1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
|
/* Dead and redundant store elimination
Copyright (C) 2004-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "tree-cfgcleanup.h"
#include "alias.h"
#include "tree-ssa-loop.h"
#include "tree-ssa-dse.h"
#include "builtins.h"
#include "gimple-fold.h"
#include "gimplify.h"
#include "tree-eh.h"
#include "cfganal.h"
#include "cgraph.h"
#include "ipa-modref-tree.h"
#include "ipa-modref.h"
#include "target.h"
#include "tree-ssa-loop-niter.h"
/* This file implements dead store elimination.
A dead store is a store into a memory location which will later be
overwritten by another store without any intervening loads. In this
case the earlier store can be deleted or trimmed if the store
was partially dead.
A redundant store is a store into a memory location which stores
the exact same value as a prior store to the same memory location.
While this can often be handled by dead store elimination, removing
the redundant store is often better than removing or trimming the
dead store.
In our SSA + virtual operand world we use immediate uses of virtual
operands to detect these cases. If a store's virtual definition
is used precisely once by a later store to the same location which
post dominates the first store, then the first store is dead. If
the data stored is the same, then the second store is redundant.
The single use of the store's virtual definition ensures that
there are no intervening aliased loads and the requirement that
the second load post dominate the first ensures that if the earlier
store executes, then the later stores will execute before the function
exits.
It may help to think of this as first moving the earlier store to
the point immediately before the later store. Again, the single
use of the virtual definition and the post-dominance relationship
ensure that such movement would be safe. Clearly if there are
back to back stores, then the second is makes the first dead. If
the second store stores the same value, then the second store is
redundant.
Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
may also help in understanding this code since it discusses the
relationship between dead store and redundant load elimination. In
fact, they are the same transformation applied to different views of
the CFG. */
static void delete_dead_or_redundant_call (gimple_stmt_iterator *, const char *);
/* Bitmap of blocks that have had EH statements cleaned. We should
remove their dead edges eventually. */
static bitmap need_eh_cleanup;
static bitmap need_ab_cleanup;
/* STMT is a statement that may write into memory. Analyze it and
initialize WRITE to describe how STMT affects memory.
Return TRUE if the statement was analyzed, FALSE otherwise.
It is always safe to return FALSE. But typically better optimziation
can be achieved by analyzing more statements. */
static bool
initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write)
{
/* It's advantageous to handle certain mem* functions. */
if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
{
switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
{
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMMOVE:
case BUILT_IN_MEMSET:
case BUILT_IN_MEMCPY_CHK:
case BUILT_IN_MEMMOVE_CHK:
case BUILT_IN_MEMSET_CHK:
case BUILT_IN_STRNCPY:
case BUILT_IN_STRNCPY_CHK:
{
tree size = gimple_call_arg (stmt, 2);
tree ptr = gimple_call_arg (stmt, 0);
ao_ref_init_from_ptr_and_size (write, ptr, size);
return true;
}
/* A calloc call can never be dead, but it can make
subsequent stores redundant if they store 0 into
the same memory locations. */
case BUILT_IN_CALLOC:
{
tree nelem = gimple_call_arg (stmt, 0);
tree selem = gimple_call_arg (stmt, 1);
tree lhs;
if (TREE_CODE (nelem) == INTEGER_CST
&& TREE_CODE (selem) == INTEGER_CST
&& (lhs = gimple_call_lhs (stmt)) != NULL_TREE)
{
tree size = fold_build2 (MULT_EXPR, TREE_TYPE (nelem),
nelem, selem);
ao_ref_init_from_ptr_and_size (write, lhs, size);
return true;
}
}
default:
break;
}
}
else if (tree lhs = gimple_get_lhs (stmt))
{
if (TREE_CODE (lhs) != SSA_NAME)
{
ao_ref_init (write, lhs);
return true;
}
}
return false;
}
/* Given REF from the alias oracle, return TRUE if it is a valid
kill memory reference for dead store elimination, false otherwise.
In particular, the reference must have a known base, known maximum
size, start at a byte offset and have a size that is one or more
bytes. */
static bool
valid_ao_ref_kill_for_dse (ao_ref *ref)
{
return (ao_ref_base (ref)
&& known_size_p (ref->max_size)
&& maybe_ne (ref->size, 0)
&& known_eq (ref->max_size, ref->size)
&& known_ge (ref->offset, 0));
}
/* Given REF from the alias oracle, return TRUE if it is a valid
load or store memory reference for dead store elimination, false otherwise.
Unlike for valid_ao_ref_kill_for_dse we can accept writes where max_size
is not same as size since we can handle conservatively the larger range. */
static bool
valid_ao_ref_for_dse (ao_ref *ref)
{
return (ao_ref_base (ref)
&& known_size_p (ref->max_size)
&& known_ge (ref->offset, 0));
}
/* Initialize OFFSET and SIZE to a range known to contain REF
where the boundaries are divisible by BITS_PER_UNIT (bit still in bits).
Return false if this is impossible. */
static bool
get_byte_aligned_range_containing_ref (ao_ref *ref, poly_int64 *offset,
HOST_WIDE_INT *size)
{
if (!known_size_p (ref->max_size))
return false;
*offset = aligned_lower_bound (ref->offset, BITS_PER_UNIT);
poly_int64 end = aligned_upper_bound (ref->offset + ref->max_size,
BITS_PER_UNIT);
return (end - *offset).is_constant (size);
}
/* Initialize OFFSET and SIZE to a range known to be contained REF
where the boundaries are divisible by BITS_PER_UNIT (but still in bits).
