1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
|
/* Forward propagation of expressions for single use variables.
Copyright (C) 2004-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "expmed.h"
#include "optabs-query.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "expr.h"
#include "tree-dfa.h"
#include "tree-ssa-propagate.h"
#include "tree-ssa-dom.h"
#include "builtins.h"
#include "tree-cfgcleanup.h"
#include "cfganal.h"
#include "optabs-tree.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "internal-fn.h"
#include "cgraph.h"
#include "tree-ssa.h"
/* This pass propagates the RHS of assignment statements into use
sites of the LHS of the assignment. It's basically a specialized
form of tree combination. It is hoped all of this can disappear
when we have a generalized tree combiner.
One class of common cases we handle is forward propagating a single use
variable into a COND_EXPR.
bb0:
x = a COND b;
if (x) goto ... else goto ...
Will be transformed into:
bb0:
if (a COND b) goto ... else goto ...
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
Or (assuming c1 and c2 are constants):
bb0:
x = a + c1;
if (x EQ/NEQ c2) goto ... else goto ...
Will be transformed into:
bb0:
if (a EQ/NEQ (c2 - c1)) goto ... else goto ...
Similarly for x = a - c1.
Or
bb0:
x = !a
if (x) goto ... else goto ...
Will be transformed into:
bb0:
if (a == 0) goto ... else goto ...
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
For these cases, we propagate A into all, possibly more than one,
COND_EXPRs that use X.
Or
bb0:
x = (typecast) a
if (x) goto ... else goto ...
Will be transformed into:
bb0:
if (a != 0) goto ... else goto ...
(Assuming a is an integral type and x is a boolean or x is an
integral and a is a boolean.)
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
For these cases, we propagate A into all, possibly more than one,
COND_EXPRs that use X.
In addition to eliminating the variable and the statement which assigns
a value to the variable, we may be able to later thread the jump without
adding insane complexity in the dominator optimizer.
Also note these transformations can cascade. We handle this by having
a worklist of COND_EXPR statements to examine. As we make a change to
a statement, we put it back on the worklist to examine on the next
iteration of the main loop.
A second class of propagation opportunities arises for ADDR_EXPR
nodes.
ptr = &x->y->z;
res = *ptr;
Will get turned into
res = x->y->z;
Or
ptr = (type1*)&type2var;
res = *ptr
Will get turned into (if type1 and type2 are the same size
and neither have volatile on them):
res = VIEW_CONVERT_EXPR<type1>(type2var)
Or
ptr = &x[0];
ptr2 = ptr + <constant>;
Will get turned into
ptr2 = &x[constant/elementsize];
Or
ptr = &x[0];
offset = index * element_size;
offset_p = (pointer) offset;
ptr2 = ptr + offset_p
Will get turned into:
ptr2 = &x[index];
Or
ssa = (int) decl
res = ssa & 1
Provided that decl has known alignment >= 2, will get turned into
res = 0
We also propagate casts into SWITCH_EXPR and COND_EXPR conditions to
allow us to remove the cast and {NOT_EXPR,NEG_EXPR} into a subsequent
{NOT_EXPR,NEG_EXPR}.
This will (of course) be extended as other needs arise. */
static bool forward_propagate_addr_expr (tree, tree, bool);
/* Set to true if we delete dead edges during the optimization. */
static bool cfg_changed;
static tree rhs_to_tree (tree type, gimple *stmt);
static bitmap to_purge;
/* Const-and-copy lattice. */
static vec<tree> lattice;
/* Set the lattice entry for NAME to VAL. */
static void
fwprop_set_lattice_val (tree name, tree val)
{
if (TREE_CODE (name) == SSA_NAME)
{
if (SSA_NAME_VERSION (name) >= lattice.length ())
{
lattice.reserve (num_ssa_names - lattice.length ());
lattice.quick_grow_cleared (num_ssa_names);
}
lattice[SSA_NAME_VERSION (name)] = val;
}
}
/* Invalidate the lattice entry for NAME, done when releasing SSA names. */
static void
fwprop_invalidate_lattice (tree name)
{
if (name
&& TREE_CODE (name) == SSA_NAME
&& SSA_NAME_VERSION (name) < lattice.length ())
lattice[SSA_NAME_VERSION (name)] = NULL_TREE;
}
/* Get the statement we can propagate from into NAME skipping
trivial copies. Returns the statement which defines the
propagation source or NULL_TREE if there is no such one.
If SINGLE_USE_ONLY is set considers only sources which have
a single use chain up to NAME. If SINGLE_USE_P is non-null,
it is set to whether the chain to NAME is a single use chain
or not. SINGLE_USE_P is not written to if SINGLE_USE_ONLY is set. */
static gimple *
get_prop_source_stmt (tree name, bool single_use_only, bool *single_use_p)
{
bool single_use = true;
do {
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
if (!has_single_use (name))
{
single_use = false;
if (single_use_only)
return NULL;
}
/* If name is defined by a PHI node or is the default def, bail out. */
if (!is_gimple_assign (def_stmt))
return NULL;
/* If def_stmt is a simple copy, continue looking. */
if (gimple_assign_rhs_code (def_stmt) == SSA_NAME)
name = gimple_assign_rhs1 (def_stmt);
else
{
if (!single_use_only && single_use_p)
*single_use_p = single_use;
return def_stmt;
}
} while (1);
}
/* Checks if the destination ssa name in DEF_STMT can be used as
propagation source. Returns true if so, otherwise false. */
static bool
can_propagate_from (gimple *def_stmt)
{
gcc_assert (is_gimple_assign (def_stmt));
/* If the rhs has side-effects we cannot propagate from it. */
if (gimple_has_volatile_ops (def_stmt))
return false;
/* If the rhs is a load we cannot propagate from it. */
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_reference
|| TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_declaration)
return false;
/* Constants can be always propagated. */
if (gimple_assign_single_p (def_stmt)
&& is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
return true;
/* We cannot propagate ssa names that occur in abnormal phi nodes. */
if (stmt_references_abnormal_ssa_name (def_stmt))
return false;
/* If the definition is a conversion of a pointer to a function type,
then we cannot apply optimizations as some targets require
function pointers to be canonicalized and in this case this
optimization could eliminate a necessary canonicalization. */
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
{
tree rhs = gimple_assign_rhs1 (def_stmt);
if (POINTER_TYPE_P (TREE_TYPE (rhs))
&& TREE_CODE (TREE_TYPE (TREE_TYPE (rhs))) == FUNCTION_TYPE)
return false;
}
return true;
}
/* Remove a chain of dead statements starting at the definition of
NAME. The chain is linked via the first operand of the defining statements.
