stmt_info = loop_info->lookup_def (op);
/* Check that the other def is either defined in the loop
("vect_internal_def"), or it's an induction (defined by a
loop-header phi-node). */
if (def_stmt_info
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt))
&& parloops_valid_reduction_input_p (def_stmt_info))
{
lhs = gimple_assign_lhs (next_stmt);
continue;
}
return false;
}
else
{
tree op = gimple_assign_rhs2 (next_stmt);
stmt_vec_info def_stmt_info = loop_info->lookup_def (op);
/* Check that the other def is either defined in the loop
("vect_internal_def"), or it's an induction (defined by a
loop-header phi-node). */
if (def_stmt_info
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt))
&& parloops_valid_reduction_input_p (def_stmt_info))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: %G",
next_stmt);
swap_ssa_operands (next_stmt,
gimple_assign_rhs1_ptr (next_stmt),
gimple_assign_rhs2_ptr (next_stmt));
update_stmt (next_stmt);
}
else
return false;
}
lhs = gimple_assign_lhs (next_stmt);
}
/* Build up the actual chain. */
for (unsigned i = 0; i < reduc_chain.length () - 1; ++i)
{
REDUC_GROUP_FIRST_ELEMENT (reduc_chain[i]) = reduc_chain[0];
REDUC_GROUP_NEXT_ELEMENT (reduc_chain[i]) = reduc_chain[i+1];
}
REDUC_GROUP_FIRST_ELEMENT (reduc_chain.last ()) = reduc_chain[0];
REDUC_GROUP_NEXT_ELEMENT (reduc_chain.last ()) = NULL;
/* Save the chain for further analysis in SLP detection. */
LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (reduc_chain[0]);
REDUC_GROUP_SIZE (reduc_chain[0]) = size;
return true;
}
/* Return true if we need an in-order reduction for operation CODE
on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
overflow must wrap. */
static bool
parloops_needs_fold_left_reduction_p (tree type, tree_code code,
bool need_wrapping_integral_overflow)
{
/* CHECKME: check for !flag_finite_math_only too? */
if (SCALAR_FLOAT_TYPE_P (type))
switch (code)
{
case MIN_EXPR:
case MAX_EXPR:
return false;
default:
return !flag_associative_math;
}
if (INTEGRAL_TYPE_P (type))
{
if (!operation_no_trapping_overflow (type, code))
return true;
if (need_wrapping_integral_overflow
&& !TYPE_OVERFLOW_WRAPS (type)
&& operation_can_overflow (code))
return true;
return false;
}
if (SAT_FIXED_POINT_TYPE_P (type))
return true;
return false;
}
/* Function parloops_is_simple_reduction
(1) Detect a cross-iteration def-use cycle that represents a simple
reduction computation. We look for the following pattern:
loop_header:
a1 = phi < a0, a2 >
a3 = ...
a2 = operation (a3, a1)
or
a3 = ...
loop_header:
a1 = phi < a0, a2 >
a2 = operation (a3, a1)
such that:
1. operation is commutative and associative and it is safe to
change the order of the computation
2. no uses for a2 in the loop (a2 is used out of the loop)
3. no uses of a1 in the loop besides the reduction operation
4. no uses of a1 outside the loop.
Conditions 1,4 are tested here.
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
(2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
nested cycles.
(3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
reductions:
a1 = phi < a0, a2 >
inner loop (def of a3)
a2 = phi < a3 >
(4) Detect condition expressions, ie:
for (int i = 0; i < N; i++)
if (a[i] < val)
ret_val = a[i];
*/
static stmt_vec_info
parloops_is_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
bool *double_reduc,
bool need_wrapping_integral_overflow,
enum vect_reduction_type *v_reduc_type)
{
gphi *phi = as_a <gphi *> (phi_info->stmt);
class loop *loop = (gimple_bb (phi))->loop_father;
class loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
gimple *phi_use_stmt = NULL;
enum tree_code orig_code, code;
tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
tree type;
tree name;
imm_use_iterator imm_iter;
use_operand_p use_p;
bool phi_def;
*double_reduc = false;
*v_reduc_type = TREE_CODE_REDUCTION;
tree phi_name = PHI_RESULT (phi);
/* ??? If there are no uses of the PHI result the inner loop reduction
won't be detected as possibly double-reduction by vectorizable_reduction
because that tries to walk the PHI arg from the preheader edge which
can be constant. See PR60382. */
if (has_zero_uses (phi_name))
return NULL;
unsigned nphi_def_loop_uses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"intermediate value used outside loop.\n");
return NULL;
}
nphi_def_loop_uses++;
phi_use_stmt = use_stmt;
}
edge latch_e = loop_latch_edge (loop);
tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
if (TREE_CODE (loop_arg) != SSA_NAME)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction: not ssa_name: %T\n", loop_arg);
return NULL;
}
stmt_vec_info def_stmt_info = loop_info->lookup_def (loop_arg);
if (!def_stmt_info
|| !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt)))
return NULL;
if (gassign *def_stmt = dyn_cast <gassign *> (def_stmt_info->stmt))
{
name = gimple_assign_lhs (def_stmt);
phi_def = false;
}
else if (gphi *def_stmt = dyn_cast <gphi *> (def_stmt_info->stmt))
{
name = PHI_RESULT (def_stmt);
phi_def = true;
}
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction: unhandled reduction operation: %G",
def_stmt_info->stmt);
return NULL;
}
unsigned nlatch_def_loop_uses = 0;
auto_vec<gphi *, 3> lcphis;
bool inner_loop_of_double_reduc = false;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
nlatch_def_loop_uses++;
else
{
/* We can have more than one loop-closed PHI. */
lcphis.safe_push (as_a <gphi *> (use_stmt));
if (nested_in_vect_loop
&& (STMT_VINFO_DEF_TYPE (loop_info->lookup_stmt (use_stmt))
== vect_double_reduction_def))
inner_loop_of_double_reduc = true;
}
}
/* If this isn't a nested cycle or if the nested cycle reduction value
is used ouside of the inner loop we cannot handle uses of the reduction
value. */
if ((!nested_in_vect_loop || inner_loop_of_double_reduc)
&& (nlatch_def_loop_uses > 1 || nphi_def_loop_uses > 1))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction used in loop.\n");
return NULL;
}
/* If DEF_STMT is a phi node itself, we expect it to have a single argument
defined in the inner loop. */
if (phi_def)
{
gphi *def_stmt = as_a <gphi *> (def_stmt_info->stmt);
op1 = PHI_ARG_DEF (def_stmt, 0);
if (gimple_phi_num_args (def_stmt) != 1
|| TREE_CODE (op1) != SSA_NAME)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported phi node definition.\n");
return NULL;
}
gimple *def1 = SSA_NAME_DEF_STMT (op1);
if (gimple_bb (def1)
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
&& loop->inner
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
&& is_gimple_assign (def1)
&& is_a <gphi *> (phi_use_stmt)
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
{
if (dump_enabled_p ())
report_ploop_op (MSG_NOTE, def_stmt,
"detected double reduction: ");
*double_reduc = true;
return def_stmt_info;
}
return NULL;
}
/* If we are vectorizing an inner reduction we are executing that
in the original order only in case we are not dealing with a
double reduction. */
bool check_reduction = true;
if (flow_loop_nested_p (vect_loop, loop))
{
gphi *lcphi;
unsigned i;
check_reduction = false;
FOR_EACH_VEC_ELT (lcphis, i, lcphi)
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
check_reduction = true;
}
}
gassign *def_stmt = as_a <gassign *> (def_stmt_info->stmt);
code = orig_code = gimple_assign_rhs_code (def_stmt);
if (nested_in_vect_loop && !check_reduction)
{
/* FIXME: Even for non-reductions code generation is funneled
through vectorizable_reduction for the stmt defining the
PHI latch value. So we have to artificially restrict ourselves
for the supported operations. */
switch (get_gimple_rhs_class (code))
{
case GIMPLE_BINARY_RHS:
case GIMPLE_TERNARY_RHS:
break;
default:
/* Not supported by vectorizable_reduction. */
if (dump_enabled_p ())
report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"nested cycle: not handled operation: ");
return NULL;
}
if (dump_enabled_p ())
report_ploop_op (MSG_NOTE, def_stmt, "detected nested cycle: ");
return def_stmt_info;
}
/* We can handle "res -= x[i]", which is non-associative by
simply rewriting this into "res += -x[i]". Avoid changing
gimple instruction for the first simple tests and only do this
if we're allowed to change code at all. */
if (code == MINUS_EXPR && gimple_assign_rhs2 (def_stmt) != phi_name)
code = PLUS_EXPR;
if (code == COND_EXPR)
{
if (! nested_in_vect_loop)
*v_reduc_type = COND_REDUCTION;
op3 = gimple_assign_rhs1 (def_stmt);
if (COMPARISON_CLASS_P (op3))
{
op4 = TREE_OPERAND (op3, 1);
op3 = TREE_OPERAND (op3, 0);
}
if (op3 == phi_name || op4 == phi_name)
{
if (dump_enabled_p ())
report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: condition depends on previous"
" iteration: ");
return NULL;
}
op1 = gimple_assign_rhs2 (def_stmt);
op2 = gimple_assign_rhs3 (def_stmt);
}
else if (!commutative_tree_code (code) || !associative_tree_code (code))
{
if (dump_enabled_p ())
report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: not commutative/associative: ");
return NULL;
}
else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
{
op1 = gimple_assign_rhs1 (def_stmt);
op2 = gimple_assign_rhs2 (def_stmt);
}
else
{
if (dump_enabled_p ())
report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: not handled operation: ");
return NULL;
}
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
{
if (dump_enabled_p ())
report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: both uses not ssa_names: ");
return NULL;
}
type = TREE_TYPE (gimple_assign_lhs (def_stmt));
if ((TREE_CODE (op1) == SSA_NAME
&& !types_compatible_p (type,TREE_TYPE (op1)))
|| (TREE_CODE (op2) == SSA_NAME
&& !types_compatible_p (type, TREE_TYPE (op2)))
|| (op3 && TREE_CODE (op3) == SSA_NAME
&& !types_compatible_p (type, TREE_TYPE (op3)))
|| (op4 && TREE_CODE (op4) == SSA_NAME
&& !types_compatible_p (type, TREE_TYPE (op4))))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"reduction: multiple types: operation type: "
"%T, operands types: %T,%T",
type, TREE_TYPE (op1), TREE_TYPE (op2));
if (op3)
dump_printf (MSG_NOTE, ",%T", TREE_TYPE (op3));
if (op4)
dump_printf (MSG_NOTE, ",%T", TREE_TYPE (op4));
dump_printf (MSG_NOTE, "\n");
}
return NULL;
}
/* Check whether it's ok to change the order of the computation.