Return false if this is impossible. */
static bool
get_byte_aligned_range_contained_in_ref (ao_ref *ref, poly_int64 *offset,
HOST_WIDE_INT *size)
{
if (!known_size_p (ref->size)
|| !known_eq (ref->size, ref->max_size))
return false;
*offset = aligned_upper_bound (ref->offset, BITS_PER_UNIT);
poly_int64 end = aligned_lower_bound (ref->offset + ref->max_size,
BITS_PER_UNIT);
/* For bit accesses we can get -1 here, but also 0 sized kill is not
useful. */
if (!known_gt (end, *offset))
return false;
return (end - *offset).is_constant (size);
}
/* Compute byte range (returned iN REF_OFFSET and RET_SIZE) for access COPY
inside REF. If KILL is true, then COPY represent a kill and the byte range
needs to be fully contained in bit range given by COPY. If KILL is false
then the byte range returned must contain the range of COPY. */
static bool
get_byte_range (ao_ref *copy, ao_ref *ref, bool kill,
HOST_WIDE_INT *ret_offset, HOST_WIDE_INT *ret_size)
{
HOST_WIDE_INT copy_size, ref_size;
poly_int64 copy_offset, ref_offset;
HOST_WIDE_INT diff;
/* First translate from bits to bytes, rounding to bigger or smaller ranges
as needed. Kills needs to be always rounded to smaller ranges while
uses and stores to larger ranges. */
if (kill)
{
if (!get_byte_aligned_range_contained_in_ref (copy, ©_offset,
©_size))
return false;
}
else
{
if (!get_byte_aligned_range_containing_ref (copy, ©_offset,
©_size))
return false;
}
if (!get_byte_aligned_range_containing_ref (ref, &ref_offset, &ref_size)
|| !ordered_p (copy_offset, ref_offset))
return false;
/* Switch sizes from bits to bytes so we do not need to care about
overflows. Offset calculation needs to stay in bits until we compute
the difference and can switch to HOST_WIDE_INT. */
copy_size /= BITS_PER_UNIT;
ref_size /= BITS_PER_UNIT;
/* If COPY starts before REF, then reset the beginning of
COPY to match REF and decrease the size of COPY by the
number of bytes removed from COPY. */
if (maybe_lt (copy_offset, ref_offset))
{
if (!(ref_offset - copy_offset).is_constant (&diff)
|| copy_size < diff / BITS_PER_UNIT)
return false;
copy_size -= diff / BITS_PER_UNIT;
copy_offset = ref_offset;
}
if (!(copy_offset - ref_offset).is_constant (&diff)
|| ref_size <= diff / BITS_PER_UNIT)
return false;
/* If COPY extends beyond REF, chop off its size appropriately. */
HOST_WIDE_INT limit = ref_size - diff / BITS_PER_UNIT;
if (copy_size > limit)
copy_size = limit;
*ret_size = copy_size;
if (!(copy_offset - ref_offset).is_constant (ret_offset))
return false;
*ret_offset /= BITS_PER_UNIT;
return true;
}
/* Update LIVE_BYTES tracking REF for write to WRITE:
Verify we have the same base memory address, the write
has a known size and overlaps with REF. */
static void
clear_live_bytes_for_ref (sbitmap live_bytes, ao_ref *ref, ao_ref *write)
{
HOST_WIDE_INT start, size;
if (valid_ao_ref_kill_for_dse (write)
&& operand_equal_p (write->base, ref->base, OEP_ADDRESS_OF)
&& get_byte_range (write, ref, true, &start, &size))
bitmap_clear_range (live_bytes, start, size);
}
/* Clear any bytes written by STMT from the bitmap LIVE_BYTES. The base
address written by STMT must match the one found in REF, which must
have its base address previously initialized.
This routine must be conservative. If we don't know the offset or
actual size written, assume nothing was written. */
static void
clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref)
{
ao_ref write;
if (gcall *call = dyn_cast <gcall *> (stmt))
{
bool interposed;
modref_summary *summary = get_modref_function_summary (call, &interposed);
if (summary && !interposed)
for (auto kill : summary->kills)
if (kill.get_ao_ref (as_a <gcall *> (stmt), &write))
clear_live_bytes_for_ref (live_bytes, ref, &write);
}
if (!initialize_ao_ref_for_dse (stmt, &write))
return;
clear_live_bytes_for_ref (live_bytes, ref, &write);
}
/* REF is a memory write. Extract relevant information from it and
initialize the LIVE_BYTES bitmap. If successful, return TRUE.
Otherwise return FALSE. */
static bool
setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes)
{
HOST_WIDE_INT const_size;
if (valid_ao_ref_for_dse (ref)
&& ((aligned_upper_bound (ref->offset + ref->max_size, BITS_PER_UNIT)
- aligned_lower_bound (ref->offset,
BITS_PER_UNIT)).is_constant (&const_size))
&& (const_size / BITS_PER_UNIT <= param_dse_max_object_size)
&& const_size > 1)
{
bitmap_clear (live_bytes);
bitmap_set_range (live_bytes, 0, const_size / BITS_PER_UNIT);
return true;
}
return false;
}
/* Compute the number of elements that we can trim from the head and
tail of ORIG resulting in a bitmap that is a superset of LIVE.
Store the number of elements trimmed from the head and tail in
TRIM_HEAD and TRIM_TAIL.
STMT is the statement being trimmed and is used for debugging dump
output only. */
static void
compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail,
gimple *stmt)
{
/* We use sbitmaps biased such that ref->offset is bit zero and the bitmap
extends through ref->size. So we know that in the original bitmap
bits 0..ref->size were true. We don't actually need the bitmap, just
the REF to compute the trims. */
/* Now identify how much, if any of the tail we can chop off. */
HOST_WIDE_INT const_size;
int last_live = bitmap_last_set_bit (live);
if (ref->size.is_constant (&const_size))
{
int last_orig = (const_size / BITS_PER_UNIT) - 1;
/* We can leave inconvenient amounts on the tail as
residual handling in mem* and str* functions is usually
reasonably efficient. */
*trim_tail = last_orig - last_live;
/* But don't trim away out of bounds accesses, as this defeats
proper warnings.