If NAME was replaced in its only use then this function can be used
to clean up dead stmts. The function handles already released SSA
names gracefully.
Returns true if cleanup-cfg has to run. */
static bool
remove_prop_source_from_use (tree name)
{
gimple_stmt_iterator gsi;
gimple *stmt;
bool cfg_changed = false;
do {
basic_block bb;
if (SSA_NAME_IN_FREE_LIST (name)
|| SSA_NAME_IS_DEFAULT_DEF (name)
|| !has_zero_uses (name))
return cfg_changed;
stmt = SSA_NAME_DEF_STMT (name);
if (gimple_code (stmt) == GIMPLE_PHI
|| gimple_has_side_effects (stmt))
return cfg_changed;
bb = gimple_bb (stmt);
gsi = gsi_for_stmt (stmt);
unlink_stmt_vdef (stmt);
if (gsi_remove (&gsi, true))
bitmap_set_bit (to_purge, bb->index);
fwprop_invalidate_lattice (gimple_get_lhs (stmt));
release_defs (stmt);
name = is_gimple_assign (stmt) ? gimple_assign_rhs1 (stmt) : NULL_TREE;
} while (name && TREE_CODE (name) == SSA_NAME);
return cfg_changed;
}
/* Return the rhs of a gassign *STMT in a form of a single tree,
converted to type TYPE.
This should disappear, but is needed so we can combine expressions and use
the fold() interfaces. Long term, we need to develop folding and combine
routines that deal with gimple exclusively . */
static tree
rhs_to_tree (tree type, gimple *stmt)
{
location_t loc = gimple_location (stmt);
enum tree_code code = gimple_assign_rhs_code (stmt);
switch (get_gimple_rhs_class (code))
{
case GIMPLE_TERNARY_RHS:
return fold_build3_loc (loc, code, type, gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt),
gimple_assign_rhs3 (stmt));
case GIMPLE_BINARY_RHS:
return fold_build2_loc (loc, code, type, gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt));
case GIMPLE_UNARY_RHS:
return build1 (code, type, gimple_assign_rhs1 (stmt));
case GIMPLE_SINGLE_RHS:
return gimple_assign_rhs1 (stmt);
default:
gcc_unreachable ();
}
}
/* Combine OP0 CODE OP1 in the context of a COND_EXPR. Returns
the folded result in a form suitable for COND_EXPR_COND or
NULL_TREE, if there is no suitable simplified form. If
INVARIANT_ONLY is true only gimple_min_invariant results are
considered simplified. */
static tree
combine_cond_expr_cond (gimple *stmt, enum tree_code code, tree type,
tree op0, tree op1, bool invariant_only)
{
tree t;
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
fold_defer_overflow_warnings ();
t = fold_binary_loc (gimple_location (stmt), code, type, op0, op1);
if (!t)
{
fold_undefer_overflow_warnings (false, NULL, 0);
return NULL_TREE;
}
/* Require that we got a boolean type out if we put one in. */
gcc_assert (TREE_CODE (TREE_TYPE (t)) == TREE_CODE (type));
/* Canonicalize the combined condition for use in a COND_EXPR. */
t = canonicalize_cond_expr_cond (t);
/* Bail out if we required an invariant but didn't get one. */
if (!t || (invariant_only && !is_gimple_min_invariant (t)))
{
fold_undefer_overflow_warnings (false, NULL, 0);
return NULL_TREE;
}
bool nowarn = warning_suppressed_p (stmt, OPT_Wstrict_overflow);
fold_undefer_overflow_warnings (!nowarn, stmt, 0);
return t;
}
/* Combine the comparison OP0 CODE OP1 at LOC with the defining statements
of its operand. Return a new comparison tree or NULL_TREE if there
were no simplifying combines. */
static tree
forward_propagate_into_comparison_1 (gimple *stmt,
enum tree_code code, tree type,
tree op0, tree op1)
{
tree tmp = NULL_TREE;
tree rhs0 = NULL_TREE, rhs1 = NULL_TREE;
bool single_use0_p = false, single_use1_p = false;
/* For comparisons use the first operand, that is likely to
simplify comparisons against constants. */
if (TREE_CODE (op0) == SSA_NAME)
{
gimple *def_stmt = get_prop_source_stmt (op0, false, &single_use0_p);
if (def_stmt && can_propagate_from (def_stmt))
{
enum tree_code def_code = gimple_assign_rhs_code (def_stmt);
bool invariant_only_p = !single_use0_p;
rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
/* Always combine comparisons or conversions from booleans. */
if (TREE_CODE (op1) == INTEGER_CST
&& ((CONVERT_EXPR_CODE_P (def_code)
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs0, 0)))
== BOOLEAN_TYPE)
|| TREE_CODE_CLASS (def_code) == tcc_comparison))
invariant_only_p = false;
tmp = combine_cond_expr_cond (stmt, code, type,
rhs0, op1, invariant_only_p);
if (tmp)
return tmp;
}
}
/* If that wasn't successful, try the second operand. */
if (TREE_CODE (op1) == SSA_NAME)
{
gimple *def_stmt = get_prop_source_stmt (op1, false, &single_use1_p);
if (def_stmt && can_propagate_from (def_stmt))
{
rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
tmp = combine_cond_expr_cond (stmt, code, type,
op0, rhs1, !single_use1_p);
if (tmp)
return tmp;
}
}
/* If that wasn't successful either, try both operands. */
if (rhs0 != NULL_TREE
&& rhs1 != NULL_TREE)
tmp = combine_cond_expr_cond (stmt, code, type,
rhs0, rhs1,
!(single_use0_p && single_use1_p));
return tmp;
}
/* Propagate from the ssa name definition statements of the assignment
from a comparison at *GSI into the conditional if that simplifies it.