Generally, when vectorizing a reduction we change the order of the
computation. This may change the behavior of the program in some
cases, so we need to check that this is ok. One exception is when
vectorizing an outer-loop: the inner-loop is executed sequentially,
and therefore vectorizing reductions in the inner-loop during
outer-loop vectorization is safe. */
if (check_reduction
&& *v_reduc_type == TREE_CODE_REDUCTION
&& parloops_needs_fold_left_reduction_p (type, code,
need_wrapping_integral_overflow))
*v_reduc_type = FOLD_LEFT_REDUCTION;
/* Reduction is safe. We're dealing with one of the following:
1) integer arithmetic and no trapv
2) floating point arithmetic, and special flags permit this optimization
3) nested cycle (i.e., outer loop vectorization). */
stmt_vec_info def1_info = loop_info->lookup_def (op1);
stmt_vec_info def2_info = loop_info->lookup_def (op2);
if (code != COND_EXPR && !def1_info && !def2_info)
{
if (dump_enabled_p ())
report_ploop_op (MSG_NOTE, def_stmt,
"reduction: no defs for operands: ");
return NULL;
}
/* Check that one def is the reduction def, defined by PHI,
the other def is either defined in the loop ("vect_internal_def"),
or it's an induction (defined by a loop-header phi-node). */
if (def2_info
&& def2_info->stmt == phi
&& (code == COND_EXPR
|| !def1_info
|| !flow_bb_inside_loop_p (loop, gimple_bb (def1_info->stmt))
|| parloops_valid_reduction_input_p (def1_info)))
{
if (dump_enabled_p ())
report_ploop_op (MSG_NOTE, def_stmt, "detected reduction: ");
return def_stmt_info;
}
if (def1_info
&& def1_info->stmt == phi
&& (code == COND_EXPR
|| !def2_info
|| !flow_bb_inside_loop_p (loop, gimple_bb (def2_info->stmt))
|| parloops_valid_reduction_input_p (def2_info)))
{
if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
{
/* Check if we can swap operands (just for simplicity - so that
the rest of the code can assume that the reduction variable
is always the last (second) argument). */
if (code == COND_EXPR)
{
/* Swap cond_expr by inverting the condition. */
tree cond_expr = gimple_assign_rhs1 (def_stmt);
enum tree_code invert_code = ERROR_MARK;
enum tree_code cond_code = TREE_CODE (cond_expr);
if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
{
bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
invert_code = invert_tree_comparison (cond_code, honor_nans);
}
if (invert_code != ERROR_MARK)
{
TREE_SET_CODE (cond_expr, invert_code);
swap_ssa_operands (def_stmt,
gimple_assign_rhs2_ptr (def_stmt),
gimple_assign_rhs3_ptr (def_stmt));
}
else
{
if (dump_enabled_p ())
report_ploop_op (MSG_NOTE, def_stmt,
"detected reduction: cannot swap operands "
"for cond_expr");
return NULL;
}
}
else
swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
gimple_assign_rhs2_ptr (def_stmt));
if (dump_enabled_p ())
report_ploop_op (MSG_NOTE, def_stmt,
"detected reduction: need to swap operands: ");
}
else
{
if (dump_enabled_p ())
report_ploop_op (MSG_NOTE, def_stmt, "detected reduction: ");
}
return def_stmt_info;
}
/* Try to find SLP reduction chain. */
if (! nested_in_vect_loop
&& code != COND_EXPR
&& orig_code != MINUS_EXPR
&& parloops_is_slp_reduction (loop_info, phi, def_stmt))
{
if (dump_enabled_p ())
report_ploop_op (MSG_NOTE, def_stmt,
"reduction: detected reduction chain: ");
return def_stmt_info;
}
/* Look for the expression computing loop_arg from loop PHI result. */
if (check_reduction_path (vect_location, loop, phi, loop_arg, code))
return def_stmt_info;
if (dump_enabled_p ())
{
report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: unknown pattern: ");
}
return NULL;
}
/* Wrapper around vect_is_simple_reduction, which will modify code
in-place if it enables detection of more reductions. Arguments
as there. */
stmt_vec_info
parloops_force_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
bool *double_reduc,
bool need_wrapping_integral_overflow)
{
enum vect_reduction_type v_reduc_type;
stmt_vec_info def_info
= parloops_is_simple_reduction (loop_info, phi_info, double_reduc,
need_wrapping_integral_overflow,
&v_reduc_type);
if (def_info)
{
STMT_VINFO_REDUC_TYPE (phi_info) = v_reduc_type;
STMT_VINFO_REDUC_DEF (phi_info) = def_info;
STMT_VINFO_REDUC_TYPE (def_info) = v_reduc_type;
STMT_VINFO_REDUC_DEF (def_info) = phi_info;
}
return def_info;
}
/* Minimal number of iterations of a loop that should be executed in each
thread. */
#define MIN_PER_THREAD param_parloops_min_per_thread
/* Element of the hashtable, representing a
reduction in the current loop. */
struct reduction_info
{
gimple *reduc_stmt; /* reduction statement. */
gimple *reduc_phi; /* The phi node defining the reduction. */
enum tree_code reduction_code;/* code for the reduction operation. */
unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
result. */
gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
of the reduction variable when existing the loop. */
tree initial_value; /* The initial value of the reduction var before entering the loop. */
tree field; /* the name of the field in the parloop data structure intended for reduction. */
tree reduc_addr; /* The address of the reduction variable for
openacc reductions. */
tree init; /* reduction initialization value. */
gphi *new_phi; /* (helper field) Newly created phi node whose result
will be passed to the atomic operation. Represents
the local result each thread computed for the reduction
operation. */
};
/* Reduction info hashtable helpers. */
struct reduction_hasher : free_ptr_hash <reduction_info>
{
static inline hashval_t hash (const reduction_info *);
static inline bool equal (const reduction_info *, const reduction_info *);
};
/* Equality and hash functions for hashtab code. */
inline bool
reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
{
return (a->reduc_phi == b->reduc_phi);
}
inline hashval_t
reduction_hasher::hash (const reduction_info *a)
{
return a->reduc_version;
}
typedef hash_table<reduction_hasher> reduction_info_table_type;
static struct reduction_info *
reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
{
struct reduction_info tmpred, *red;
if (reduction_list->is_empty () || phi == NULL)
return NULL;
if (gimple_uid (phi) == (unsigned int)-1
|| gimple_uid (phi) == 0)
return NULL;
tmpred.reduc_phi = phi;
tmpred.reduc_version = gimple_uid (phi);
red = reduction_list->find (&tmpred);
gcc_assert (red == NULL || red->reduc_phi == phi);
return red;
}
/* Element of hashtable of names to copy. */
struct name_to_copy_elt
{
unsigned version; /* The version of the name to copy. */
tree new_name; /* The new name used in the copy. */
tree field; /* The field of the structure used to pass the
value. */
};
/* Name copies hashtable helpers. */
struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
{
static inline hashval_t hash (const name_to_copy_elt *);
static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
};
/* Equality and hash functions for hashtab code. */
inline bool
name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
{
return a->version == b->version;
}
inline hashval_t
name_to_copy_hasher::hash (const name_to_copy_elt *a)
{
return (hashval_t) a->version;
}
typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
matrix. Rather than use floats, we simply keep a single DENOMINATOR that
represents the denominator for every element in the matrix. */
typedef struct lambda_trans_matrix_s
{
lambda_matrix matrix;
int rowsize;
int colsize;
int denominator;
} *lambda_trans_matrix;
#define LTM_MATRIX(T) ((T)->matrix)
#define LTM_ROWSIZE(T) ((T)->rowsize)
#define LTM_COLSIZE(T) ((T)->colsize)
#define LTM_DENOMINATOR(T) ((T)->denominator)
/* Allocate a new transformation matrix. */
static lambda_trans_matrix
lambda_trans_matrix_new (int colsize, int rowsize,
struct obstack * lambda_obstack)
{
lambda_trans_matrix ret;
ret = (lambda_trans_matrix)
obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
LTM_ROWSIZE (ret) = rowsize;
LTM_COLSIZE (ret) = colsize;
LTM_DENOMINATOR (ret) = 1;
return ret;
}
/* Multiply a vector VEC by a matrix MAT.
MAT is an M*N matrix, and VEC is a vector with length N. The result
is stored in DEST which must be a vector of length M. */
static void
lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
lambda_vector vec, lambda_vector dest)
{
int i, j;
lambda_vector_clear (dest, m);
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
dest[i] += matrix[i][j] * vec[j];
}
/* Return true if TRANS is a legal transformation matrix that respects
the dependence vectors in DISTS and DIRS. The conservative answer
is false.
"Wolfe proves that a unimodular transformation represented by the
matrix T is legal when applied to a loop nest with a set of
lexicographically non-negative distance vectors RDG if and only if
for each vector d in RDG, (T.d >= 0) is lexicographically positive.
i.e.: if and only if it transforms the lexicographically positive
distance vectors to lexicographically positive vectors. Note that
a unimodular matrix must transform the zero vector (and only it) to
the zero vector." S.Muchnick. */
static bool
lambda_transform_legal_p (lambda_trans_matrix trans,
int nb_loops,
vec<ddr_p> dependence_relations)
{
unsigned int i, j;
lambda_vector distres;
struct data_dependence_relation *ddr;
gcc_assert (LTM_COLSIZE (trans) == nb_loops
&& LTM_ROWSIZE (trans) == nb_loops);
/* When there are no dependences, the transformation is correct. */
if (dependence_relations.length () == 0)
return true;
ddr = dependence_relations[0];
if (ddr == NULL)
return true;
/* When there is an unknown relation in the dependence_relations, we
know that it is no worth looking at this loop nest: give up. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
return false;
distres = lambda_vector_new (nb_loops);
/* For each distance vector in the dependence graph. */
FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
{
/* Don't care about relations for which we know that there is no
dependence, nor about read-read (aka. output-dependences):
these data accesses can happen in any order. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_known
|| (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
continue;
/* Conservatively answer: "this transformation is not valid". */
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
return false;
/* If the dependence could not be captured by a distance vector,
conservatively answer that the transform is not valid. */
if (DDR_NUM_DIST_VECTS (ddr) == 0)
return false;
/* Compute trans.dist_vect */
for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
{
lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
DDR_DIST_VECT (ddr, j), distres);
if (!lambda_vector_lexico_pos (distres, nb_loops))
return false;
}
}
return true;
}
/* Data dependency analysis. Returns true if the iterations of LOOP
are independent on each other (that is, if we can execute them
in parallel). */
static bool
loop_parallel_p (class loop *loop, struct obstack * parloop_obstack)
{
vec<ddr_p> dependence_relations;
vec<data_reference_p> datarefs;
lambda_trans_matrix trans;
bool ret = false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Considering loop %d\n", loop->num);
if (!loop->inner)
fprintf (dump_file, "loop is innermost\n");
else
fprintf (dump_file, "loop NOT innermost\n");
}
/* Check for problems with dependences. If the loop can be reversed,
the iterations are independent. */
auto_vec<loop_p, 3> loop_nest;
datarefs.create (10);
dependence_relations.create (100);
if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
&dependence_relations))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
ret = false;
goto end;
}
if (dump_file && (dump_flags & TDF_DETAILS))
dump_data_dependence_relations (dump_file, dependence_relations);
trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
LTM_MATRIX (trans)[0][0] = -1;
if (lambda_transform_legal_p (trans, 1, dependence_relations))
{
ret = true;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " SUCCESS: may be parallelized\n");
}
else if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" FAILED: data dependencies exist across iterations\n");
end:
free_dependence_relations (dependence_relations);
free_data_refs (datarefs);
return ret;
}
/* Return true when LOOP contains basic blocks marked with the
BB_IRREDUCIBLE_LOOP flag. */
static inline bool
loop_has_blocks_with_irreducible_flag (class loop *loop)
{
unsigned i;
basic_block *bbs = get_loop_body_in_dom_order (loop);
bool res = true;
for (i = 0; i < loop->num_nodes; i++)
if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
goto end;
res = false;
end:
free (bbs);
return res;
}
/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
to their addresses that can be reused. The address of OBJ is known to
be invariant in the whole function. Other needed statements are placed
right before GSI. */
static tree
take_address_of (tree obj, tree type, edge entry,
int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
{
int uid;
tree *var_p, name, addr;
gassign *stmt;
gimple_seq stmts;
/* Since the address of OBJ is invariant, the trees may be shared.
Avoid rewriting unrelated parts of the code. */
obj = unshare_expr (obj);
for (var_p = &obj;
handled_component_p (*var_p);
var_p = &TREE_OPERAND (*var_p, 0))
continue;
/* Canonicalize the access to base on a MEM_REF. */
if (DECL_P (*var_p))
*var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
/* Assign a canonical SSA name to the address of the base decl used
in the address and share it for all accesses and addresses based
on it. */
uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
int_tree_map elt;
elt.uid = uid;
int_tree_map *slot = decl_address->find_slot (elt, INSERT);
if (!slot->to)
{
if (gsi == NULL)
return NULL;
addr = TREE_OPERAND (*var_p, 0);
const char *obj_name
= get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
if (obj_name)
name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
else
name = make_ssa_name (TREE_TYPE (addr));
stmt = gimple_build_assign (name, addr);
gsi_insert_on_edge_immediate (entry, stmt);
slot->uid = uid;
slot->to = name;
}
else
name = slot->to;
/* Express the address in terms of the canonical SSA name. */
TREE_OPERAND (*var_p, 0) = name;
if (gsi == NULL)
return build_fold_addr_expr_with_type (obj, type);
name = force_gimple_operand (build_addr (obj),
&stmts, true, NULL_TREE);
if (!gimple_seq_empty_p (stmts))
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
if (!useless_type_conversion_p (type, TREE_TYPE (name)))
{
name = force_gimple_operand (fold_convert (type, name), &stmts, true,
NULL_TREE);
if (!gimple_seq_empty_p (stmts))
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
}
return name;
}
static tree
reduc_stmt_res (gimple *stmt)
{
return (gimple_code (stmt) == GIMPLE_PHI
? gimple_phi_result (stmt)
: gimple_assign_lhs (stmt));
}
/* Callback for htab_traverse. Create the initialization statement
for reduction described in SLOT, and place it at the preheader of
the loop described in DATA. */
int
initialize_reductions (reduction_info **slot, class loop *loop)
{
tree init;
tree type, arg;
edge e;
struct reduction_info *const reduc = *slot;
/* Create initialization in preheader:
reduction_variable = initialization value of reduction. */
/* In the phi node at the header, replace the argument coming
from the preheader with the reduction initialization value. */
/* Initialize the reduction. */
type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
reduc->reduction_code, type);
reduc->init = init;
/* Replace the argument representing the initialization value
with the initialization value for the reduction (neutral
element for the particular operation, e.g. 0 for PLUS_EXPR,
1 for MULT_EXPR, etc).