We could have a type with no TYPE_SIZE_UNIT or we could have a VLA
where TYPE_SIZE_UNIT is not a constant. */
if (*trim_tail
&& TYPE_SIZE_UNIT (TREE_TYPE (ref->base))
&& TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref->base))) == INTEGER_CST
&& compare_tree_int (TYPE_SIZE_UNIT (TREE_TYPE (ref->base)),
last_orig) <= 0)
*trim_tail = 0;
}
else
*trim_tail = 0;
/* Identify how much, if any of the head we can chop off. */
int first_orig = 0;
int first_live = bitmap_first_set_bit (live);
*trim_head = first_live - first_orig;
/* If REF is aligned, try to maintain this alignment if it reduces
the number of (power-of-two sized aligned) writes to memory. */
unsigned int align_bits;
unsigned HOST_WIDE_INT bitpos;
if ((*trim_head || *trim_tail)
&& last_live - first_live >= 2
&& ao_ref_alignment (ref, &align_bits, &bitpos)
&& align_bits >= 32
&& bitpos == 0
&& align_bits % BITS_PER_UNIT == 0)
{
unsigned int align_units = align_bits / BITS_PER_UNIT;
if (align_units > 16)
align_units = 16;
while ((first_live | (align_units - 1)) > (unsigned int)last_live)
align_units >>= 1;
if (*trim_head)
{
unsigned int pos = first_live & (align_units - 1);
for (unsigned int i = 1; i <= align_units; i <<= 1)
{
unsigned int mask = ~(i - 1);
unsigned int bytes = align_units - (pos & mask);
if (wi::popcount (bytes) <= 1)
{
*trim_head &= mask;
break;
}
}
}
if (*trim_tail)
{
unsigned int pos = last_live & (align_units - 1);
for (unsigned int i = 1; i <= align_units; i <<= 1)
{
int mask = i - 1;
unsigned int bytes = (pos | mask) + 1;
if ((last_live | mask) > (last_live + *trim_tail))
break;
if (wi::popcount (bytes) <= 1)
{
unsigned int extra = (last_live | mask) - last_live;
*trim_tail -= extra;
break;
}
}
}
}
if ((*trim_head || *trim_tail)
&& dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Trimming statement (head = %d, tail = %d): ",
*trim_head, *trim_tail);
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "\n");
}
}
/* STMT initializes an object from COMPLEX_CST where one or more of the
bytes written may be dead stores. REF is a representation of the
memory written. LIVE is the bitmap of stores that are actually live.
Attempt to rewrite STMT so that only the real or imaginary part of
the object is actually stored. */
static void
maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt)
{
int trim_head, trim_tail;
compute_trims (ref, live, &trim_head, &trim_tail, stmt);
/* The amount of data trimmed from the head or tail must be at
least half the size of the object to ensure we're trimming
the entire real or imaginary half. By writing things this
way we avoid more O(n) bitmap operations. */
if (known_ge (trim_tail * 2 * BITS_PER_UNIT, ref->size))
{
/* TREE_REALPART is live */
tree x = TREE_REALPART (gimple_assign_rhs1 (stmt));
tree y = gimple_assign_lhs (stmt);
y = build1 (REALPART_EXPR, TREE_TYPE (x), y);
gimple_assign_set_lhs (stmt, y);
gimple_assign_set_rhs1 (stmt, x);
}
else if (known_ge (trim_head * 2 * BITS_PER_UNIT, ref->size))
{
/* TREE_IMAGPART is live */
tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt));
tree y = gimple_assign_lhs (stmt);
y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y);
gimple_assign_set_lhs (stmt, y);
gimple_assign_set_rhs1 (stmt, x);
}
/* Other cases indicate parts of both the real and imag subobjects
are live. We do not try to optimize those cases. */
}
/* STMT initializes an object using a CONSTRUCTOR where one or more of the
bytes written are dead stores. ORIG is the bitmap of bytes stored by
STMT. LIVE is the bitmap of stores that are actually live.
Attempt to rewrite STMT so that only the real or imaginary part of
the object is actually stored.
The most common case for getting here is a CONSTRUCTOR with no elements
being used to zero initialize an object. We do not try to handle other
cases as those would force us to fully cover the object with the
CONSTRUCTOR node except for the components that are dead. */
static void
maybe_trim_constructor_store (ao_ref *ref, sbitmap live, gimple *stmt)
{
tree ctor = gimple_assign_rhs1 (stmt);
/* This is the only case we currently handle. It actually seems to
catch most cases of actual interest. */
gcc_assert (CONSTRUCTOR_NELTS (ctor) == 0);
int head_trim = 0;
int tail_trim = 0;
compute_trims (ref, live, &head_trim, &tail_trim, stmt);
/* Now we want to replace the constructor initializer
with memset (object + head_trim, 0, size - head_trim - tail_trim). */
if (head_trim || tail_trim)
{
/* We want &lhs for the MEM_REF expression. */
tree lhs_addr = build_fold_addr_expr (gimple_assign_lhs (stmt));
if (! is_gimple_min_invariant (lhs_addr))
return;
/* The number of bytes for the new constructor. */
poly_int64 ref_bytes = exact_div (ref->size, BITS_PER_UNIT);
poly_int64 count = ref_bytes - head_trim - tail_trim;
/* And the new type for the CONSTRUCTOR. Essentially it's just
a char array large enough to cover the non-trimmed parts of
the original CONSTRUCTOR. Note we want explicit bounds here
so that we know how many bytes to clear when expanding the
CONSTRUCTOR. */
tree type = build_array_type_nelts (char_type_node, count);
/* Build a suitable alias type rather than using alias set zero
to avoid pessimizing. */
tree alias_type = reference_alias_ptr_type (gimple_assign_lhs (stmt));
/* Build a MEM_REF representing the whole accessed area, starting
at the first byte not trimmed. */
tree exp = fold_build2 (MEM_REF, type, lhs_addr,
build_int_cst (alias_type, head_trim));
/* Now update STMT with a new RHS and LHS. */
gimple_assign_set_lhs (stmt, exp);
gimple_assign_set_rhs1 (stmt, build_constructor (type, NULL));
}
}
/* STMT is a memcpy, memmove or memset. Decrement the number of bytes
copied/set by DECREMENT. */
static void
decrement_count (gimple *stmt, int decrement)
{
tree *countp = gimple_call_arg_ptr (stmt, 2);
gcc_assert (TREE_CODE (*countp) == INTEGER_CST);
*countp = wide_int_to_tree (TREE_TYPE (*countp), (TREE_INT_CST_LOW (*countp)
- decrement));
}
static void
increment_start_addr (gimple *stmt, tree *where, int increment)
{
if (tree lhs = gimple_call_lhs (stmt))
if (where == gimple_call_arg_ptr (stmt, 0))
{
gassign *newop = gimple_build_assign (lhs, unshare_expr (*where));
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
gsi_insert_after (&gsi, newop, GSI_SAME_STMT);
gimple_call_set_lhs (stmt, NULL_TREE);
update_stmt (stmt);
}
if (TREE_CODE (*where) == SSA_NAME)
{
tree tem = make_ssa_name (TREE_TYPE (*where));
gassign *newop
= gimple_build_assign (tem, POINTER_PLUS_EXPR, *where,
build_int_cst (sizetype, increment));
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
gsi_insert_before (&gsi, newop, GSI_SAME_STMT);
*where = tem;
update_stmt (stmt);
return;
}
*where = build_fold_addr_expr (fold_build2 (MEM_REF, char_type_node,
*where,
build_int_cst (ptr_type_node,
increment)));
}
/* STMT is builtin call that writes bytes in bitmap ORIG, some bytes are dead
(ORIG & ~NEW) and need not be stored. Try to rewrite STMT to reduce
the amount of data it actually writes.