Returns 1 if the stmt was modified and 2 if the CFG needs cleanup,
otherwise returns 0. */
static int
forward_propagate_into_comparison (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree tmp;
bool cfg_changed = false;
tree type = TREE_TYPE (gimple_assign_lhs (stmt));
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs2 = gimple_assign_rhs2 (stmt);
/* Combine the comparison with defining statements. */
tmp = forward_propagate_into_comparison_1 (stmt,
gimple_assign_rhs_code (stmt),
type, rhs1, rhs2);
if (tmp && useless_type_conversion_p (type, TREE_TYPE (tmp)))
{
gimple_assign_set_rhs_from_tree (gsi, tmp);
fold_stmt (gsi);
update_stmt (gsi_stmt (*gsi));
if (TREE_CODE (rhs1) == SSA_NAME)
cfg_changed |= remove_prop_source_from_use (rhs1);
if (TREE_CODE (rhs2) == SSA_NAME)
cfg_changed |= remove_prop_source_from_use (rhs2);
return cfg_changed ? 2 : 1;
}
return 0;
}
/* Propagate from the ssa name definition statements of COND_EXPR
in GIMPLE_COND statement STMT into the conditional if that simplifies it.
Returns zero if no statement was changed, one if there were
changes and two if cfg_cleanup needs to run.
This must be kept in sync with forward_propagate_into_cond. */
static int
forward_propagate_into_gimple_cond (gcond *stmt)
{
tree tmp;
enum tree_code code = gimple_cond_code (stmt);
bool cfg_changed = false;
tree rhs1 = gimple_cond_lhs (stmt);
tree rhs2 = gimple_cond_rhs (stmt);
/* We can do tree combining on SSA_NAME and comparison expressions. */
if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
return 0;
tmp = forward_propagate_into_comparison_1 (stmt, code,
boolean_type_node,
rhs1, rhs2);
if (tmp
&& is_gimple_condexpr_for_cond (tmp))
{
if (dump_file)
{
fprintf (dump_file, " Replaced '");
print_gimple_expr (dump_file, stmt, 0);
fprintf (dump_file, "' with '");
print_generic_expr (dump_file, tmp);
fprintf (dump_file, "'\n");
}
gimple_cond_set_condition_from_tree (stmt, unshare_expr (tmp));
update_stmt (stmt);
if (TREE_CODE (rhs1) == SSA_NAME)
cfg_changed |= remove_prop_source_from_use (rhs1);
if (TREE_CODE (rhs2) == SSA_NAME)
cfg_changed |= remove_prop_source_from_use (rhs2);
return (cfg_changed || is_gimple_min_invariant (tmp)) ? 2 : 1;
}
/* Canonicalize _Bool == 0 and _Bool != 1 to _Bool != 0 by swapping edges. */
if ((TREE_CODE (TREE_TYPE (rhs1)) == BOOLEAN_TYPE
|| (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
&& TYPE_PRECISION (TREE_TYPE (rhs1)) == 1))
&& ((code == EQ_EXPR
&& integer_zerop (rhs2))
|| (code == NE_EXPR
&& integer_onep (rhs2))))
{
basic_block bb = gimple_bb (stmt);
gimple_cond_set_code (stmt, NE_EXPR);
gimple_cond_set_rhs (stmt, build_zero_cst (TREE_TYPE (rhs1)));
EDGE_SUCC (bb, 0)->flags ^= (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
EDGE_SUCC (bb, 1)->flags ^= (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
return 1;
}
return 0;
}
/* Propagate from the ssa name definition statements of COND_EXPR
in the rhs of statement STMT into the conditional if that simplifies it.