Keep the old value in a new variable "reduction_initial",
that will be taken in consideration after the parallel
computing is done. */
e = loop_preheader_edge (loop);
arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
/* Create new variable to hold the initial value. */
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
(reduc->reduc_phi, loop_preheader_edge (loop)), init);
reduc->initial_value = arg;
return 1;
}
struct elv_data
{
struct walk_stmt_info info;
edge entry;
int_tree_htab_type *decl_address;
gimple_stmt_iterator *gsi;
bool changed;
bool reset;
};
/* Eliminates references to local variables in *TP out of the single
entry single exit region starting at DTA->ENTRY.
DECL_ADDRESS contains addresses of the references that had their
address taken already. If the expression is changed, CHANGED is
set to true. Callback for walk_tree. */
static tree
eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
{
struct elv_data *const dta = (struct elv_data *) data;
tree t = *tp, var, addr, addr_type, type, obj;
if (DECL_P (t))
{
*walk_subtrees = 0;
if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
return NULL_TREE;
type = TREE_TYPE (t);
addr_type = build_pointer_type (type);
addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
dta->gsi);
if (dta->gsi == NULL && addr == NULL_TREE)
{
dta->reset = true;
return NULL_TREE;
}
*tp = build_simple_mem_ref (addr);
dta->changed = true;
return NULL_TREE;
}
if (TREE_CODE (t) == ADDR_EXPR)
{
/* ADDR_EXPR may appear in two contexts:
-- as a gimple operand, when the address taken is a function invariant
-- as gimple rhs, when the resulting address in not a function
invariant
We do not need to do anything special in the latter case (the base of
the memory reference whose address is taken may be replaced in the
DECL_P case). The former case is more complicated, as we need to
ensure that the new address is still a gimple operand. Thus, it
is not sufficient to replace just the base of the memory reference --
we need to move the whole computation of the address out of the
loop. */
if (!is_gimple_val (t))
return NULL_TREE;
*walk_subtrees = 0;
obj = TREE_OPERAND (t, 0);
var = get_base_address (obj);
if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
return NULL_TREE;
addr_type = TREE_TYPE (t);
addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
dta->gsi);
if (dta->gsi == NULL && addr == NULL_TREE)
{
dta->reset = true;
return NULL_TREE;
}
*tp = addr;
dta->changed = true;
return NULL_TREE;
}
if (!EXPR_P (t))
*walk_subtrees = 0;
return NULL_TREE;
}
/* Moves the references to local variables in STMT at *GSI out of the single
entry single exit region starting at ENTRY. DECL_ADDRESS contains
addresses of the references that had their address taken
already. */
static void
eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
int_tree_htab_type *decl_address)
{
struct elv_data dta;
gimple *stmt = gsi_stmt (*gsi);
memset (&dta.info, '\0', sizeof (dta.info));
dta.entry = entry;
dta.decl_address = decl_address;
dta.changed = false;
dta.reset = false;
if (gimple_debug_bind_p (stmt))
{
dta.gsi = NULL;
walk_tree (gimple_debug_bind_get_value_ptr (stmt),
eliminate_local_variables_1, &dta.info, NULL);
if (dta.reset)
{
gimple_debug_bind_reset_value (stmt);
dta.changed = true;
}
}
else if (gimple_clobber_p (stmt))
{
unlink_stmt_vdef (stmt);
stmt = gimple_build_nop ();
gsi_replace (gsi, stmt, false);
dta.changed = true;
}
else
{
dta.gsi = gsi;
walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
}
if (dta.changed)
update_stmt (stmt);
}
/* Eliminates the references to local variables from the single entry
single exit region between the ENTRY and EXIT edges.
This includes:
1) Taking address of a local variable -- these are moved out of the
region (and temporary variable is created to hold the address if
necessary).
2) Dereferencing a local variable -- these are replaced with indirect
references. */
static void
eliminate_local_variables (edge entry, edge exit)
{
basic_block bb;
auto_vec<basic_block, 3> body;
unsigned i;
gimple_stmt_iterator gsi;
bool has_debug_stmt = false;
int_tree_htab_type decl_address (10);
basic_block entry_bb = entry->src;
basic_block exit_bb = exit->dest;
gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
FOR_EACH_VEC_ELT (body, i, bb)
if (bb != entry_bb && bb != exit_bb)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
if (is_gimple_debug (gsi_stmt (gsi)))
{
if (gimple_debug_bind_p (gsi_stmt (gsi)))
has_debug_stmt = true;
}
else
eliminate_local_variables_stmt (entry, &gsi, &decl_address);
}
if (has_debug_stmt)
FOR_EACH_VEC_ELT (body, i, bb)
if (bb != entry_bb && bb != exit_bb)
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
if (gimple_debug_bind_p (gsi_stmt (gsi)))
eliminate_local_variables_stmt (entry, &gsi, &decl_address);
}
/* Returns true if expression EXPR is not defined between ENTRY and
EXIT, i.e. if all its operands are defined outside of the region. */
static bool
expr_invariant_in_region_p (edge entry, edge exit, tree expr)
{
basic_block entry_bb = entry->src;
basic_block exit_bb = exit->dest;
basic_block def_bb;
if (is_gimple_min_invariant (expr))
return true;
if (TREE_CODE (expr) == SSA_NAME)
{
def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
if (def_bb
&& dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
&& !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
return false;
return true;
}
return false;
}
/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
The copies are stored to NAME_COPIES, if NAME was already duplicated,
its duplicate stored in NAME_COPIES is returned.
Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
duplicated, storing the copies in DECL_COPIES. */
static tree
separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
int_tree_htab_type *decl_copies,
bool copy_name_p)
{
tree copy, var, var_copy;
unsigned idx, uid, nuid;
struct int_tree_map ielt;
struct name_to_copy_elt elt, *nelt;
name_to_copy_elt **slot;
int_tree_map *dslot;
if (TREE_CODE (name) != SSA_NAME)
return name;
idx = SSA_NAME_VERSION (name);
elt.version = idx;
slot = name_copies->find_slot_with_hash (&elt, idx,
copy_name_p ? INSERT : NO_INSERT);
if (slot && *slot)
return (*slot)->new_name;
if (copy_name_p)
{
copy = duplicate_ssa_name (name, NULL);
nelt = XNEW (struct name_to_copy_elt);
nelt->version = idx;
nelt->new_name = copy;
nelt->field = NULL_TREE;
*slot = nelt;
}
else
{
gcc_assert (!slot);
copy = name;
}
var = SSA_NAME_VAR (name);
if (!var)
return copy;
uid = DECL_UID (var);
ielt.uid = uid;
dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
if (!dslot->to)
{
var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
DECL_NOT_GIMPLE_REG_P (var_copy) = DECL_NOT_GIMPLE_REG_P (var);
dslot->uid = uid;
dslot->to = var_copy;
/* Ensure that when we meet this decl next time, we won't duplicate
it again. */
nuid = DECL_UID (var_copy);
ielt.uid = nuid;
dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
gcc_assert (!dslot->to);
dslot->uid = nuid;
dslot->to = var_copy;
}
else
var_copy = dslot->to;
replace_ssa_name_symbol (copy, var_copy);
return copy;
}
/* Finds the ssa names used in STMT that are defined outside the
region between ENTRY and EXIT and replaces such ssa names with
their duplicates. The duplicates are stored to NAME_COPIES. Base
decls of all ssa names used in STMT (including those defined in
LOOP) are replaced with the new temporary variables; the
replacement decls are stored in DECL_COPIES. */
static void
separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
name_to_copy_table_type *name_copies,
int_tree_htab_type *decl_copies)
{
use_operand_p use;
def_operand_p def;
ssa_op_iter oi;
tree name, copy;
bool copy_name_p;
FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
{
name = DEF_FROM_PTR (def);
gcc_assert (TREE_CODE (name) == SSA_NAME);
copy = separate_decls_in_region_name (name, name_copies, decl_copies,
false);
gcc_assert (copy == name);
}
FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
{
name = USE_FROM_PTR (use);
if (TREE_CODE (name) != SSA_NAME)
continue;
copy_name_p = expr_invariant_in_region_p (entry, exit, name);
copy = separate_decls_in_region_name (name, name_copies, decl_copies,
copy_name_p);
SET_USE (use, copy);
}
}
/* Finds the ssa names used in STMT that are defined outside the
region between ENTRY and EXIT and replaces such ssa names with
their duplicates. The duplicates are stored to NAME_COPIES. Base
decls of all ssa names used in STMT (including those defined in
LOOP) are replaced with the new temporary variables; the
replacement decls are stored in DECL_COPIES. */
static bool
separate_decls_in_region_debug (gimple *stmt,
name_to_copy_table_type *name_copies,
int_tree_htab_type *decl_copies)
{
use_operand_p use;
ssa_op_iter oi;
tree var, name;
struct int_tree_map ielt;
struct name_to_copy_elt elt;
name_to_copy_elt **slot;
int_tree_map *dslot;
if (gimple_debug_bind_p (stmt))
var = gimple_debug_bind_get_var (stmt);
else if (gimple_debug_source_bind_p (stmt))
var = gimple_debug_source_bind_get_var (stmt);
else
return true;
if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
return true;
gcc_assert (DECL_P (var) && SSA_VAR_P (var));
ielt.uid = DECL_UID (var);
dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
if (!dslot)
return true;
if (gimple_debug_bind_p (stmt))
gimple_debug_bind_set_var (stmt, dslot->to);
else if (gimple_debug_source_bind_p (stmt))
gimple_debug_source_bind_set_var (stmt, dslot->to);
FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
{
name = USE_FROM_PTR (use);
if (TREE_CODE (name) != SSA_NAME)
continue;
elt.version = SSA_NAME_VERSION (name);
slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
if (!slot)
{
gimple_debug_bind_reset_value (stmt);
update_stmt (stmt);
break;
}
SET_USE (use, (*slot)->new_name);
}
return false;
}
/* Callback for htab_traverse. Adds a field corresponding to the reduction
specified in SLOT. The type is passed in DATA. */
int
add_field_for_reduction (reduction_info **slot, tree type)
{
struct reduction_info *const red = *slot;
tree var = reduc_stmt_res (red->reduc_stmt);
tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
insert_field_into_struct (type, field);
red->field = field;
return 1;
}
/* Callback for htab_traverse. Adds a field corresponding to a ssa name
described in SLOT. The type is passed in DATA. */
int
add_field_for_name (name_to_copy_elt **slot, tree type)
{
struct name_to_copy_elt *const elt = *slot;
tree name = ssa_name (elt->version);
tree field = build_decl (UNKNOWN_LOCATION,
FIELD_DECL, SSA_NAME_IDENTIFIER (name),
TREE_TYPE (name));
insert_field_into_struct (type, field);
elt->field = field;
return 1;
}
/* Callback for htab_traverse. A local result is the intermediate result
computed by a single
thread, or the initial value in case no iteration was executed.
This function creates a phi node reflecting these values.
The phi's result will be stored in NEW_PHI field of the
reduction's data structure. */
int
create_phi_for_local_result (reduction_info **slot, class loop *loop)
{
struct reduction_info *const reduc = *slot;
edge e;
gphi *new_phi;
basic_block store_bb, continue_bb;
tree local_res;
location_t locus;
/* STORE_BB is the block where the phi
should be stored. It is the destination of the loop exit.
(Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
continue_bb = single_pred (loop->latch);
store_bb = FALLTHRU_EDGE (continue_bb)->dest;
/* STORE_BB has two predecessors. One coming from the loop
(the reduction's result is computed at the loop),
and another coming from a block preceding the loop,
when no iterations
are executed (the initial value should be taken). */
if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
e = EDGE_PRED (store_bb, 1);
else
e = EDGE_PRED (store_bb, 0);
tree lhs = reduc_stmt_res (reduc->reduc_stmt);
local_res = copy_ssa_name (lhs);
locus = gimple_location (reduc->reduc_stmt);
new_phi = create_phi_node (local_res, store_bb);
add_phi_arg (new_phi, reduc->init, e, locus);
add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
reduc->new_phi = new_phi;
return 1;
}
struct clsn_data
{
tree store;
tree load;
basic_block store_bb;
basic_block load_bb;
};
/* Callback for htab_traverse. Create an atomic instruction for the
reduction described in SLOT.
DATA annotates the place in memory the atomic operation relates to,
and the basic block it needs to be generated in. */
int
create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
{
struct reduction_info *const reduc = *slot;
gimple_stmt_iterator gsi;
tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
tree load_struct;
basic_block bb;
basic_block new_bb;
edge e;
tree t, addr, ref, x;
tree tmp_load, name;
gimple *load;
if (reduc->reduc_addr == NULL_TREE)
{
load_struct = build_simple_mem_ref (clsn_data->load);
t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
addr = build_addr (t);
}
else
{
/* Set the address for the atomic store. */
addr = reduc->reduc_addr;
/* Remove the non-atomic store '*addr = sum'. */
tree res = PHI_RESULT (reduc->keep_res);
use_operand_p use_p;
gimple *stmt;
bool single_use_p = single_imm_use (res, &use_p, &stmt);
gcc_assert (single_use_p);
replace_uses_by (gimple_vdef (stmt),
gimple_vuse (stmt));
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
gsi_remove (&gsi, true);
}
/* Create phi node. */
bb = clsn_data->load_bb;
gsi = gsi_last_bb (bb);
e = split_block (bb, gsi_stmt (gsi));
new_bb = e->dest;
tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
tmp_load = make_ssa_name (tmp_load);
load = gimple_build_omp_atomic_load (tmp_load, addr,
OMP_MEMORY_ORDER_RELAXED);
SSA_NAME_DEF_STMT (tmp_load) = load;
gsi = gsi_start_bb (new_bb);
gsi_insert_after (&gsi, load, GSI_NEW_STMT);
e = split_block (new_bb, load);
new_bb = e->dest;
gsi = gsi_start_bb (new_bb);
ref = tmp_load;
x = fold_build2 (reduc->reduction_code,
TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
PHI_RESULT (reduc->new_phi));
name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
GSI_CONTINUE_LINKING);
gimple *store = gimple_build_omp_atomic_store (name,
OMP_MEMORY_ORDER_RELAXED);
gsi_insert_after (&gsi, store, GSI_NEW_STMT);
return 1;
}
/* Create the atomic operation at the join point of the threads.
REDUCTION_LIST describes the reductions in the LOOP.
LD_ST_DATA describes the shared data structure where
shared data is stored in and loaded from. */
static void
create_call_for_reduction (class loop *loop,
reduction_info_table_type *reduction_list,
struct clsn_data *ld_st_data)
{
reduction_list->traverse <class loop *, create_phi_for_local_result> (loop);
/* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
basic_block continue_bb = single_pred (loop->latch);
ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
reduction_list
->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
}
/* Callback for htab_traverse. Loads the final reduction value at the
join point of all threads, and inserts it in the right place. */
int
create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
{
struct reduction_info *const red = *slot;
gimple *stmt;
gimple_stmt_iterator gsi;
tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
tree load_struct;
tree name;
tree x;
/* If there's no exit phi, the result of the reduction is unused. */
if (red->keep_res == NULL)
return 1;
gsi = gsi_after_labels (clsn_data->load_bb);
load_struct = build_simple_mem_ref (clsn_data->load);
load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
NULL_TREE);
x = load_struct;
name = PHI_RESULT (red->keep_res);
stmt = gimple_build_assign (name, x);
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
!gsi_end_p (gsi); gsi_next (&gsi))
if (gsi_stmt (gsi) == red->keep_res)
{
remove_phi_node (&gsi, false);
return 1;
}
gcc_unreachable ();
}
/* Load the reduction result that was stored in LD_ST_DATA.
REDUCTION_LIST describes the list of reductions that the
loads should be generated for. */
static void
create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
struct clsn_data *ld_st_data)
{
gimple_stmt_iterator gsi;
tree t;
gimple *stmt;
gsi = gsi_after_labels (ld_st_data->load_bb);
t = build_fold_addr_expr (ld_st_data->store);
stmt = gimple_build_assign (ld_st_data->load, t);
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
reduction_list
->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
}
/* Callback for htab_traverse. Store the neutral value for the
particular reduction's operation, e.g. 0 for PLUS_EXPR,
1 for MULT_EXPR, etc. into the reduction field.
The reduction is specified in SLOT. The store information is
passed in DATA. */
int
create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
{
struct reduction_info *const red = *slot;
tree t;
gimple *stmt;
gimple_stmt_iterator gsi;
tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
gsi = gsi_last_bb (clsn_data->store_bb);
t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
stmt = gimple_build_assign (t, red->initial_value);
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
return 1;
}
/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
store to a field of STORE in STORE_BB for the ssa name and its duplicate
specified in SLOT. */
int
create_loads_and_stores_for_name (name_to_copy_elt **slot,
struct clsn_data *clsn_data)
{
struct name_to_copy_elt *const elt = *slot;
tree t;
gimple *stmt;
gimple_stmt_iterator gsi;
tree type = TREE_TYPE (elt->new_name);
tree load_struct;
gsi = gsi_last_bb (clsn_data->store_bb);
t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
stmt = gimple_build_assign (t, ssa_name (elt->version));
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
gsi = gsi_last_bb (clsn_data->load_bb);
load_struct = build_simple_mem_ref (clsn_data->load);
t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
stmt = gimple_build_assign (elt->new_name, t);
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
return 1;
}
/* Moves all the variables used in LOOP and defined outside of it (including
the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
name) to a structure created for this purpose. The code
while (1)
{
use (a);
use (b);
}
is transformed this way:
bb0:
old.a = a;
old.b = b;
bb1:
a' = new->a;
b' = new->b;
while (1)
{
use (a');
use (b');
}
`old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
pointer `new' is intentionally not initialized (the loop will be split to a
separate function later, and `new' will be initialized from its arguments).
LD_ST_DATA holds information about the shared data structure used to pass
information among the threads. It is initialized here, and
gen_parallel_loop will pass it to create_call_for_reduction that
needs this information. REDUCTION_LIST describes the reductions
in LOOP. */
static void
separate_decls_in_region (edge entry, edge exit,
reduction_info_table_type *reduction_list,
tree *arg_struct, tree *new_arg_struct,
struct clsn_data *ld_st_data)
{
basic_block bb1 = split_edge (entry);
basic_block bb0 = single_pred (bb1);
name_to_copy_table_type name_copies (10);
int_tree_htab_type decl_copies (10);
unsigned i;
tree type, type_name, nvar;
gimple_stmt_iterator gsi;
struct clsn_data clsn_data;
auto_vec<basic_block, 3> body;
basic_block bb;
basic_block entry_bb = bb1;
basic_block exit_bb = exit->dest;
bool has_debug_stmt = false;
entry = single_succ_edge (entry_bb);
gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
FOR_EACH_VEC_ELT (body, i, bb)
{
if (bb != entry_bb && bb != exit_bb)
{
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
&name_copies, &decl_copies);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
has_debug_stmt = true;
else
separate_decls_in_region_stmt (entry, exit, stmt,
&name_copies, &decl_copies);
}
}
}
/* Now process debug bind stmts. We must not create decls while
processing debug stmts, so we defer their processing so as to
make sure we will have debug info for as many variables as
possible (all of those that were dealt with in the loop above),
and discard those for which we know there's nothing we can
do. */
if (has_debug_stmt)
FOR_EACH_VEC_ELT (body, i, bb)
if (bb != entry_bb && bb != exit_bb)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
{
if (separate_decls_in_region_debug (stmt, &name_copies,
&decl_copies))
{
gsi_remove (&gsi, true);
continue;
}
}
gsi_next (&gsi);
}
}
if (name_copies.is_empty () && reduction_list->is_empty ())
{
/* It may happen that there is nothing to copy (if there are only
loop carried and external variables in the loop). */
*arg_struct = NULL;
*new_arg_struct = NULL;
}
else
{
/* Create the type for the structure to store the ssa names to. */
type = lang_hooks.types.make_type (RECORD_TYPE);
type_name = build_decl (UNKNOWN_LOCATION,
TYPE_DECL, create_tmp_var_name (".paral_data"),
type);
TYPE_NAME (type) = type_name;
name_copies.traverse <tree, add_field_for_name> (type);
if (reduction_list && !reduction_list->is_empty ())
{
/* Create the fields for reductions. */
reduction_list->traverse <tree, add_field_for_reduction> (type);
}
layout_type (type);
/* Create the loads and stores. */
*arg_struct = create_tmp_var (type, ".paral_data_store");
nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
*new_arg_struct = make_ssa_name (nvar);
ld_st_data->store = *arg_struct;
ld_st_data->load = *new_arg_struct;
ld_st_data->store_bb = bb0;
ld_st_data->load_bb = bb1;
name_copies
.traverse <struct clsn_data *, create_loads_and_stores_for_name>
(ld_st_data);
/* Load the calculation from memory (after the join of the threads). */
if (reduction_list && !reduction_list->is_empty ())
{
reduction_list
->traverse <struct clsn_data *, create_stores_for_reduction>
(ld_st_data);
clsn_data.load = make_ssa_name (nvar);
clsn_data.load_bb = exit->dest;
clsn_data.store = ld_st_data->store;
create_final_loads_for_reduction (reduction_list, &clsn_data);
}
}
}
/* Returns true if FN was created to run in parallel. */
bool
parallelized_function_p (tree fndecl)
{
cgraph_node *node = cgraph_node::get (fndecl);
gcc_assert (node != NULL);
return node->parallelized_function;
}
/* Creates and returns an empty function that will receive the body of
a parallelized loop. */
static tree
create_loop_fn (location_t loc)
{
char buf[100];
char *tname;
tree decl, type, name, t;
struct function *act_cfun = cfun;
static unsigned loopfn_num;
loc = LOCATION_LOCUS (loc);
snprintf (buf, 100, "%s.$loopfn", current_function_name ());
ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
clean_symbol_name (tname);
name = get_identifier (tname);
type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
decl = build_decl (loc, FUNCTION_DECL, name, type);
TREE_STATIC (decl) = 1;
TREE_USED (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 0;
TREE_PUBLIC (decl) = 0;
DECL_UNINLINABLE (decl) = 1;
DECL_EXTERNAL (decl) = 0;
DECL_CONTEXT (decl) = NULL_TREE;
DECL_INITIAL (decl) = make_node (BLOCK);
BLOCK_SUPERCONTEXT (DECL_INITIAL (decl)) = decl;
t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
DECL_ARTIFICIAL (t) = 1;
DECL_IGNORED_P (t) = 1;
DECL_RESULT (decl) = t;
t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
ptr_type_node);
DECL_ARTIFICIAL (t) = 1;
DECL_ARG_TYPE (t) = ptr_type_node;
DECL_CONTEXT (t) = decl;
TREE_USED (t) = 1;
DECL_ARGUMENTS (decl) = t;
allocate_struct_function (decl, false);
/* The call to allocate_struct_function clobbers CFUN, so we need to restore
it. */
set_cfun (act_cfun);
return decl;
}
/* Replace uses of NAME by VAL in block BB. */
static void
replace_uses_in_bb_by (tree name, tree val, basic_block bb)
{
gimple *use_stmt;
imm_use_iterator imm_iter;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
{
if (gimple_bb (use_stmt) != bb)
continue;
use_operand_p use_p;
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, val);
}
}
/* Do transformation from:
<bb preheader>:
...
goto <bb header>
<bb header>:
ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
sum_a = PHI <sum_init (preheader), sum_b (latch)>
...
use (ivtmp_a)
...
sum_b = sum_a + sum_update
...
if (ivtmp_a < n)
goto <bb latch>;
else
goto <bb exit>;
<bb latch>:
ivtmp_b = ivtmp_a + 1;
goto <bb header>
<bb exit>:
sum_z = PHI <sum_b (cond[1]), ...>
[1] Where <bb cond> is single_pred (bb latch); In the simplest case,
that's <bb header>.
to:
<bb preheader>:
...
goto <bb newheader>
<bb header>:
ivtmp_a = PHI <ivtmp_c (latch)>
sum_a = PHI <sum_c (latch)>
...
use (ivtmp_a)
...
sum_b = sum_a + sum_update
...
goto <bb latch>;
<bb newheader>:
ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
sum_c = PHI <sum_init (preheader), sum_b (latch)>
if (ivtmp_c < n + 1)
goto <bb header>;
else
goto <bb newexit>;
<bb latch>:
ivtmp_b = ivtmp_a + 1;
goto <bb newheader>
<bb newexit>:
sum_y = PHI <sum_c (newheader)>
<bb exit>:
sum_z = PHI <sum_y (newexit), ...>
In unified diff format:
<bb preheader>:
...