Right now we only support trimming from the head or the tail of the
memory region. In theory we could split the mem* call, but it's
likely of marginal value. */
static void
maybe_trim_memstar_call (ao_ref *ref, sbitmap live, gimple *stmt)
{
int head_trim, tail_trim;
switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
{
case BUILT_IN_STRNCPY:
case BUILT_IN_STRNCPY_CHK:
compute_trims (ref, live, &head_trim, &tail_trim, stmt);
if (head_trim)
{
/* Head trimming of strncpy is only possible if we can
prove all bytes we would trim are non-zero (or we could
turn the strncpy into memset if there must be zero
among the head trimmed bytes). If we don't know anything
about those bytes, the presence or absence of '\0' bytes
in there will affect whether it acts for the non-trimmed
bytes as memset or memcpy/strncpy. */
c_strlen_data lendata = { };
int orig_head_trim = head_trim;
tree srcstr = gimple_call_arg (stmt, 1);
if (!get_range_strlen (srcstr, &lendata, /*eltsize=*/1)
|| !tree_fits_uhwi_p (lendata.minlen))
head_trim = 0;
else if (tree_to_uhwi (lendata.minlen) < (unsigned) head_trim)
{
head_trim = tree_to_uhwi (lendata.minlen);
if ((orig_head_trim & (UNITS_PER_WORD - 1)) == 0)
head_trim &= ~(UNITS_PER_WORD - 1);
}
if (orig_head_trim != head_trim
&& dump_file
&& (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Adjusting strncpy trimming to (head = %d,"
" tail = %d)\n", head_trim, tail_trim);
}
goto do_memcpy;
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMMOVE:
case BUILT_IN_MEMCPY_CHK:
case BUILT_IN_MEMMOVE_CHK:
compute_trims (ref, live, &head_trim, &tail_trim, stmt);
do_memcpy:
/* Tail trimming is easy, we can just reduce the count. */
if (tail_trim)
decrement_count (stmt, tail_trim);
/* Head trimming requires adjusting all the arguments. */
if (head_trim)
{
/* For __*_chk need to adjust also the last argument. */
if (gimple_call_num_args (stmt) == 4)
{
tree size = gimple_call_arg (stmt, 3);
if (!tree_fits_uhwi_p (size))
break;
if (!integer_all_onesp (size))
{
unsigned HOST_WIDE_INT sz = tree_to_uhwi (size);
if (sz < (unsigned) head_trim)
break;
tree arg = wide_int_to_tree (TREE_TYPE (size),
sz - head_trim);
gimple_call_set_arg (stmt, 3, arg);
}
}
tree *dst = gimple_call_arg_ptr (stmt, 0);
increment_start_addr (stmt, dst, head_trim);
tree *src = gimple_call_arg_ptr (stmt, 1);
increment_start_addr (stmt, src, head_trim);
decrement_count (stmt, head_trim);
}
break;
case BUILT_IN_MEMSET:
case BUILT_IN_MEMSET_CHK:
compute_trims (ref, live, &head_trim, &tail_trim, stmt);
/* Tail trimming is easy, we can just reduce the count. */
if (tail_trim)
decrement_count (stmt, tail_trim);
/* Head trimming requires adjusting all the arguments. */
if (head_trim)
{
/* For __*_chk need to adjust also the last argument. */
if (gimple_call_num_args (stmt) == 4)
{
tree size = gimple_call_arg (stmt, 3);
if (!tree_fits_uhwi_p (size))
break;
if (!integer_all_onesp (size))
{
unsigned HOST_WIDE_INT sz = tree_to_uhwi (size);
if (sz < (unsigned) head_trim)
break;
tree arg = wide_int_to_tree (TREE_TYPE (size),
sz - head_trim);
gimple_call_set_arg (stmt, 3, arg);
}
}
tree *dst = gimple_call_arg_ptr (stmt, 0);
increment_start_addr (stmt, dst, head_trim);
decrement_count (stmt, head_trim);
}
break;
default:
break;
}
}
/* STMT is a memory write where one or more bytes written are dead
stores. ORIG is the bitmap of bytes stored by STMT. LIVE is the
bitmap of stores that are actually live.
Attempt to rewrite STMT so that it writes fewer memory locations. Right
now we only support trimming at the start or end of the memory region.
It's not clear how much there is to be gained by trimming from the middle
of the region. */
static void
maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt)
{
if (is_gimple_assign (stmt)
&& TREE_CODE (gimple_assign_lhs (stmt)) != TARGET_MEM_REF)
{
switch (gimple_assign_rhs_code (stmt))
{
case CONSTRUCTOR:
maybe_trim_constructor_store (ref, live, stmt);
break;
case COMPLEX_CST:
maybe_trim_complex_store (ref, live, stmt);
break;
default:
break;
}
}
}
/* Return TRUE if USE_REF reads bytes from LIVE where live is
derived from REF, a write reference.