Returns true zero if the stmt was changed. */
static bool
forward_propagate_into_cond (gimple_stmt_iterator *gsi_p)
{
gimple *stmt = gsi_stmt (*gsi_p);
tree tmp = NULL_TREE;
tree cond = gimple_assign_rhs1 (stmt);
enum tree_code code = gimple_assign_rhs_code (stmt);
/* We can do tree combining on SSA_NAME and comparison expressions. */
if (COMPARISON_CLASS_P (cond))
tmp = forward_propagate_into_comparison_1 (stmt, TREE_CODE (cond),
TREE_TYPE (cond),
TREE_OPERAND (cond, 0),
TREE_OPERAND (cond, 1));
else if (TREE_CODE (cond) == SSA_NAME)
{
enum tree_code def_code;
tree name = cond;
gimple *def_stmt = get_prop_source_stmt (name, true, NULL);
if (!def_stmt || !can_propagate_from (def_stmt))
return 0;
def_code = gimple_assign_rhs_code (def_stmt);
if (TREE_CODE_CLASS (def_code) == tcc_comparison)
tmp = fold_build2_loc (gimple_location (def_stmt),
def_code,
TREE_TYPE (cond),
gimple_assign_rhs1 (def_stmt),
gimple_assign_rhs2 (def_stmt));
}
if (tmp
&& is_gimple_condexpr (tmp))
{
if (dump_file)
{
fprintf (dump_file, " Replaced '");
print_generic_expr (dump_file, cond);
fprintf (dump_file, "' with '");
print_generic_expr (dump_file, tmp);
fprintf (dump_file, "'\n");
}
if ((code == VEC_COND_EXPR) ? integer_all_onesp (tmp)
: integer_onep (tmp))
gimple_assign_set_rhs_from_tree (gsi_p, gimple_assign_rhs2 (stmt));
else if (integer_zerop (tmp))
gimple_assign_set_rhs_from_tree (gsi_p, gimple_assign_rhs3 (stmt));
else
gimple_assign_set_rhs1 (stmt, unshare_expr (tmp));
stmt = gsi_stmt (*gsi_p);
update_stmt (stmt);
return true;
}
return 0;
}
/* We've just substituted an ADDR_EXPR into stmt. Update all the
relevant data structures to match. */
static void
tidy_after_forward_propagate_addr (gimple *stmt)
{
/* We may have turned a trapping insn into a non-trapping insn. */
if (maybe_clean_or_replace_eh_stmt (stmt, stmt))
bitmap_set_bit (to_purge, gimple_bb (stmt)->index);
if (TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR)
recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt));
}
/* NAME is a SSA_NAME representing DEF_RHS which is of the form
ADDR_EXPR <whatever>.
Try to forward propagate the ADDR_EXPR into the use USE_STMT.
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
node or for recovery of array indexing from pointer arithmetic.
Return true if the propagation was successful (the propagation can
be not totally successful, yet things may have been changed). */
static bool
forward_propagate_addr_expr_1 (tree name, tree def_rhs,
gimple_stmt_iterator *use_stmt_gsi,
bool single_use_p)
{
tree lhs, rhs, rhs2, array_ref;
gimple *use_stmt = gsi_stmt (*use_stmt_gsi);
enum tree_code rhs_code;
bool res = true;
gcc_assert (TREE_CODE (def_rhs) == ADDR_EXPR);
lhs = gimple_assign_lhs (use_stmt);
rhs_code = gimple_assign_rhs_code (use_stmt);
rhs = gimple_assign_rhs1 (use_stmt);
/* Do not perform copy-propagation but recurse through copy chains. */
if (TREE_CODE (lhs) == SSA_NAME
&& rhs_code == SSA_NAME)
return forward_propagate_addr_expr (lhs, def_rhs, single_use_p);
/* The use statement could be a conversion. Recurse to the uses of the
lhs as copyprop does not copy through pointer to integer to pointer
conversions and FRE does not catch all cases either.
Treat the case of a single-use name and
a conversion to def_rhs type separate, though. */
if (TREE_CODE (lhs) == SSA_NAME
&& CONVERT_EXPR_CODE_P (rhs_code))
{
/* If there is a point in a conversion chain where the types match
so we can remove a conversion re-materialize the address here
and stop. */
if (single_use_p
&& useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
{
gimple_assign_set_rhs1 (use_stmt, unshare_expr (def_rhs));
gimple_assign_set_rhs_code (use_stmt, TREE_CODE (def_rhs));
return true;
}
/* Else recurse if the conversion preserves the address value. */
if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
&& (TYPE_PRECISION (TREE_TYPE (lhs))
>= TYPE_PRECISION (TREE_TYPE (def_rhs))))
return forward_propagate_addr_expr (lhs, def_rhs, single_use_p);
return false;
}
/* If this isn't a conversion chain from this on we only can propagate
into compatible pointer contexts. */
if (!types_compatible_p (TREE_TYPE (name), TREE_TYPE (def_rhs)))
return false;
/* Propagate through constant pointer adjustments. */
if (TREE_CODE (lhs) == SSA_NAME
&& rhs_code == POINTER_PLUS_EXPR
&& rhs == name
&& TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST)
{
tree new_def_rhs;
/* As we come here with non-invariant addresses in def_rhs we need
to make sure we can build a valid constant offsetted address
for further propagation. Simply rely on fold building that
and check after the fact. */
new_def_rhs = fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (rhs)),
def_rhs,
fold_convert (ptr_type_node,
gimple_assign_rhs2 (use_stmt)));
if (TREE_CODE (new_def_rhs) == MEM_REF
&& !is_gimple_mem_ref_addr (TREE_OPERAND (new_def_rhs, 0)))
return false;
new_def_rhs = build1 (ADDR_EXPR, TREE_TYPE (rhs), new_def_rhs);
/* Recurse. If we could propagate into all uses of lhs do not
bother to replace into the current use but just pretend we did. */
if (forward_propagate_addr_expr (lhs, new_def_rhs, single_use_p))
return true;
if (useless_type_conversion_p (TREE_TYPE (lhs),
TREE_TYPE (new_def_rhs)))
gimple_assign_set_rhs_with_ops (use_stmt_gsi, TREE_CODE (new_def_rhs),
new_def_rhs);
else if (is_gimple_min_invariant (new_def_rhs))
gimple_assign_set_rhs_with_ops (use_stmt_gsi, NOP_EXPR, new_def_rhs);
else
return false;
gcc_assert (gsi_stmt (*use_stmt_gsi) == use_stmt);
update_stmt (use_stmt);
return true;
}
/* Now strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS.