- goto <bb header>
+ goto <bb newheader>
<bb header>:
- ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
- sum_a = PHI <sum_init (preheader), sum_b (latch)>
+ ivtmp_a = PHI <ivtmp_c (latch)>
+ sum_a = PHI <sum_c (latch)>
...
use (ivtmp_a)
...
sum_b = sum_a + sum_update
...
- if (ivtmp_a < n)
- goto <bb latch>;
+ goto <bb latch>;
+
+ <bb newheader>:
+ ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
+ sum_c = PHI <sum_init (preheader), sum_b (latch)>
+ if (ivtmp_c < n + 1)
+ goto <bb header>;
else
goto <bb exit>;
<bb latch>:
ivtmp_b = ivtmp_a + 1;
- goto <bb header>
+ goto <bb newheader>
+ <bb newexit>:
+ sum_y = PHI <sum_c (newheader)>
<bb exit>:
- sum_z = PHI <sum_b (cond[1]), ...>
+ sum_z = PHI <sum_y (newexit), ...>
Note: the example does not show any virtual phis, but these are handled more
or less as reductions.
Moves the exit condition of LOOP to the beginning of its header.
REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
bound. */
static void
transform_to_exit_first_loop_alt (class loop *loop,
reduction_info_table_type *reduction_list,
tree bound)
{
basic_block header = loop->header;
basic_block latch = loop->latch;
edge exit = single_dom_exit (loop);
basic_block exit_block = exit->dest;
gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
tree control = gimple_cond_lhs (cond_stmt);
edge e;
/* Rewriting virtuals into loop-closed ssa normal form makes this
transformation simpler. It also ensures that the virtuals are in
loop-closed ssa normal from after the transformation, which is required by
create_parallel_loop. */
rewrite_virtuals_into_loop_closed_ssa (loop);
/* Create the new_header block. */
basic_block new_header = split_block_before_cond_jump (exit->src);
edge edge_at_split = single_pred_edge (new_header);
/* Redirect entry edge to new_header. */
edge entry = loop_preheader_edge (loop);
e = redirect_edge_and_branch (entry, new_header);
gcc_assert (e == entry);
/* Redirect post_inc_edge to new_header. */
edge post_inc_edge = single_succ_edge (latch);
e = redirect_edge_and_branch (post_inc_edge, new_header);
gcc_assert (e == post_inc_edge);
/* Redirect post_cond_edge to header. */
edge post_cond_edge = single_pred_edge (latch);
e = redirect_edge_and_branch (post_cond_edge, header);
gcc_assert (e == post_cond_edge);
/* Redirect edge_at_split to latch. */
e = redirect_edge_and_branch (edge_at_split, latch);
gcc_assert (e == edge_at_split);
/* Set the new loop bound. */
gimple_cond_set_rhs (cond_stmt, bound);
update_stmt (cond_stmt);
/* Repair the ssa. */
vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
edge_var_map *vm;
gphi_iterator gsi;
int i;
for (gsi = gsi_start_phis (header), i = 0;
!gsi_end_p (gsi) && v->iterate (i, &vm);
gsi_next (&gsi), i++)
{
gphi *phi = gsi.phi ();
tree res_a = PHI_RESULT (phi);
/* Create new phi. */
tree res_c = copy_ssa_name (res_a, phi);
gphi *nphi = create_phi_node (res_c, new_header);
/* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
replace_uses_in_bb_by (res_a, res_c, new_header);
/* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
/* Replace sum_b with sum_c in exit phi. */
tree res_b = redirect_edge_var_map_def (vm);
replace_uses_in_bb_by (res_b, res_c, exit_block);
struct reduction_info *red = reduction_phi (reduction_list, phi);
gcc_assert (virtual_operand_p (res_a)
|| res_a == control
|| red != NULL);
if (red)
{
/* Register the new reduction phi. */
red->reduc_phi = nphi;
gimple_set_uid (red->reduc_phi, red->reduc_version);
}
}
gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
/* Set the preheader argument of the new phis to ivtmp/sum_init. */
flush_pending_stmts (entry);
/* Set the latch arguments of the new phis to ivtmp/sum_b. */
flush_pending_stmts (post_inc_edge);
basic_block new_exit_block = NULL;
if (!single_pred_p (exit->dest))
{
/* Create a new empty exit block, inbetween the new loop header and the
old exit block. The function separate_decls_in_region needs this block
to insert code that is active on loop exit, but not any other path. */
new_exit_block = split_edge (exit);
}
/* Insert and register the reduction exit phis. */
for (gphi_iterator gsi = gsi_start_phis (exit_block);
!gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
gphi *nphi = NULL;
tree res_z = PHI_RESULT (phi);
tree res_c;
if (new_exit_block != NULL)
{
/* Now that we have a new exit block, duplicate the phi of the old
exit block in the new exit block to preserve loop-closed ssa. */
edge succ_new_exit_block = single_succ_edge (new_exit_block);
edge pred_new_exit_block = single_pred_edge (new_exit_block);
tree res_y = copy_ssa_name (res_z, phi);
nphi = create_phi_node (res_y, new_exit_block);
res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
}
else
res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
if (virtual_operand_p (res_z))
continue;
gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
if (red != NULL)
red->keep_res = (nphi != NULL
? nphi
: phi);
}
/* We're going to cancel the loop at the end of gen_parallel_loop, but until
then we're still using some fields, so only bother about fields that are
still used: header and latch.
The loop has a new header bb, so we update it. The latch bb stays the
same. */
loop->header = new_header;
/* Recalculate dominance info. */
free_dominance_info (CDI_DOMINATORS);
calculate_dominance_info (CDI_DOMINATORS);
checking_verify_ssa (true, true);
}
/* Tries to moves the exit condition of LOOP to the beginning of its header
without duplication of the loop body. NIT is the number of iterations of the
loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
transformation is successful. */
static bool
try_transform_to_exit_first_loop_alt (class loop *loop,
reduction_info_table_type *reduction_list,
tree nit)
{
/* Check whether the latch contains a single statement. */
if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
return false;
/* Check whether the latch contains no phis. */
if (phi_nodes (loop->latch) != NULL)
return false;
/* Check whether the latch contains the loop iv increment. */
edge back = single_succ_edge (loop->latch);
edge exit = single_dom_exit (loop);
gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
tree control = gimple_cond_lhs (cond_stmt);
gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
return false;
/* Check whether there's no code between the loop condition and the latch. */
if (!single_pred_p (loop->latch)
|| single_pred (loop->latch) != exit->src)
return false;
tree alt_bound = NULL_TREE;
tree nit_type = TREE_TYPE (nit);
/* Figure out whether nit + 1 overflows. */
if (TREE_CODE (nit) == INTEGER_CST)
{
if (!tree_int_cst_equal (nit, TYPE_MAX_VALUE (nit_type)))
{
alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
nit, build_one_cst (nit_type));
gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
return true;
}
else
{
/* Todo: Figure out if we can trigger this, if it's worth to handle
optimally, and if we can handle it optimally. */
return false;
}
}
gcc_assert (TREE_CODE (nit) == SSA_NAME);
/* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
iv with base 0 and step 1 that is incremented in the latch, like this:
<bb header>:
# iv_1 = PHI <0 (preheader), iv_2 (latch)>
...
if (iv_1 < nit)
goto <bb latch>;
else
goto <bb exit>;
<bb latch>:
iv_2 = iv_1 + 1;
goto <bb header>;
The range of iv_1 is [0, nit]. The latch edge is taken for
iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
number of latch executions is equal to nit.
The function max_loop_iterations gives us the maximum number of latch
executions, so it gives us the maximum value of nit. */
widest_int nit_max;
if (!max_loop_iterations (loop, &nit_max))
return false;
/* Check if nit + 1 overflows. */
widest_int type_max = wi::to_widest (TYPE_MAX_VALUE (nit_type));
if (nit_max >= type_max)
return false;
gimple *def = SSA_NAME_DEF_STMT (nit);
/* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
if (def
&& is_gimple_assign (def)
&& gimple_assign_rhs_code (def) == PLUS_EXPR)
{
tree op1 = gimple_assign_rhs1 (def);
tree op2 = gimple_assign_rhs2 (def);
if (integer_minus_onep (op1))
alt_bound = op2;
else if (integer_minus_onep (op2))
alt_bound = op1;
}
/* If not found, insert nit + 1. */
if (alt_bound == NULL_TREE)
{
alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
build_int_cst_type (nit_type, 1));
gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
alt_bound
= force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
GSI_CONTINUE_LINKING);
}
transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
return true;
}
/* Moves the exit condition of LOOP to the beginning of its header. NIT is the
number of iterations of the loop. REDUCTION_LIST describes the reductions in
LOOP. */
static void
transform_to_exit_first_loop (class loop *loop,
reduction_info_table_type *reduction_list,
tree nit)
{
basic_block *bbs, *nbbs, ex_bb, orig_header;
unsigned n;
bool ok;
edge exit = single_dom_exit (loop), hpred;
tree control, control_name, res, t;
gphi *phi, *nphi;
gassign *stmt;
gcond *cond_stmt, *cond_nit;
tree nit_1;
split_block_after_labels (loop->header);
orig_header = single_succ (loop->header);
hpred = single_succ_edge (loop->header);
cond_stmt = as_a <gcond *> (last_stmt (exit->src));
control = gimple_cond_lhs (cond_stmt);
gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
/* Make sure that we have phi nodes on exit for all loop header phis
(create_parallel_loop requires that). */
for (gphi_iterator gsi = gsi_start_phis (loop->header);
!gsi_end_p (gsi);
gsi_next (&gsi))
{
phi = gsi.phi ();
res = PHI_RESULT (phi);
t = copy_ssa_name (res, phi);
SET_PHI_RESULT (phi, t);
nphi = create_phi_node (res, orig_header);
add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
if (res == control)
{
gimple_cond_set_lhs (cond_stmt, t);
update_stmt (cond_stmt);
control = t;
}
}
bbs = get_loop_body_in_dom_order (loop);
for (n = 0; bbs[n] != exit->src; n++)
continue;
nbbs = XNEWVEC (basic_block, n);
ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
bbs + 1, n, nbbs);
gcc_assert (ok);
free (bbs);
ex_bb = nbbs[0];
free (nbbs);
/* Other than reductions, the only gimple reg that should be copied
out of the loop is the control variable. */
exit = single_dom_exit (loop);
control_name = NULL_TREE;
for (gphi_iterator gsi = gsi_start_phis (ex_bb);
!gsi_end_p (gsi); )
{
phi = gsi.phi ();
res = PHI_RESULT (phi);
if (virtual_operand_p (res))
{
gsi_next (&gsi);
continue;
}
/* Check if it is a part of reduction. If it is,
keep the phi at the reduction's keep_res field. The
PHI_RESULT of this phi is the resulting value of the reduction
variable when exiting the loop. */
if (!reduction_list->is_empty ())
{
struct reduction_info *red;
tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
if (red)
{
red->keep_res = phi;
gsi_next (&gsi);
continue;
}
}
gcc_assert (control_name == NULL_TREE
&& SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
control_name = res;
remove_phi_node (&gsi, false);
}
gcc_assert (control_name != NULL_TREE);
/* Initialize the control variable to number of iterations
according to the rhs of the exit condition. */
gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
cond_nit = as_a <gcond *> (last_stmt (exit->src));
nit_1 = gimple_cond_rhs (cond_nit);
nit_1 = force_gimple_operand_gsi (&gsi,