While this routine may modify USE_REF, it's passed by value, not
location. So callers do not see those modifications. */
static bool
live_bytes_read (ao_ref *use_ref, ao_ref *ref, sbitmap live)
{
/* We have already verified that USE_REF and REF hit the same object.
Now verify that there's actually an overlap between USE_REF and REF. */
HOST_WIDE_INT start, size;
if (get_byte_range (use_ref, ref, false, &start, &size))
{
/* If USE_REF covers all of REF, then it will hit one or more
live bytes. This avoids useless iteration over the bitmap
below. */
if (start == 0 && known_eq (size * 8, ref->size))
return true;
/* Now check if any of the remaining bits in use_ref are set in LIVE. */
return bitmap_bit_in_range_p (live, start, (start + size - 1));
}
return true;
}
/* Callback for dse_classify_store calling for_each_index. Verify that
indices are invariant in the loop with backedge PHI in basic-block DATA. */
static bool
check_name (tree, tree *idx, void *data)
{
basic_block phi_bb = (basic_block) data;
if (TREE_CODE (*idx) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (*idx)
&& dominated_by_p (CDI_DOMINATORS, gimple_bb (SSA_NAME_DEF_STMT (*idx)),
phi_bb))
return false;
return true;
}
/* STMT stores the value 0 into one or more memory locations
(via memset, empty constructor, calloc call, etc).
See if there is a subsequent store of the value 0 to one
or more of the same memory location(s). If so, the subsequent
store is redundant and can be removed.
The subsequent stores could be via memset, empty constructors,
simple MEM stores, etc. */
static void
dse_optimize_redundant_stores (gimple *stmt)
{
int cnt = 0;
/* TBAA state of STMT, if it is a call it is effectively alias-set zero. */
alias_set_type earlier_set = 0;
alias_set_type earlier_base_set = 0;
if (is_gimple_assign (stmt))
{
ao_ref lhs_ref;
ao_ref_init (&lhs_ref, gimple_assign_lhs (stmt));
earlier_set = ao_ref_alias_set (&lhs_ref);
earlier_base_set = ao_ref_base_alias_set (&lhs_ref);
}
/* We could do something fairly complex and look through PHIs
like DSE_CLASSIFY_STORE, but it doesn't seem to be worth
the effort.
Look at all the immediate uses of the VDEF (which are obviously
dominated by STMT). See if one or more stores 0 into the same
memory locations a STMT, if so remove the immediate use statements. */
tree defvar = gimple_vdef (stmt);
imm_use_iterator ui;
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
{
/* Limit stmt walking. */
if (++cnt > param_dse_max_alias_queries_per_store)
break;
/* If USE_STMT stores 0 into one or more of the same locations
as STMT and STMT would kill USE_STMT, then we can just remove
USE_STMT. */
tree fndecl;
if ((is_gimple_assign (use_stmt)
&& gimple_vdef (use_stmt)
&& (gimple_assign_single_p (use_stmt)
&& initializer_zerop (gimple_assign_rhs1 (use_stmt))))
|| (gimple_call_builtin_p (use_stmt, BUILT_IN_NORMAL)
&& (fndecl = gimple_call_fndecl (use_stmt)) != NULL
&& (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK)
&& integer_zerop (gimple_call_arg (use_stmt, 1))))
{
ao_ref write;
if (!initialize_ao_ref_for_dse (use_stmt, &write))
break;
if (valid_ao_ref_for_dse (&write)
&& stmt_kills_ref_p (stmt, &write))
{
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
if (is_gimple_assign (use_stmt))
{
ao_ref lhs_ref;
ao_ref_init (&lhs_ref, gimple_assign_lhs (use_stmt));
if ((earlier_set == ao_ref_alias_set (&lhs_ref)
|| alias_set_subset_of (ao_ref_alias_set (&lhs_ref),
earlier_set))
&& (earlier_base_set == ao_ref_base_alias_set (&lhs_ref)
|| alias_set_subset_of
(ao_ref_base_alias_set (&lhs_ref),
earlier_base_set)))
delete_dead_or_redundant_assignment (&gsi, "redundant",
need_eh_cleanup,
need_ab_cleanup);
}
else if (is_gimple_call (use_stmt))
{
if ((earlier_set == 0
|| alias_set_subset_of (0, earlier_set))
&& (earlier_base_set == 0
|| alias_set_subset_of (0, earlier_base_set)))
delete_dead_or_redundant_call (&gsi, "redundant");
}
else
gcc_unreachable ();
}
}
}
}
/* A helper of dse_optimize_stmt.
Given a GIMPLE_ASSIGN in STMT that writes to REF, classify it
according to downstream uses and defs. Sets *BY_CLOBBER_P to true
if only clobber statements influenced the classification result.
Returns the classification. */
dse_store_status
dse_classify_store (ao_ref *ref, gimple *stmt,
bool byte_tracking_enabled, sbitmap live_bytes,
bool *by_clobber_p, tree stop_at_vuse)
{
gimple *temp;
int cnt = 0;
auto_bitmap visited;
if (by_clobber_p)
*by_clobber_p = true;
/* Find the first dominated statement that clobbers (part of) the
memory stmt stores to with no intermediate statement that may use
part of the memory stmt stores. That is, find a store that may
prove stmt to be a dead store. */
temp = stmt;
do
{
gimple *use_stmt;
imm_use_iterator ui;
bool fail = false;
tree defvar;
if (gimple_code (temp) == GIMPLE_PHI)
{
/* If we visit this PHI by following a backedge then we have to
make sure ref->ref only refers to SSA names that are invariant
with respect to the loop represented by this PHI node. */
if (dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt),
gimple_bb (temp))
&& !for_each_index (ref->ref ? &ref->ref : &ref->base,
check_name, gimple_bb (temp)))
return DSE_STORE_LIVE;
defvar = PHI_RESULT (temp);
bitmap_set_bit (visited, SSA_NAME_VERSION (defvar));
}
else
defvar = gimple_vdef (temp);
/* If we're instructed to stop walking at region boundary, do so. */
if (defvar == stop_at_vuse)
return DSE_STORE_LIVE;
auto_vec<gimple *, 10> defs;
gimple *first_phi_def = NULL;
gimple *last_phi_def = NULL;
FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
{
/* Limit stmt walking. */
if (++cnt > param_dse_max_alias_queries_per_store)
{
fail = true;
break;
}
/* In simple cases we can look through PHI nodes, but we
have to be careful with loops and with memory references
containing operands that are also operands of PHI nodes.