ADDR_EXPR will not appear on the LHS. */
tree *lhsp = gimple_assign_lhs_ptr (use_stmt);
while (handled_component_p (*lhsp))
lhsp = &TREE_OPERAND (*lhsp, 0);
lhs = *lhsp;
/* Now see if the LHS node is a MEM_REF using NAME. If so,
propagate the ADDR_EXPR into the use of NAME and fold the result. */
if (TREE_CODE (lhs) == MEM_REF
&& TREE_OPERAND (lhs, 0) == name)
{
tree def_rhs_base;
poly_int64 def_rhs_offset;
/* If the address is invariant we can always fold it. */
if ((def_rhs_base = get_addr_base_and_unit_offset (TREE_OPERAND (def_rhs, 0),
&def_rhs_offset)))
{
poly_offset_int off = mem_ref_offset (lhs);
tree new_ptr;
off += def_rhs_offset;
if (TREE_CODE (def_rhs_base) == MEM_REF)
{
off += mem_ref_offset (def_rhs_base);
new_ptr = TREE_OPERAND (def_rhs_base, 0);
}
else
new_ptr = build_fold_addr_expr (def_rhs_base);
TREE_OPERAND (lhs, 0) = new_ptr;
TREE_OPERAND (lhs, 1)
= wide_int_to_tree (TREE_TYPE (TREE_OPERAND (lhs, 1)), off);
tidy_after_forward_propagate_addr (use_stmt);
/* Continue propagating into the RHS if this was not the only use. */
if (single_use_p)
return true;
}
/* If the LHS is a plain dereference and the value type is the same as
that of the pointed-to type of the address we can put the
dereferenced address on the LHS preserving the original alias-type. */
else if (integer_zerop (TREE_OPERAND (lhs, 1))
&& ((gimple_assign_lhs (use_stmt) == lhs
&& useless_type_conversion_p
(TREE_TYPE (TREE_OPERAND (def_rhs, 0)),
TREE_TYPE (gimple_assign_rhs1 (use_stmt))))
|| types_compatible_p (TREE_TYPE (lhs),
TREE_TYPE (TREE_OPERAND (def_rhs, 0))))
/* Don't forward anything into clobber stmts if it would result
in the lhs no longer being a MEM_REF. */
&& (!gimple_clobber_p (use_stmt)
|| TREE_CODE (TREE_OPERAND (def_rhs, 0)) == MEM_REF))
{
tree *def_rhs_basep = &TREE_OPERAND (def_rhs, 0);
tree new_offset, new_base, saved, new_lhs;
while (handled_component_p (*def_rhs_basep))
def_rhs_basep = &TREE_OPERAND (*def_rhs_basep, 0);
saved = *def_rhs_basep;
if (TREE_CODE (*def_rhs_basep) == MEM_REF)
{
new_base = TREE_OPERAND (*def_rhs_basep, 0);
new_offset = fold_convert (TREE_TYPE (TREE_OPERAND (lhs, 1)),
TREE_OPERAND (*def_rhs_basep, 1));
}
else
{
new_base = build_fold_addr_expr (*def_rhs_basep);
new_offset = TREE_OPERAND (lhs, 1);
}
*def_rhs_basep = build2 (MEM_REF, TREE_TYPE (*def_rhs_basep),
new_base, new_offset);
TREE_THIS_VOLATILE (*def_rhs_basep) = TREE_THIS_VOLATILE (lhs);
TREE_SIDE_EFFECTS (*def_rhs_basep) = TREE_SIDE_EFFECTS (lhs);
TREE_THIS_NOTRAP (*def_rhs_basep) = TREE_THIS_NOTRAP (lhs);
new_lhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
*lhsp = new_lhs;
TREE_THIS_VOLATILE (new_lhs) = TREE_THIS_VOLATILE (lhs);
TREE_SIDE_EFFECTS (new_lhs) = TREE_SIDE_EFFECTS (lhs);
*def_rhs_basep = saved;
tidy_after_forward_propagate_addr (use_stmt);
/* Continue propagating into the RHS if this was not the
only use. */
if (single_use_p)
return true;
}
else
/* We can have a struct assignment dereferencing our name twice.
Note that we didn't propagate into the lhs to not falsely
claim we did when propagating into the rhs. */
res = false;
}
/* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR
nodes from the RHS. */
tree *rhsp = gimple_assign_rhs1_ptr (use_stmt);
if (TREE_CODE (*rhsp) == ADDR_EXPR)
rhsp = &TREE_OPERAND (*rhsp, 0);
while (handled_component_p (*rhsp))
rhsp = &TREE_OPERAND (*rhsp, 0);
rhs = *rhsp;
/* Now see if the RHS node is a MEM_REF using NAME. If so,
propagate the ADDR_EXPR into the use of NAME and fold the result. */
if (TREE_CODE (rhs) == MEM_REF
&& TREE_OPERAND (rhs, 0) == name)
{
tree def_rhs_base;
poly_int64 def_rhs_offset;
if ((def_rhs_base = get_addr_base_and_unit_offset (TREE_OPERAND (def_rhs, 0),
&def_rhs_offset)))
{
poly_offset_int off = mem_ref_offset (rhs);
tree new_ptr;
off += def_rhs_offset;
if (TREE_CODE (def_rhs_base) == MEM_REF)
{
off += mem_ref_offset (def_rhs_base);
new_ptr = TREE_OPERAND (def_rhs_base, 0);
}
else
new_ptr = build_fold_addr_expr (def_rhs_base);
TREE_OPERAND (rhs, 0) = new_ptr;
TREE_OPERAND (rhs, 1)
= wide_int_to_tree (TREE_TYPE (TREE_OPERAND (rhs, 1)), off);
fold_stmt_inplace (use_stmt_gsi);
tidy_after_forward_propagate_addr (use_stmt);
return res;
}
/* If the RHS is a plain dereference and the value type is the same as
that of the pointed-to type of the address we can put the
dereferenced address on the RHS preserving the original alias-type. */
else if (integer_zerop (TREE_OPERAND (rhs, 1))
&& ((gimple_assign_rhs1 (use_stmt) == rhs
&& useless_type_conversion_p
(TREE_TYPE (gimple_assign_lhs (use_stmt)),
TREE_TYPE (TREE_OPERAND (def_rhs, 0))))
|| types_compatible_p (TREE_TYPE (rhs),
TREE_TYPE (TREE_OPERAND (def_rhs, 0)))))
{
tree *def_rhs_basep = &TREE_OPERAND (def_rhs, 0);