fold_convert (TREE_TYPE (control_name), nit_1),
false, NULL_TREE, false, GSI_SAME_STMT);
stmt = gimple_build_assign (control_name, nit_1);
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
}
/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
NEW_DATA is the variable that should be initialized from the argument
of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
that number is to be determined later. */
static void
create_parallel_loop (class loop *loop, tree loop_fn, tree data,
tree new_data, unsigned n_threads, location_t loc,
bool oacc_kernels_p)
{
gimple_stmt_iterator gsi;
basic_block for_bb, ex_bb, continue_bb;
tree t, param;
gomp_parallel *omp_par_stmt;
gimple *omp_return_stmt1, *omp_return_stmt2;
gimple *phi;
gcond *cond_stmt;
gomp_for *for_stmt;
gomp_continue *omp_cont_stmt;
tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
edge exit, nexit, guard, end, e;
if (oacc_kernels_p)
{
gcc_checking_assert (lookup_attribute ("oacc kernels",
DECL_ATTRIBUTES (cfun->decl)));
/* Indicate to later processing that this is a parallelized OpenACC
kernels construct. */
DECL_ATTRIBUTES (cfun->decl)
= tree_cons (get_identifier ("oacc kernels parallelized"),
NULL_TREE, DECL_ATTRIBUTES (cfun->decl));
}
else
{
/* Prepare the GIMPLE_OMP_PARALLEL statement. */
basic_block bb = loop_preheader_edge (loop)->src;
basic_block paral_bb = single_pred (bb);
gsi = gsi_last_bb (paral_bb);
gcc_checking_assert (n_threads != 0);
t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
OMP_CLAUSE_NUM_THREADS_EXPR (t)
= build_int_cst (integer_type_node, n_threads);
omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
gimple_set_location (omp_par_stmt, loc);
gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
/* Initialize NEW_DATA. */
if (data)
{
gassign *assign_stmt;
gsi = gsi_after_labels (bb);
param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
assign_stmt = gimple_build_assign (new_data,
fold_convert (TREE_TYPE (new_data), param));
gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
}
/* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
bb = split_loop_exit_edge (single_dom_exit (loop));
gsi = gsi_last_bb (bb);
omp_return_stmt1 = gimple_build_omp_return (false);
gimple_set_location (omp_return_stmt1, loc);
gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
}
/* Extract data for GIMPLE_OMP_FOR. */
gcc_assert (loop->header == single_dom_exit (loop)->src);
cond_stmt = as_a <gcond *> (last_stmt (loop->header));
cvar = gimple_cond_lhs (cond_stmt);
cvar_base = SSA_NAME_VAR (cvar);
phi = SSA_NAME_DEF_STMT (cvar);
cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
initvar = copy_ssa_name (cvar);
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
initvar);
cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
gsi = gsi_last_nondebug_bb (loop->latch);
gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
gsi_remove (&gsi, true);
/* Prepare cfg. */
for_bb = split_edge (loop_preheader_edge (loop));
ex_bb = split_loop_exit_edge (single_dom_exit (loop));
extract_true_false_edges_from_block (loop->header, &nexit, &exit);
gcc_assert (exit == single_dom_exit (loop));
guard = make_edge (for_bb, ex_bb, 0);
/* FIXME: What is the probability? */
guard->probability = profile_probability::guessed_never ();
/* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
loop->latch = split_edge (single_succ_edge (loop->latch));
single_pred_edge (loop->latch)->flags = 0;
end = make_single_succ_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
rescan_loop_exit (end, true, false);
for (gphi_iterator gpi = gsi_start_phis (ex_bb);
!gsi_end_p (gpi); gsi_next (&gpi))
{
location_t locus;
gphi *phi = gpi.phi ();
tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
gimple *def_stmt = SSA_NAME_DEF_STMT (def);
/* If the exit phi is not connected to a header phi in the same loop, this
value is not modified in the loop, and we're done with this phi. */
if (!(gimple_code (def_stmt) == GIMPLE_PHI
&& gimple_bb (def_stmt) == loop->header))
{
locus = gimple_phi_arg_location_from_edge (phi, exit);
add_phi_arg (phi, def, guard, locus);
add_phi_arg (phi, def, end, locus);
continue;
}
gphi *stmt = as_a <gphi *> (def_stmt);
def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
locus = gimple_phi_arg_location_from_edge (stmt,
loop_preheader_edge (loop));
add_phi_arg (phi, def, guard, locus);
def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
add_phi_arg (phi, def, end, locus);
}
e = redirect_edge_and_branch (exit, nexit->dest);
PENDING_STMT (e) = NULL;
/* Emit GIMPLE_OMP_FOR. */
if (oacc_kernels_p)
/* Parallelized OpenACC kernels constructs use gang parallelism. See also
omp-offload.cc:execute_oacc_loop_designation. */
t = build_omp_clause (loc, OMP_CLAUSE_GANG);
else
{
t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
int chunk_size = param_parloops_chunk_size;
switch (param_parloops_schedule)
{
case PARLOOPS_SCHEDULE_STATIC:
OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
break;
case PARLOOPS_SCHEDULE_DYNAMIC:
OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
break;
case PARLOOPS_SCHEDULE_GUIDED:
OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
break;
case PARLOOPS_SCHEDULE_AUTO:
OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
chunk_size = 0;
break;
case PARLOOPS_SCHEDULE_RUNTIME:
OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
chunk_size = 0;
break;
default:
gcc_unreachable ();
}
if (chunk_size != 0)
OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
= build_int_cst (integer_type_node, chunk_size);
}
for_stmt = gimple_build_omp_for (NULL,
(oacc_kernels_p
? GF_OMP_FOR_KIND_OACC_LOOP
: GF_OMP_FOR_KIND_FOR),
t, 1, NULL);
gimple_cond_set_lhs (cond_stmt, cvar_base);
type = TREE_TYPE (cvar);
gimple_set_location (for_stmt, loc);
gimple_omp_for_set_index (for_stmt, 0, initvar);
gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
cvar_base,
build_int_cst (type, 1)));
gsi = gsi_last_bb (for_bb);
gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
SSA_NAME_DEF_STMT (initvar) = for_stmt;
/* Emit GIMPLE_OMP_CONTINUE. */
continue_bb = single_pred (loop->latch);
gsi = gsi_last_bb (continue_bb);
omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
gimple_set_location (omp_cont_stmt, loc);
gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
/* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
gsi = gsi_last_bb (ex_bb);
omp_return_stmt2 = gimple_build_omp_return (true);
gimple_set_location (omp_return_stmt2, loc);
gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
/* After the above dom info is hosed. Re-compute it. */
free_dominance_info (CDI_DOMINATORS);
calculate_dominance_info (CDI_DOMINATORS);
}
/* Return number of phis in bb. If COUNT_VIRTUAL_P is false, don't count the
virtual phi. */
static unsigned int
num_phis (basic_block bb, bool count_virtual_p)
{
unsigned int nr_phis = 0;
gphi_iterator gsi;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
if (!count_virtual_p && virtual_operand_p (PHI_RESULT (gsi.phi ())))
continue;
nr_phis++;
}
return nr_phis;
}
/* Generates code to execute the iterations of LOOP in N_THREADS
threads in parallel, which can be 0 if that number is to be determined
later.
NITER describes number of iterations of LOOP.
REDUCTION_LIST describes the reductions existent in the LOOP. */
static void
gen_parallel_loop (class loop *loop,
reduction_info_table_type *reduction_list,
unsigned n_threads, class tree_niter_desc *niter,
bool oacc_kernels_p)
{
tree many_iterations_cond, type, nit;
tree arg_struct, new_arg_struct;
gimple_seq stmts;
edge entry, exit;
struct clsn_data clsn_data;
location_t loc;
gimple *cond_stmt;
unsigned int m_p_thread=2;
/* From
---------------------------------------------------------------------
loop
{
IV = phi (INIT, IV + STEP)
BODY1;
if (COND)
break;
BODY2;
}
---------------------------------------------------------------------
with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
we generate the following code:
---------------------------------------------------------------------
if (MAY_BE_ZERO
|| NITER < MIN_PER_THREAD * N_THREADS)
goto original;
BODY1;
store all local loop-invariant variables used in body of the loop to DATA.
GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
load the variables from DATA.
GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
BODY2;
BODY1;
GIMPLE_OMP_CONTINUE;
GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
goto end;
original:
loop
{
IV = phi (INIT, IV + STEP)
BODY1;
if (COND)
break;
BODY2;
}
end:
*/
/* Create two versions of the loop -- in the old one, we know that the
number of iterations is large enough, and we will transform it into the
loop that will be split to loop_fn, the new one will be used for the
remaining iterations. */
/* We should compute a better number-of-iterations value for outer loops.
That is, if we have
for (i = 0; i < n; ++i)
for (j = 0; j < m; ++j)
...
we should compute nit = n * m, not nit = n.
Also may_be_zero handling would need to be adjusted. */
type = TREE_TYPE (niter->niter);
nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
NULL_TREE);
if (stmts)
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
if (!oacc_kernels_p)
{
if (loop->inner)
m_p_thread=2;
else
m_p_thread=MIN_PER_THREAD;
gcc_checking_assert (n_threads != 0);
many_iterations_cond =
fold_build2 (GE_EXPR, boolean_type_node,
nit, build_int_cst (type, m_p_thread * n_threads - 1));
many_iterations_cond
= fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
invert_truthvalue (unshare_expr (niter->may_be_zero)),
many_iterations_cond);
many_iterations_cond
= force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
if (stmts)
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
if (!is_gimple_condexpr (many_iterations_cond))
{
many_iterations_cond
= force_gimple_operand (many_iterations_cond, &stmts,
true, NULL_TREE);
if (stmts)
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
stmts);
}
initialize_original_copy_tables ();
/* We assume that the loop usually iterates a lot. */
loop_version (loop, many_iterations_cond, NULL,
profile_probability::likely (),
profile_probability::unlikely (),
profile_probability::likely (),
profile_probability::unlikely (), true);
update_ssa (TODO_update_ssa);
free_original_copy_tables ();
}
/* Base all the induction variables in LOOP on a single control one. */
canonicalize_loop_ivs (loop, &nit, true);
if (num_phis (loop->header, false) != reduction_list->elements () + 1)
{
/* The call to canonicalize_loop_ivs above failed to "base all the
induction variables in LOOP on a single control one". Do damage
control. */
basic_block preheader = loop_preheader_edge (loop)->src;
basic_block cond_bb = single_pred (preheader);
gcond *cond = as_a <gcond *> (gsi_stmt (gsi_last_bb (cond_bb)));
gimple_cond_make_true (cond);
update_stmt (cond);
/* We've gotten rid of the duplicate loop created by loop_version, but
we can't undo whatever canonicalize_loop_ivs has done.
TODO: Fix this properly by ensuring that the call to
canonicalize_loop_ivs succeeds. */
if (dump_file
&& (dump_flags & TDF_DETAILS))
fprintf (dump_file, "canonicalize_loop_ivs failed for loop %d,"
" aborting transformation\n", loop->num);
return;
}
/* Ensure that the exit condition is the first statement in the loop.