See gcc.c-torture/execute/20051110-*.c. */
if (gimple_code (use_stmt) == GIMPLE_PHI)
{
/* If we already visited this PHI ignore it for further
processing. */
if (!bitmap_bit_p (visited,
SSA_NAME_VERSION (PHI_RESULT (use_stmt))))
{
defs.safe_push (use_stmt);
if (!first_phi_def)
first_phi_def = use_stmt;
last_phi_def = use_stmt;
}
}
/* If the statement is a use the store is not dead. */
else if (ref_maybe_used_by_stmt_p (use_stmt, ref))
{
/* Handle common cases where we can easily build an ao_ref
structure for USE_STMT and in doing so we find that the
references hit non-live bytes and thus can be ignored.
TODO: We can also use modref summary to handle calls. */
if (byte_tracking_enabled
&& is_gimple_assign (use_stmt))
{
ao_ref use_ref;
ao_ref_init (&use_ref, gimple_assign_rhs1 (use_stmt));
if (valid_ao_ref_for_dse (&use_ref)
&& operand_equal_p (use_ref.base, ref->base,
OEP_ADDRESS_OF)
&& !live_bytes_read (&use_ref, ref, live_bytes))
{
/* If this is a store, remember it as we possibly
need to walk the defs uses. */
if (gimple_vdef (use_stmt))
defs.safe_push (use_stmt);
continue;
}
}
fail = true;
break;
}
/* We have visited ourselves already so ignore STMT for the
purpose of chaining. */
else if (use_stmt == stmt)
;
/* If this is a store, remember it as we possibly need to walk the
defs uses. */
else if (gimple_vdef (use_stmt))
defs.safe_push (use_stmt);
}
if (fail)
{
/* STMT might be partially dead and we may be able to reduce
how many memory locations it stores into. */
if (byte_tracking_enabled && !gimple_clobber_p (stmt))
return DSE_STORE_MAYBE_PARTIAL_DEAD;
return DSE_STORE_LIVE;
}
/* If we didn't find any definition this means the store is dead
if it isn't a store to global reachable memory. In this case
just pretend the stmt makes itself dead. Otherwise fail. */
if (defs.is_empty ())
{
if (ref_may_alias_global_p (ref, false))
return DSE_STORE_LIVE;
if (by_clobber_p)
*by_clobber_p = false;
return DSE_STORE_DEAD;
}
/* Process defs and remove those we need not process further. */
for (unsigned i = 0; i < defs.length ();)
{
gimple *def = defs[i];
gimple *use_stmt;
use_operand_p use_p;
tree vdef = (gimple_code (def) == GIMPLE_PHI
? gimple_phi_result (def) : gimple_vdef (def));
/* If the path to check starts with a kill we do not need to
process it further.
??? With byte tracking we need only kill the bytes currently
live. */
if (stmt_kills_ref_p (def, ref))
{
if (by_clobber_p && !gimple_clobber_p (def))
*by_clobber_p = false;
defs.unordered_remove (i);
}
/* If the path ends here we do not need to process it further.
This for example happens with calls to noreturn functions. */
else if (has_zero_uses (vdef))
{
/* But if the store is to global memory it is definitely
not dead. */
if (ref_may_alias_global_p (ref, false))
return DSE_STORE_LIVE;
defs.unordered_remove (i);
}
/* In addition to kills we can remove defs whose only use
is another def in defs. That can only ever be PHIs of which
we track two for simplicity reasons, the first and last in
{first,last}_phi_def (we fail for multiple PHIs anyways).
We can also ignore defs that feed only into
already visited PHIs. */
else if (single_imm_use (vdef, &use_p, &use_stmt)
&& (use_stmt == first_phi_def
|| use_stmt == last_phi_def
|| (gimple_code (use_stmt) == GIMPLE_PHI
&& bitmap_bit_p (visited,
SSA_NAME_VERSION
(PHI_RESULT (use_stmt))))))
defs.unordered_remove (i);
else
++i;
}
/* If all defs kill the ref we are done. */
if (defs.is_empty ())
return DSE_STORE_DEAD;
/* If more than one def survives fail. */
if (defs.length () > 1)
{
/* STMT might be partially dead and we may be able to reduce
how many memory locations it stores into. */
if (byte_tracking_enabled && !gimple_clobber_p (stmt))
return DSE_STORE_MAYBE_PARTIAL_DEAD;
return DSE_STORE_LIVE;
}
temp = defs[0];
/* Track partial kills. */
if (byte_tracking_enabled)
{
clear_bytes_written_by (live_bytes, temp, ref);
if (bitmap_empty_p (live_bytes))
{
if (by_clobber_p && !gimple_clobber_p (temp))
*by_clobber_p = false;
return DSE_STORE_DEAD;
}
}
}
/* Continue walking until there are no more live bytes. */
while (1);
}
/* Delete a dead call at GSI, which is mem* call of some kind. */
static void
delete_dead_or_redundant_call (gimple_stmt_iterator *gsi, const char *type)
{
gimple *stmt = gsi_stmt (*gsi);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Deleted %s call: ", type);
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "\n");
}
basic_block bb = gimple_bb (stmt);
tree lhs = gimple_call_lhs (stmt);
if (lhs)
{
tree ptr = gimple_call_arg (stmt, 0);
gimple *new_stmt = gimple_build_assign (lhs, ptr);
unlink_stmt_vdef (stmt);
if (gsi_replace (gsi, new_stmt, true))
bitmap_set_bit (need_eh_cleanup, bb->index);
}
else
{
/* Then we need to fix the operand of the consuming stmt. */
unlink_stmt_vdef (stmt);
/* Remove the dead store. */
if (gsi_remove (gsi, true))
bitmap_set_bit (need_eh_cleanup, bb->index);
release_defs (stmt);
}
}
/* Delete a dead store at GSI, which is a gimple assignment. */
void
delete_dead_or_redundant_assignment (gimple_stmt_iterator *gsi,
const char *type,
bitmap need_eh_cleanup,
bitmap need_ab_cleanup)
{