tree new_offset, new_base, saved, new_rhs;
while (handled_component_p (*def_rhs_basep))
def_rhs_basep = &TREE_OPERAND (*def_rhs_basep, 0);
saved = *def_rhs_basep;
if (TREE_CODE (*def_rhs_basep) == MEM_REF)
{
new_base = TREE_OPERAND (*def_rhs_basep, 0);
new_offset = fold_convert (TREE_TYPE (TREE_OPERAND (rhs, 1)),
TREE_OPERAND (*def_rhs_basep, 1));
}
else
{
new_base = build_fold_addr_expr (*def_rhs_basep);
new_offset = TREE_OPERAND (rhs, 1);
}
*def_rhs_basep = build2 (MEM_REF, TREE_TYPE (*def_rhs_basep),
new_base, new_offset);
TREE_THIS_VOLATILE (*def_rhs_basep) = TREE_THIS_VOLATILE (rhs);
TREE_SIDE_EFFECTS (*def_rhs_basep) = TREE_SIDE_EFFECTS (rhs);
TREE_THIS_NOTRAP (*def_rhs_basep) = TREE_THIS_NOTRAP (rhs);
new_rhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
*rhsp = new_rhs;
TREE_THIS_VOLATILE (new_rhs) = TREE_THIS_VOLATILE (rhs);
TREE_SIDE_EFFECTS (new_rhs) = TREE_SIDE_EFFECTS (rhs);
*def_rhs_basep = saved;
fold_stmt_inplace (use_stmt_gsi);
tidy_after_forward_propagate_addr (use_stmt);
return res;
}
}
/* If the use of the ADDR_EXPR is not a POINTER_PLUS_EXPR, there
is nothing to do. */
if (gimple_assign_rhs_code (use_stmt) != POINTER_PLUS_EXPR
|| gimple_assign_rhs1 (use_stmt) != name)
return false;
/* The remaining cases are all for turning pointer arithmetic into
array indexing. They only apply when we have the address of
element zero in an array. If that is not the case then there
is nothing to do. */
array_ref = TREE_OPERAND (def_rhs, 0);
if ((TREE_CODE (array_ref) != ARRAY_REF
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE
|| TREE_CODE (TREE_OPERAND (array_ref, 1)) != INTEGER_CST)
&& TREE_CODE (TREE_TYPE (array_ref)) != ARRAY_TYPE)
return false;
rhs2 = gimple_assign_rhs2 (use_stmt);
/* Optimize &x[C1] p+ C2 to &x p+ C3 with C3 = C1 * element_size + C2. */
if (TREE_CODE (rhs2) == INTEGER_CST)
{
tree new_rhs = build1_loc (gimple_location (use_stmt),
ADDR_EXPR, TREE_TYPE (def_rhs),
fold_build2 (MEM_REF,
TREE_TYPE (TREE_TYPE (def_rhs)),
unshare_expr (def_rhs),
fold_convert (ptr_type_node,
rhs2)));
gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
use_stmt = gsi_stmt (*use_stmt_gsi);
update_stmt (use_stmt);
tidy_after_forward_propagate_addr (use_stmt);
return true;
}
return false;
}
/* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>.
Try to forward propagate the ADDR_EXPR into all uses of the SSA_NAME.
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
node or for recovery of array indexing from pointer arithmetic.
PARENT_SINGLE_USE_P tells if, when in a recursive invocation, NAME was
the single use in the previous invocation. Pass true when calling
this as toplevel.
Returns true, if all uses have been propagated into. */
static bool
forward_propagate_addr_expr (tree name, tree rhs, bool parent_single_use_p)
{
imm_use_iterator iter;
gimple *use_stmt;
bool all = true;
bool single_use_p = parent_single_use_p && has_single_use (name);
FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
{
bool result;
tree use_rhs;
/* If the use is not in a simple assignment statement, then
there is nothing we can do. */
if (!is_gimple_assign (use_stmt))
{
if (!is_gimple_debug (use_stmt))
all = false;
continue;
}
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
result = forward_propagate_addr_expr_1 (name, rhs, &gsi,
single_use_p);
/* If the use has moved to a different statement adjust
the update machinery for the old statement too. */
if (use_stmt != gsi_stmt (gsi))
{
update_stmt (use_stmt);
use_stmt = gsi_stmt (gsi);
}
update_stmt (use_stmt);
all &= result;
/* Remove intermediate now unused copy and conversion chains. */
use_rhs = gimple_assign_rhs1 (use_stmt);
if (result
&& TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
&& TREE_CODE (use_rhs) == SSA_NAME
&& has_zero_uses (gimple_assign_lhs (use_stmt)))
{
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
fwprop_invalidate_lattice (gimple_get_lhs (use_stmt));
release_defs (use_stmt);
gsi_remove (&gsi, true);
}
}
return all && has_zero_uses (name);
}
/* Helper function for simplify_gimple_switch. Remove case labels that
have values outside the range of the new type. */
static void
simplify_gimple_switch_label_vec (gswitch *stmt, tree index_type)
{
unsigned int branch_num = gimple_switch_num_labels (stmt);
auto_vec<tree> labels (branch_num);
unsigned int i, len;
/* Collect the existing case labels in a VEC, and preprocess it as if
we are gimplifying a GENERIC SWITCH_EXPR. */
for (i = 1; i < branch_num; i++)
labels.quick_push (gimple_switch_label (stmt, i));
preprocess_case_label_vec_for_gimple (labels, index_type, NULL);
/* If any labels were removed, replace the existing case labels
in the GIMPLE_SWITCH statement with the correct ones.