The common case is that latch of the loop is empty (apart from the
increment) and immediately follows the loop exit test. Attempt to move the
entry of the loop directly before the exit check and increase the number of
iterations of the loop by one. */
if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
{
if (dump_file
&& (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"alternative exit-first loop transform succeeded"
" for loop %d\n", loop->num);
}
else
{
if (oacc_kernels_p)
n_threads = 1;
/* Fall back on the method that handles more cases, but duplicates the
loop body: move the exit condition of LOOP to the beginning of its
header, and duplicate the part of the last iteration that gets disabled
to the exit of the loop. */
transform_to_exit_first_loop (loop, reduction_list, nit);
}
/* Generate initializations for reductions. */
if (!reduction_list->is_empty ())
reduction_list->traverse <class loop *, initialize_reductions> (loop);
/* Eliminate the references to local variables from the loop. */
gcc_assert (single_exit (loop));
entry = loop_preheader_edge (loop);
exit = single_dom_exit (loop);
/* This rewrites the body in terms of new variables. This has already
been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
if (!oacc_kernels_p)
{
eliminate_local_variables (entry, exit);
/* In the old loop, move all variables non-local to the loop to a
structure and back, and create separate decls for the variables used in
loop. */
separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
&new_arg_struct, &clsn_data);
}
else
{
arg_struct = NULL_TREE;
new_arg_struct = NULL_TREE;
clsn_data.load = NULL_TREE;
clsn_data.load_bb = exit->dest;
clsn_data.store = NULL_TREE;
clsn_data.store_bb = NULL;
}
/* Create the parallel constructs. */
loc = UNKNOWN_LOCATION;
cond_stmt = last_stmt (loop->header);
if (cond_stmt)
loc = gimple_location (cond_stmt);
create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct,
n_threads, loc, oacc_kernels_p);
if (!reduction_list->is_empty ())
create_call_for_reduction (loop, reduction_list, &clsn_data);
scev_reset ();
/* Free loop bound estimations that could contain references to
removed statements. */
free_numbers_of_iterations_estimates (cfun);
}
/* Returns true when LOOP contains vector phi nodes. */
static bool
loop_has_vector_phi_nodes (class loop *loop ATTRIBUTE_UNUSED)
{
unsigned i;
basic_block *bbs = get_loop_body_in_dom_order (loop);
gphi_iterator gsi;
bool res = true;
for (i = 0; i < loop->num_nodes; i++)
for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
goto end;
res = false;
end:
free (bbs);
return res;
}
/* Create a reduction_info struct, initialize it with REDUC_STMT
and PHI, insert it to the REDUCTION_LIST. */
static void
build_new_reduction (reduction_info_table_type *reduction_list,
gimple *reduc_stmt, gphi *phi)
{
reduction_info **slot;
struct reduction_info *new_reduction;
enum tree_code reduction_code;
gcc_assert (reduc_stmt);
if (gimple_code (reduc_stmt) == GIMPLE_PHI)
{
tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
gimple *def1 = SSA_NAME_DEF_STMT (op1);
reduction_code = gimple_assign_rhs_code (def1);
}
else
reduction_code = gimple_assign_rhs_code (reduc_stmt);
/* Check for OpenMP supported reduction. */
switch (reduction_code)
{
case PLUS_EXPR:
case MULT_EXPR:
case MAX_EXPR:
case MIN_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
case TRUTH_AND_EXPR:
break;
default:
return;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"Detected reduction. reduction stmt is:\n");
print_gimple_stmt (dump_file, reduc_stmt, 0);
fprintf (dump_file, "\n");
}
new_reduction = XCNEW (struct reduction_info);
new_reduction->reduc_stmt = reduc_stmt;
new_reduction->reduc_phi = phi;
new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
new_reduction->reduction_code = reduction_code;
slot = reduction_list->find_slot (new_reduction, INSERT);
*slot = new_reduction;
}
/* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
int
set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
{
struct reduction_info *const red = *slot;
gimple_set_uid (red->reduc_phi, red->reduc_version);
return 1;
}
/* Return true if the type of reduction performed by STMT_INFO is suitable
for this pass. */
static bool
valid_reduction_p (stmt_vec_info stmt_info)
{
/* Parallelization would reassociate the operation, which isn't
allowed for in-order reductions. */
vect_reduction_type reduc_type = STMT_VINFO_REDUC_TYPE (stmt_info);
return reduc_type != FOLD_LEFT_REDUCTION;
}
/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
static void
gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
{
gphi_iterator gsi;
loop_vec_info simple_loop_info;
auto_vec<gphi *, 4> double_reduc_phis;
auto_vec<gimple *, 4> double_reduc_stmts;
vec_info_shared shared;
vect_loop_form_info info;
if (!vect_analyze_loop_form (loop, &info))
goto gather_done;
simple_loop_info = vect_create_loop_vinfo (loop, &shared, &info);
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
affine_iv iv;
tree res = PHI_RESULT (phi);
bool double_reduc;
if (virtual_operand_p (res))
continue;
if (simple_iv (loop, loop, res, &iv, true))
continue;
stmt_vec_info reduc_stmt_info
= parloops_force_simple_reduction (simple_loop_info,
simple_loop_info->lookup_stmt (phi),
&double_reduc, true);
if (!reduc_stmt_info || !valid_reduction_p (reduc_stmt_info))
continue;
if (double_reduc)
{
if (loop->inner->inner != NULL)
continue;
double_reduc_phis.safe_push (phi);
double_reduc_stmts.safe_push (reduc_stmt_info->stmt);
continue;
}
build_new_reduction (reduction_list, reduc_stmt_info->stmt, phi);
}
delete simple_loop_info;
if (!double_reduc_phis.is_empty ())
{
vec_info_shared shared;
vect_loop_form_info info;
if (vect_analyze_loop_form (loop->inner, &info))
{
simple_loop_info
= vect_create_loop_vinfo (loop->inner, &shared, &info);
gphi *phi;
unsigned int i;
FOR_EACH_VEC_ELT (double_reduc_phis, i, phi)
{
affine_iv iv;
tree res = PHI_RESULT (phi);
bool double_reduc;
use_operand_p use_p;
gimple *inner_stmt;
bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
gcc_assert (single_use_p);
if (gimple_code (inner_stmt) != GIMPLE_PHI)
continue;
gphi *inner_phi = as_a <gphi *> (inner_stmt);
if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
&iv, true))
continue;
stmt_vec_info inner_phi_info
= simple_loop_info->lookup_stmt (inner_phi);
stmt_vec_info inner_reduc_stmt_info
= parloops_force_simple_reduction (simple_loop_info,
inner_phi_info,
&double_reduc, true);
gcc_assert (!double_reduc);
if (!inner_reduc_stmt_info
|| !valid_reduction_p (inner_reduc_stmt_info))
continue;
build_new_reduction (reduction_list, double_reduc_stmts[i], phi);
}
delete simple_loop_info;
}
}
gather_done:
if (reduction_list->is_empty ())
return;
/* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
and delete simple_loop_info, we can set gimple_uid of reduc_phi stmts only
now. */
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
}
/* Try to initialize NITER for code generation part. */
static bool
try_get_loop_niter (loop_p loop, class tree_niter_desc *niter)
{
edge exit = single_dom_exit (loop);
gcc_assert (exit);
/* We need to know # of iterations, and there should be no uses of values
defined inside loop outside of it, unless the values are invariants of
the loop. */
if (!number_of_iterations_exit (loop, exit, niter, false))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " FAILED: number of iterations not known\n");
return false;
}
return true;
}
/* Return the default def of the first function argument. */
static tree
get_omp_data_i_param (void)
{
tree decl = DECL_ARGUMENTS (cfun->decl);
gcc_assert (DECL_CHAIN (decl) == NULL_TREE);
return ssa_default_def (cfun, decl);
}
/* For PHI in loop header of LOOP, look for pattern:
<bb preheader>
.omp_data_i = &.omp_data_arr;
addr = .omp_data_i->sum;
sum_a = *addr;
<bb header>:
sum_b = PHI <sum_a (preheader), sum_c (latch)>
and return addr. Otherwise, return NULL_TREE. */
static tree
find_reduc_addr (class loop *loop, gphi *phi)
{
edge e = loop_preheader_edge (loop);
tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
gimple *stmt = SSA_NAME_DEF_STMT (arg);
if (!gimple_assign_single_p (stmt))
return NULL_TREE;
tree memref = gimple_assign_rhs1 (stmt);
if (TREE_CODE (memref) != MEM_REF)
return NULL_TREE;
tree addr = TREE_OPERAND (memref, 0);
gimple *stmt2 = SSA_NAME_DEF_STMT (addr);
if (!gimple_assign_single_p (stmt2))
return NULL_TREE;
tree compref = gimple_assign_rhs1 (stmt2);
if (TREE_CODE (compref) != COMPONENT_REF)
return NULL_TREE;
tree addr2 = TREE_OPERAND (compref, 0);
if (TREE_CODE (addr2) != MEM_REF)
return NULL_TREE;
addr2 = TREE_OPERAND (addr2, 0);
if (TREE_CODE (addr2) != SSA_NAME
|| addr2 != get_omp_data_i_param ())
return NULL_TREE;
return addr;
}
/* Try to initialize REDUCTION_LIST for code generation part.
REDUCTION_LIST describes the reductions. */
static bool
try_create_reduction_list (loop_p loop,
reduction_info_table_type *reduction_list,
bool oacc_kernels_p)
{
edge exit = single_dom_exit (loop);
gphi_iterator gsi;
gcc_assert (exit);
/* Try to get rid of exit phis. */
final_value_replacement_loop (loop);
gather_scalar_reductions (loop, reduction_list);
for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
struct reduction_info *red;
imm_use_iterator imm_iter;
use_operand_p use_p;
gimple *reduc_phi;
tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
if (!virtual_operand_p (val))
{
if (TREE_CODE (val) != SSA_NAME)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" FAILED: exit PHI argument invariant.\n");
return false;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "phi is ");
print_gimple_stmt (dump_file, phi, 0);
fprintf (dump_file, "arg of phi to exit: value ");
print_generic_expr (dump_file, val);
fprintf (dump_file, " used outside loop\n");
fprintf (dump_file,
" checking if it is part of reduction pattern:\n");
}
if (reduction_list->is_empty ())
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" FAILED: it is not a part of reduction.\n");
return false;
}
reduc_phi = NULL;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
{
if (!gimple_debug_bind_p (USE_STMT (use_p))
&& flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
{
reduc_phi = USE_STMT (use_p);
break;
}
}
red = reduction_phi (reduction_list, reduc_phi);
if (red == NULL)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" FAILED: it is not a part of reduction.\n");
return false;
}
if (red->keep_res != NULL)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" FAILED: reduction has multiple exit phis.\n");
return false;
}
red->keep_res = phi;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "reduction phi is ");
print_gimple_stmt (dump_file, red->reduc_phi, 0);
fprintf (dump_file, "reduction stmt is ");
print_gimple_stmt (dump_file, red->reduc_stmt, 0);
}
}
}
/* The iterations of the loop may communicate only through bivs whose
iteration space can be distributed efficiently. */
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree def = PHI_RESULT (phi);
affine_iv iv;
if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
{
struct reduction_info *red;
red = reduction_phi (reduction_list, phi);
if (red == NULL)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" FAILED: scalar dependency between iterations\n");
return false;
}
}
}
if (oacc_kernels_p)
{
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree def = PHI_RESULT (phi);
affine_iv iv;
if (!virtual_operand_p (def)
&& !simple_iv (loop, loop, def, &iv, true))
{
tree addr = find_reduc_addr (loop, phi);
if (addr == NULL_TREE)
return false;
struct reduction_info *red = reduction_phi (reduction_list, phi);
red->reduc_addr = addr;
}
}
}
return true;
}
/* Return true if LOOP contains phis with ADDR_EXPR in args. */
static bool
loop_has_phi_with_address_arg (class loop *loop)
{
basic_block *bbs = get_loop_body (loop);
bool res = false;
unsigned i, j;
gphi_iterator gsi;
for (i = 0; i < loop->num_nodes; i++)
for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
for (j = 0; j < gimple_phi_num_args (phi); j++)
{
tree arg = gimple_phi_arg_def (phi, j);
if (TREE_CODE (arg) == ADDR_EXPR)
{
/* This should be handled by eliminate_local_variables, but that
function currently ignores phis. */
res = true;
goto end;
}
}
}
end:
free (bbs);
return res;
}
/* Return true if memory ref REF (corresponding to the stmt at GSI in
REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
store. Ignore conflicts with SKIP_STMT. */
static bool
ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref,
bool ref_is_store, vec<basic_block> region_bbs,
unsigned int i, gimple *skip_stmt)
{
basic_block bb = region_bbs[i];
gsi_next (&gsi);
while (true)
{
for (; !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (stmt == skip_stmt)
{
if (dump_file)
{
fprintf (dump_file, "skipping reduction store: ");
print_gimple_stmt (dump_file, stmt, 0);
}
continue;
}
if (!gimple_vdef (stmt)
&& !gimple_vuse (stmt))
continue;
if (gimple_code (stmt) == GIMPLE_RETURN)
continue;
if (ref_is_store)
{
if (ref_maybe_used_by_stmt_p (stmt, ref))
{
if (dump_file)
{
fprintf (dump_file, "Stmt ");
print_gimple_stmt (dump_file, stmt, 0);
}
return true;
}
}
else
{
if (stmt_may_clobber_ref_p_1 (stmt, ref))
{
if (dump_file)
{
fprintf (dump_file, "Stmt ");
print_gimple_stmt (dump_file, stmt, 0);
}
return true;
}
}
}
i++;
if (i == region_bbs.length ())
break;
bb = region_bbs[i];
gsi = gsi_start_bb (bb);
}
return false;
}
/* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
in parallel with REGION_BBS containing the loop. Return the stores of
reduction results in REDUCTION_STORES. */
static bool
oacc_entry_exit_ok_1 (bitmap in_loop_bbs, const vec<basic_block> ®ion_bbs,
reduction_info_table_type *reduction_list,
bitmap reduction_stores)
{
tree omp_data_i = get_omp_data_i_param ();
unsigned i;
basic_block bb;
FOR_EACH_VEC_ELT (region_bbs, i, bb)
{
if (bitmap_bit_p (in_loop_bbs, bb->index))
continue;
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
gimple *skip_stmt = NULL;
if (is_gimple_debug (stmt)
|| gimple_code (stmt) == GIMPLE_COND)
continue;
ao_ref ref;
bool ref_is_store = false;
if (gimple_assign_load_p (stmt))
{
tree rhs = gimple_assign_rhs1 (stmt);
tree base = get_base_address (rhs);
if (TREE_CODE (base) == MEM_REF
&& operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0))
continue;
tree lhs = gimple_assign_lhs (stmt);
if (TREE_CODE (lhs) == SSA_NAME
&& has_single_use (lhs))
{
use_operand_p use_p;
gimple *use_stmt;
struct reduction_info *red;
single_imm_use (lhs, &use_p, &use_stmt);
if (gimple_code (use_stmt) == GIMPLE_PHI
&& (red = reduction_phi (reduction_list, use_stmt)))
{
tree val = PHI_RESULT (red->keep_res);
if (has_single_use (val))
{
single_imm_use (val, &use_p, &use_stmt);
if (gimple_store_p (use_stmt))
{
unsigned int id
= SSA_NAME_VERSION (gimple_vdef (use_stmt));
bitmap_set_bit (reduction_stores, id);
skip_stmt = use_stmt;
if (dump_file)
{
fprintf (dump_file, "found reduction load: ");
print_gimple_stmt (dump_file, stmt, 0);
}
}
}
}
}
ao_ref_init (&ref, rhs);
}
else if (gimple_store_p (stmt))
{
ao_ref_init (&ref, gimple_assign_lhs (stmt));
ref_is_store = true;
}
else if (gimple_code (stmt) == GIMPLE_OMP_RETURN)
continue;
else if (!gimple_has_side_effects (stmt)
&& !gimple_could_trap_p (stmt)
&& !stmt_could_throw_p (cfun, stmt)
&& !gimple_vdef (stmt)
&& !gimple_vuse (stmt))
continue;
else if (gimple_call_internal_p (stmt, IFN_GOACC_DIM_POS))
continue;
else if (gimple_code (stmt) == GIMPLE_RETURN)
continue;
else
{
if (dump_file)
{
fprintf (dump_file, "Unhandled stmt in entry/exit: ");
print_gimple_stmt (dump_file, stmt, 0);
}
return false;
}
if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs,
i, skip_stmt))
{
if (dump_file)
{
fprintf (dump_file, "conflicts with entry/exit stmt: ");
print_gimple_stmt (dump_file, stmt, 0);
}
return false;
}
}
}
return true;
}
/* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
if any changes were made. */
static bool
oacc_entry_exit_single_gang (bitmap in_loop_bbs,
const vec<basic_block> ®ion_bbs,
bitmap reduction_stores)
{
tree gang_pos = NULL_TREE;
bool changed = false;
unsigned i;
basic_block bb;
FOR_EACH_VEC_ELT (region_bbs, i, bb)
{
if (bitmap_bit_p (in_loop_bbs, bb->index))
continue;
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (!gimple_store_p (stmt))
{
/* Update gsi to point to next stmt. */
gsi_next (&gsi);
continue;
}
if (bitmap_bit_p (reduction_stores,
SSA_NAME_VERSION (gimple_vdef (stmt))))
{
if (dump_file)
{
fprintf (dump_file,
"skipped reduction store for single-gang"
" neutering: ");
print_gimple_stmt (dump_file, stmt, 0);
}
/* Update gsi to point to next stmt. */
gsi_next (&gsi);
continue;
}
changed = true;
if (gang_pos == NULL_TREE)
{
tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG);
gcall *gang_single
= gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg);
gang_pos = make_ssa_name (integer_type_node);
gimple_call_set_lhs (gang_single, gang_pos);
gimple_stmt_iterator start
= gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
tree vuse = ssa_default_def (cfun, gimple_vop (cfun));
gimple_set_vuse (gang_single, vuse);
gsi_insert_before (&start, gang_single, GSI_SAME_STMT);
}
if (dump_file)
{
fprintf (dump_file,
"found store that needs single-gang neutering: ");
print_gimple_stmt (dump_file, stmt, 0);
}
{
/* Split block before store. */
gimple_stmt_iterator gsi2 = gsi;
gsi_prev (&gsi2);
edge e;
if (gsi_end_p (gsi2))
{
e = split_block_after_labels (bb);
gsi2 = gsi_last_bb (bb);
}
else
e = split_block (bb, gsi_stmt (gsi2));
basic_block bb2 = e->dest;
/* Split block after store. */
gimple_stmt_iterator gsi3 = gsi_start_bb (bb2);
edge e2 = split_block (bb2, gsi_stmt (gsi3));
basic_block bb3 = e2->dest;
gimple *cond
= gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node,
NULL_TREE, NULL_TREE);
gsi_insert_after (&gsi2, cond, GSI_NEW_STMT);
edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE);
/* FIXME: What is the probability? */
e3->probability = profile_probability::guessed_never ();
e->flags = EDGE_TRUE_VALUE;
tree vdef = gimple_vdef (stmt);
tree vuse = gimple_vuse (stmt);
tree phi_res = copy_ssa_name (vdef);
gphi *new_phi = create_phi_node (phi_res, bb3);
replace_uses_by (vdef, phi_res);
add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION);
add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION);
/* Update gsi to point to next stmt. */
bb = bb3;
gsi = gsi_start_bb (bb);
}
}
}
return changed;
}
/* Return true if the statements before and after the LOOP can be executed in
parallel with the function containing the loop. Resolve conflicting stores
outside LOOP by guarding them such that only a single gang executes them. */
static bool
oacc_entry_exit_ok (class loop *loop,
reduction_info_table_type *reduction_list)
{
basic_block *loop_bbs = get_loop_body_in_dom_order (loop);
auto_vec<basic_block> region_bbs
= get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
bitmap in_loop_bbs = BITMAP_ALLOC (NULL);
bitmap_clear (in_loop_bbs);
for (unsigned int i = 0; i < loop->num_nodes; i++)
bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index);
bitmap reduction_stores = BITMAP_ALLOC (NULL);
bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list,
reduction_stores);
if (res)
{
bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs,
reduction_stores);
if (changed)
{
free_dominance_info (CDI_DOMINATORS);
calculate_dominance_info (CDI_DOMINATORS);
}
}
free (loop_bbs);
BITMAP_FREE (in_loop_bbs);
BITMAP_FREE (reduction_stores);
return res;
}
/* Detect parallel loops and generate parallel code using libgomp
primitives. Returns true if some loop was parallelized, false
otherwise. */
static bool
parallelize_loops (bool oacc_kernels_p)
{
unsigned n_threads;
bool changed = false;
class loop *skip_loop = NULL;
class tree_niter_desc niter_desc;
struct obstack parloop_obstack;
HOST_WIDE_INT estimated;
/* Do not parallelize loops in the functions created by parallelization. */
if (!oacc_kernels_p
&& parallelized_function_p (cfun->decl))
return false;
/* Do not parallelize loops in offloaded functions. */
if (!oacc_kernels_p
&& oacc_get_fn_attrib (cfun->decl) != NULL)
return false;
if (cfun->has_nonlocal_label)
return false;
/* For OpenACC kernels, n_threads will be determined later; otherwise, it's
the argument to -ftree-parallelize-loops. */
if (oacc_kernels_p)
n_threads = 0;
else
n_threads = flag_tree_parallelize_loops;
gcc_obstack_init (&parloop_obstack);
reduction_info_table_type reduction_list (10);
calculate_dominance_info (CDI_DOMINATORS);
for (auto loop : loops_list (cfun, 0))
{
if (loop == skip_loop)
{
if (!loop->in_oacc_kernels_region
&& dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Skipping loop %d as inner loop of parallelized loop\n",
loop->num);
skip_loop = loop->inner;
continue;
}
else
skip_loop = NULL;
reduction_list.empty ();
if (oacc_kernels_p)
{
if (!loop->in_oacc_kernels_region)
continue;
/* Don't try to parallelize inner loops in an oacc kernels region. */
if (loop->inner)
skip_loop = loop->inner;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Trying loop %d with header bb %d in oacc kernels"
" region\n", loop->num, loop->header->index);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
if (loop->inner)
fprintf (dump_file, "loop %d is not innermost\n",loop->num);
else
fprintf (dump_file, "loop %d is innermost\n",loop->num);
}
if (!single_dom_exit (loop))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "loop is !single_dom_exit\n");
continue;
}
if (/* And of course, the loop must be parallelizable. */
!can_duplicate_loop_p (loop)
|| loop_has_blocks_with_irreducible_flag (loop)
|| (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
/* FIXME: the check for vector phi nodes could be removed. */
|| loop_has_vector_phi_nodes (loop))
continue;
estimated = estimated_loop_iterations_int (loop);
if (estimated == -1)
estimated = get_likely_max_loop_iterations_int (loop);
/* FIXME: Bypass this check as graphite doesn't update the
count and frequency correctly now. */
if (!flag_loop_parallelize_all
&& !oacc_kernels_p
&& ((estimated != -1
&& (estimated
< ((HOST_WIDE_INT) n_threads
* (loop->inner ? 2 : MIN_PER_THREAD) - 1)))
/* Do not bother with loops in cold areas. */
|| optimize_loop_nest_for_size_p (loop)))
continue;
if (!try_get_loop_niter (loop, &niter_desc))
continue;
if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p))
continue;
if (loop_has_phi_with_address_arg (loop))
continue;
if (!loop->can_be_parallel
&& !loop_parallel_p (loop, &parloop_obstack))
continue;
if (oacc_kernels_p
&& !oacc_entry_exit_ok (loop, &reduction_list))
{
if (dump_file)
fprintf (dump_file, "entry/exit not ok: FAILED\n");
continue;
}
changed = true;
skip_loop = loop->inner;
if (dump_enabled_p ())
{
dump_user_location_t loop_loc = find_loop_location (loop);
if (loop->inner)
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
"parallelizing outer loop %d\n", loop->num);
else
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
"parallelizing inner loop %d\n", loop->num);
}
gen_parallel_loop (loop, &reduction_list,
n_threads, &niter_desc, oacc_kernels_p);
}
obstack_free (&parloop_obstack, NULL);
/* Parallelization will cause new function calls to be inserted through
which local variables will escape. Reset the points-to solution
for ESCAPED. */
if (changed)
pt_solution_reset (&cfun->gimple_df->escaped);
return changed;
}
/* Parallelization. */
namespace {
const pass_data pass_data_parallelize_loops =
{
GIMPLE_PASS, /* type */
"parloops", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_parallelize_loops : public gimple_opt_pass
{
public:
pass_parallelize_loops (gcc::context *ctxt)
: gimple_opt_pass (pass_data_parallelize_loops, ctxt),
oacc_kernels_p (false)
{}
/* opt_pass methods: */
virtual bool gate (function *)
{
if (oacc_kernels_p)
return flag_openacc;
else
return flag_tree_parallelize_loops > 1;
}
virtual unsigned int execute (function *);
opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); }
void set_pass_param (unsigned int n, bool param)
{
gcc_assert (n == 0);
oacc_kernels_p = param;
}
private:
bool oacc_kernels_p;
}; // class pass_parallelize_loops
unsigned
pass_parallelize_loops::execute (function *fun)
{
tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
if (nthreads == NULL_TREE)
return 0;
bool in_loop_pipeline = scev_initialized_p ();
if (!in_loop_pipeline)
loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS);
if (number_of_loops (fun) <= 1)
return 0;
if (!in_loop_pipeline)
{
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
scev_initialize ();
}
unsigned int todo = 0;
if (parallelize_loops (oacc_kernels_p))
{
fun->curr_properties &= ~(PROP_gimple_eomp);
checking_verify_loop_structure ();
todo |= TODO_update_ssa;
}
if (!in_loop_pipeline)
{
scev_finalize ();
loop_optimizer_finalize ();
}
return todo;
}
} // anon namespace
gimple_opt_pass *
make_pass_parallelize_loops (gcc::context *ctxt)
{
return new pass_parallelize_loops (ctxt);
}
|