gimple *stmt = gsi_stmt (*gsi);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Deleted %s store: ", type);
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "\n");
}
/* Then we need to fix the operand of the consuming stmt. */
unlink_stmt_vdef (stmt);
/* Remove the dead store. */
basic_block bb = gimple_bb (stmt);
if (need_ab_cleanup && stmt_can_make_abnormal_goto (stmt))
bitmap_set_bit (need_ab_cleanup, bb->index);
if (gsi_remove (gsi, true) && need_eh_cleanup)
bitmap_set_bit (need_eh_cleanup, bb->index);
/* And release any SSA_NAMEs set in this statement back to the
SSA_NAME manager. */
release_defs (stmt);
}
/* Try to prove, using modref summary, that all memory written to by a call is
dead and remove it. Assume that if return value is written to memory
it is already proved to be dead. */
static bool
dse_optimize_call (gimple_stmt_iterator *gsi, sbitmap live_bytes)
{
gcall *stmt = dyn_cast <gcall *> (gsi_stmt (*gsi));
if (!stmt)
return false;
tree callee = gimple_call_fndecl (stmt);
if (!callee)
return false;
/* Pure/const functions are optimized by normal DCE
or handled as store above. */
int flags = gimple_call_flags (stmt);
if ((flags & (ECF_PURE|ECF_CONST|ECF_NOVOPS))
&& !(flags & (ECF_LOOPING_CONST_OR_PURE)))
return false;
cgraph_node *node = cgraph_node::get (callee);
if (!node)
return false;
if (stmt_could_throw_p (cfun, stmt)
&& !cfun->can_delete_dead_exceptions)
return false;
/* If return value is used the call is not dead. */
tree lhs = gimple_call_lhs (stmt);
if (lhs && TREE_CODE (lhs) == SSA_NAME)
{
imm_use_iterator ui;
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, ui, lhs)
if (!is_gimple_debug (use_stmt))
return false;
}
/* Verify that there are no side-effects except for return value
and memory writes tracked by modref. */
modref_summary *summary = get_modref_function_summary (node);
if (!summary || !summary->try_dse)
return false;
bool by_clobber_p = false;
/* Walk all memory writes and verify that they are dead. */
for (auto base_node : summary->stores->bases)
for (auto ref_node : base_node->refs)
for (auto access_node : ref_node->accesses)
{
tree arg = access_node.get_call_arg (stmt);
if (!arg || !POINTER_TYPE_P (TREE_TYPE (arg)))
return false;
if (integer_zerop (arg)
&& !targetm.addr_space.zero_address_valid
(TYPE_ADDR_SPACE (TREE_TYPE (arg))))
continue;
ao_ref ref;
if (!access_node.get_ao_ref (stmt, &ref))
return false;
ref.ref_alias_set = ref_node->ref;
ref.base_alias_set = base_node->base;
bool byte_tracking_enabled
= setup_live_bytes_from_ref (&ref, live_bytes);
enum dse_store_status store_status;
store_status = dse_classify_store (&ref, stmt,
byte_tracking_enabled,
live_bytes, &by_clobber_p);
if (store_status != DSE_STORE_DEAD)
return false;
}
delete_dead_or_redundant_assignment (gsi, "dead", need_eh_cleanup,
need_ab_cleanup);
return true;
}
/* Attempt to eliminate dead stores in the statement referenced by BSI.
A dead store is a store into a memory location which will later be
overwritten by another store without any intervening loads. In this
case the earlier store can be deleted.
In our SSA + virtual operand world we use immediate uses of virtual
operands to detect dead stores. If a store's virtual definition
is used precisely once by a later store to the same location which
post dominates the first store, then the first store is dead. */
static void
dse_optimize_stmt (function *fun, gimple_stmt_iterator *gsi, sbitmap live_bytes)
{
gimple *stmt = gsi_stmt (*gsi);
/* Don't return early on *this_2(D) ={v} {CLOBBER}. */
if (gimple_has_volatile_ops (stmt)
&& (!gimple_clobber_p (stmt)
|| TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF))
return;
ao_ref ref;
/* If this is not a store we can still remove dead call using
modref summary. */
if (!initialize_ao_ref_for_dse (stmt, &ref))
{
dse_optimize_call (gsi, live_bytes);
return;
}
/* We know we have virtual definitions. We can handle assignments and
some builtin calls. */
if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
{
tree fndecl = gimple_call_fndecl (stmt);
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMMOVE:
case BUILT_IN_STRNCPY:
case BUILT_IN_MEMSET:
case BUILT_IN_MEMCPY_CHK:
case BUILT_IN_MEMMOVE_CHK:
case BUILT_IN_STRNCPY_CHK:
case BUILT_IN_MEMSET_CHK:
{
/* Occasionally calls with an explicit length of zero
show up in the IL. It's pointless to do analysis
on them, they're trivially dead. */
tree size = gimple_call_arg (stmt, 2);
if (integer_zerop (size))
{
delete_dead_or_redundant_call (gsi, "dead");
return;
}
/* If this is a memset call that initializes an object
to zero, it may be redundant with an earlier memset
or empty CONSTRUCTOR of a larger object. */
if ((DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK)
&& integer_zerop (gimple_call_arg (stmt, 1)))
dse_optimize_redundant_stores (stmt);
enum dse_store_status store_status;
bool byte_tracking_enabled
= setup_live_bytes_from_ref (&ref, live_bytes);
store_status = dse_classify_store (&ref, stmt,
byte_tracking_enabled,
live_bytes);
if (store_status == DSE_STORE_LIVE)
return;
if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
{
maybe_trim_memstar_call (&ref, live_bytes, stmt);