Note that the type updates were done in-place on the case labels,
so we only have to replace the case labels in the GIMPLE_SWITCH
if the number of labels changed. */
len = labels.length ();
if (len < branch_num - 1)
{
bitmap target_blocks;
edge_iterator ei;
edge e;
/* Corner case: *all* case labels have been removed as being
out-of-range for INDEX_TYPE. Push one label and let the
CFG cleanups deal with this further. */
if (len == 0)
{
tree label, elt;
label = CASE_LABEL (gimple_switch_default_label (stmt));
elt = build_case_label (build_int_cst (index_type, 0), NULL, label);
labels.quick_push (elt);
len = 1;
}
for (i = 0; i < labels.length (); i++)
gimple_switch_set_label (stmt, i + 1, labels[i]);
for (i++ ; i < branch_num; i++)
gimple_switch_set_label (stmt, i, NULL_TREE);
gimple_switch_set_num_labels (stmt, len + 1);
/* Cleanup any edges that are now dead. */
target_blocks = BITMAP_ALLOC (NULL);
for (i = 0; i < gimple_switch_num_labels (stmt); i++)
{
tree elt = gimple_switch_label (stmt, i);
basic_block target = label_to_block (cfun, CASE_LABEL (elt));
bitmap_set_bit (target_blocks, target->index);
}
for (ei = ei_start (gimple_bb (stmt)->succs); (e = ei_safe_edge (ei)); )
{
if (! bitmap_bit_p (target_blocks, e->dest->index))
{
remove_edge (e);
cfg_changed = true;
free_dominance_info (CDI_DOMINATORS);
}
else
ei_next (&ei);
}
BITMAP_FREE (target_blocks);
}
}
/* STMT is a SWITCH_EXPR for which we attempt to find equivalent forms of
the condition which we may be able to optimize better. */
static bool
simplify_gimple_switch (gswitch *stmt)
{
/* The optimization that we really care about is removing unnecessary
casts. That will let us do much better in propagating the inferred
constant at the switch target. */
tree cond = gimple_switch_index (stmt);
if (TREE_CODE (cond) == SSA_NAME)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (cond);
if (gimple_assign_cast_p (def_stmt))
{
tree def = gimple_assign_rhs1 (def_stmt);
if (TREE_CODE (def) != SSA_NAME)
return false;
/* If we have an extension or sign-change that preserves the
values we check against then we can copy the source value into
the switch. */
tree ti = TREE_TYPE (def);
if (INTEGRAL_TYPE_P (ti)
&& TYPE_PRECISION (ti) <= TYPE_PRECISION (TREE_TYPE (cond)))
{
size_t n = gimple_switch_num_labels (stmt);
tree min = NULL_TREE, max = NULL_TREE;
if (n > 1)
{
min = CASE_LOW (gimple_switch_label (stmt, 1));
if (CASE_HIGH (gimple_switch_label (stmt, n - 1)))
max = CASE_HIGH (gimple_switch_label (stmt, n - 1));
else
max = CASE_LOW (gimple_switch_label (stmt, n - 1));
}
if ((!min || int_fits_type_p (min, ti))
&& (!max || int_fits_type_p (max, ti)))
{
gimple_switch_set_index (stmt, def);
simplify_gimple_switch_label_vec (stmt, ti);
update_stmt (stmt);
return true;
}
}
}
}
return false;
}
/* For pointers p2 and p1 return p2 - p1 if the
difference is known and constant, otherwise return NULL. */
static tree
constant_pointer_difference (tree p1, tree p2)
{
int i, j;
#define CPD_ITERATIONS 5
tree exps[2][CPD_ITERATIONS];
tree offs[2][CPD_ITERATIONS];
int cnt[2];
for (i = 0; i < 2; i++)
{
tree p = i ? p1 : p2;
tree off = size_zero_node;
gimple *stmt;
enum tree_code code;
/* For each of p1 and p2 we need to iterate at least
twice, to handle ADDR_EXPR directly in p1/p2,
SSA_NAME with ADDR_EXPR or POINTER_PLUS_EXPR etc.
on definition's stmt RHS. Iterate a few extra times. */
j = 0;
do
{
if (!POINTER_TYPE_P (TREE_TYPE (p)))
break;
if (TREE_CODE (p) == ADDR_EXPR)
{
tree q = TREE_OPERAND (p, 0);
poly_int64 offset;
tree base = get_addr_base_and_unit_offset (q, &offset);
if (base)
{
q = base;
if (maybe_ne (offset, 0))
off = size_binop (PLUS_EXPR, off, size_int (offset));
}
if (TREE_CODE (q) == MEM_REF
&& TREE_CODE (TREE_OPERAND (q, 0)) == SSA_NAME)
{
p = TREE_OPERAND (q, 0);
off = size_binop (PLUS_EXPR, off,
wide_int_to_tree (sizetype,
mem_ref_offset (q)));
}
else
{
exps[i][j] = q;
offs[i][j++] = off;
break;
}
}
if (TREE_CODE (p) != SSA_NAME)
break;
exps[i][j] = p;
offs[i][j++] = off;
if (j == CPD_ITERATIONS)
break;
stmt = SSA_NAME_DEF_STMT (p);
if (!is_gimple_assign (stmt) || gimple_assign_lhs (stmt) != p)
break;
code = gimple_assign_rhs_code (stmt);
if (code == POINTER_PLUS_EXPR)
{
if (TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
break;
off = size_binop (PLUS_EXPR, off, gimple_assign_rhs2 (stmt));
p = gimple_assign_rhs1 (stmt);
}
else if (code == ADDR_EXPR || CONVERT_EXPR_CODE_P (code))
p = gimple_assign_rhs1 (stmt);
else
break;
}
while (1);
cnt[i] = j;
}
for (i = 0; i < cnt[0]; i++)
for (j = 0; j < cnt[1]; j++)
if (exps[0][i] == exps[1][j])
return size_binop (MINUS_EXPR, offs[0][i], offs[1][j]);
return NULL_TREE;
}
/* *GSI_P is a GIMPLE_CALL to a builtin function.