return;
}
if (store_status == DSE_STORE_DEAD)
delete_dead_or_redundant_call (gsi, "dead");
return;
}
case BUILT_IN_CALLOC:
/* We already know the arguments are integer constants. */
dse_optimize_redundant_stores (stmt);
return;
default:
return;
}
}
bool by_clobber_p = false;
/* Check if this statement stores zero to a memory location,
and if there is a subsequent store of zero to the same
memory location. If so, remove the subsequent store. */
if (gimple_assign_single_p (stmt)
&& initializer_zerop (gimple_assign_rhs1 (stmt)))
dse_optimize_redundant_stores (stmt);
/* Self-assignments are zombies. */
if (is_gimple_assign (stmt)
&& operand_equal_p (gimple_assign_rhs1 (stmt),
gimple_assign_lhs (stmt), 0))
;
else
{
bool byte_tracking_enabled
= setup_live_bytes_from_ref (&ref, live_bytes);
enum dse_store_status store_status;
store_status = dse_classify_store (&ref, stmt,
byte_tracking_enabled,
live_bytes, &by_clobber_p);
if (store_status == DSE_STORE_LIVE)
return;
if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
{
maybe_trim_partially_dead_store (&ref, live_bytes, stmt);
return;
}
}
/* Now we know that use_stmt kills the LHS of stmt. */
/* But only remove *this_2(D) ={v} {CLOBBER} if killed by
another clobber stmt. */
if (gimple_clobber_p (stmt)
&& !by_clobber_p)
return;
if (is_gimple_call (stmt)
&& (gimple_has_side_effects (stmt)
|| (stmt_could_throw_p (fun, stmt)
&& !fun->can_delete_dead_exceptions)))
{
/* See if we can remove complete call. */
if (dse_optimize_call (gsi, live_bytes))
return;
/* Make sure we do not remove a return slot we cannot reconstruct
later. */
if (gimple_call_return_slot_opt_p (as_a <gcall *>(stmt))
&& (TREE_ADDRESSABLE (TREE_TYPE (gimple_call_fntype (stmt)))
|| !poly_int_tree_p
(TYPE_SIZE (TREE_TYPE (gimple_call_fntype (stmt))))))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Deleted dead store in call LHS: ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "\n");
}
gimple_call_set_lhs (stmt, NULL_TREE);
update_stmt (stmt);
}
else
delete_dead_or_redundant_assignment (gsi, "dead", need_eh_cleanup,
need_ab_cleanup);
}
namespace {
const pass_data pass_data_dse =
{
GIMPLE_PASS, /* type */
"dse", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_DSE, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_dse : public gimple_opt_pass
{
public:
pass_dse (gcc::context *ctxt)
: gimple_opt_pass (pass_data_dse, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_dse (m_ctxt); }
virtual bool gate (function *) { return flag_tree_dse != 0; }
virtual unsigned int execute (function *);
}; // class pass_dse
unsigned int
pass_dse::execute (function *fun)
{
unsigned todo = 0;
bool released_def = false;
need_eh_cleanup = BITMAP_ALLOC (NULL);
need_ab_cleanup = BITMAP_ALLOC (NULL);
auto_sbitmap live_bytes (param_dse_max_object_size);
renumber_gimple_stmt_uids (fun);
calculate_dominance_info (CDI_DOMINATORS);
/* Dead store elimination is fundamentally a reverse program order walk. */
int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (fun) - NUM_FIXED_BLOCKS);
int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
for (int i = n; i != 0; --i)
{
basic_block bb = BASIC_BLOCK_FOR_FN (fun, rpo[i-1]);
gimple_stmt_iterator gsi;
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (gimple_vdef (stmt))
dse_optimize_stmt (fun, &gsi, live_bytes);
else if (def_operand_p
def_p = single_ssa_def_operand (stmt, SSA_OP_DEF))
{
/* When we remove dead stores make sure to also delete trivially
dead SSA defs. */
if (has_zero_uses (DEF_FROM_PTR (def_p))
&& !gimple_has_side_effects (stmt)
&& !is_ctrl_altering_stmt (stmt)
&& (!stmt_could_throw_p (fun, stmt)
|| fun->can_delete_dead_exceptions))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Deleted trivially dead stmt: ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "\n");
}
if (gsi_remove (&gsi, true) && need_eh_cleanup)
bitmap_set_bit (need_eh_cleanup, bb->index);
release_defs (stmt);
released_def = true;
}
}
if (gsi_end_p (gsi))
gsi = gsi_last_bb (bb);
else
gsi_prev (&gsi);
}
bool removed_phi = false;
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);)
{
gphi *phi = si.phi ();
if (has_zero_uses (gimple_phi_result (phi)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Deleted trivially dead PHI: ");
print_gimple_stmt (dump_file, phi, 0, dump_flags);
fprintf (dump_file, "\n");
}
remove_phi_node (&si, true);
removed_phi = true;
released_def = true;
}
else
gsi_next (&si);
}
if (removed_phi && gimple_seq_empty_p (phi_nodes (bb)))
todo |= TODO_cleanup_cfg;
}
free (rpo);
/* Removal of stores may make some EH edges dead. Purge such edges from
the CFG as needed. */
if (!bitmap_empty_p (need_eh_cleanup))
{
gimple_purge_all_dead_eh_edges (need_eh_cleanup);
todo |= TODO_cleanup_cfg;
}
if (!bitmap_empty_p (need_ab_cleanup))
{
gimple_purge_all_dead_abnormal_call_edges (need_ab_cleanup);
todo |= TODO_cleanup_cfg;
}
BITMAP_FREE (need_eh_cleanup);
BITMAP_FREE (need_ab_cleanup);
if (released_def)
free_numbers_of_iterations_estimates (fun);
return todo;
}
} // anon namespace
gimple_opt_pass *
make_pass_dse (gcc::context *ctxt)
{
return new pass_dse (ctxt);
}
|