Optimize
memcpy (p, "abcd", 4);
memset (p + 4, ' ', 3);
into
memcpy (p, "abcd ", 7);
call if the latter can be stored by pieces during expansion.
Also canonicalize __atomic_fetch_op (p, x, y) op x
to __atomic_op_fetch (p, x, y) or
__atomic_op_fetch (p, x, y) iop x
to __atomic_fetch_op (p, x, y) when possible (also __sync). */
static bool
simplify_builtin_call (gimple_stmt_iterator *gsi_p, tree callee2)
{
gimple *stmt1, *stmt2 = gsi_stmt (*gsi_p);
enum built_in_function other_atomic = END_BUILTINS;
enum tree_code atomic_op = ERROR_MARK;
tree vuse = gimple_vuse (stmt2);
if (vuse == NULL)
return false;
stmt1 = SSA_NAME_DEF_STMT (vuse);
switch (DECL_FUNCTION_CODE (callee2))
{
case BUILT_IN_MEMSET:
if (gimple_call_num_args (stmt2) != 3
|| gimple_call_lhs (stmt2)
|| CHAR_BIT != 8
|| BITS_PER_UNIT != 8)
break;
else
{
tree callee1;
tree ptr1, src1, str1, off1, len1, lhs1;
tree ptr2 = gimple_call_arg (stmt2, 0);
tree val2 = gimple_call_arg (stmt2, 1);
tree len2 = gimple_call_arg (stmt2, 2);
tree diff, vdef, new_str_cst;
gimple *use_stmt;
unsigned int ptr1_align;
unsigned HOST_WIDE_INT src_len;
char *src_buf;
use_operand_p use_p;
if (!tree_fits_shwi_p (val2)
|| !tree_fits_uhwi_p (len2)
|| compare_tree_int (len2, 1024) == 1)
break;
if (is_gimple_call (stmt1))
{
/* If first stmt is a call, it needs to be memcpy
or mempcpy, with string literal as second argument and
constant length. */
callee1 = gimple_call_fndecl (stmt1);
if (callee1 == NULL_TREE
|| !fndecl_built_in_p (callee1, BUILT_IN_NORMAL)
|| gimple_call_num_args (stmt1) != 3)
break;
if (DECL_FUNCTION_CODE (callee1) != BUILT_IN_MEMCPY
&& DECL_FUNCTION_CODE (callee1) != BUILT_IN_MEMPCPY)
break;
ptr1 = gimple_call_arg (stmt1, 0);
src1 = gimple_call_arg (stmt1, 1);
len1 = gimple_call_arg (stmt1, 2);
lhs1 = gimple_call_lhs (stmt1);
if (!tree_fits_uhwi_p (len1))
break;
str1 = string_constant (src1, &off1, NULL, NULL);
if (str1 == NULL_TREE)
break;
if (!tree_fits_uhwi_p (off1)
|| compare_tree_int (off1, TREE_STRING_LENGTH (str1) - 1) > 0
|| compare_tree_int (len1, TREE_STRING_LENGTH (str1)
- tree_to_uhwi (off1)) > 0
|| TREE_CODE (TREE_TYPE (str1)) != ARRAY_TYPE
|| TYPE_MODE (TREE_TYPE (TREE_TYPE (str1)))
!= TYPE_MODE (char_type_node))
break;
}
else if (gimple_assign_single_p (stmt1))
{
/* Otherwise look for length 1 memcpy optimized into
assignment. */
ptr1 = gimple_assign_lhs (stmt1);
src1 = gimple_assign_rhs1 (stmt1);
if (TREE_CODE (ptr1) != MEM_REF
|| TYPE_MODE (TREE_TYPE (ptr1)) != TYPE_MODE (char_type_node)
|| !tree_fits_shwi_p (src1))
break;
ptr1 = build_fold_addr_expr (ptr1);
STRIP_USELESS_TYPE_CONVERSION (ptr1);
callee1 = NULL_TREE;
len1 = size_one_node;
lhs1 = NULL_TREE;
off1 = size_zero_node;
str1 = NULL_TREE;
}
else
break;
diff = constant_pointer_difference (ptr1, ptr2);
if (diff == NULL && lhs1 != NULL)
{
diff = constant_pointer_difference (lhs1, ptr2);
if (DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY
&& diff != NULL)
diff = size_binop (PLUS_EXPR, diff,
fold_convert (sizetype, len1));
}
/* If the difference between the second and first destination pointer
is not constant, or is bigger than memcpy length, bail out. */
if (diff == NULL
|| !tree_fits_uhwi_p (diff)
|| tree_int_cst_lt (len1, diff)
|| compare_tree_int (diff, 1024) == 1)
break;
/* Use maximum of difference plus memset length and memcpy length
as the new memcpy length, if it is too big, bail out. */
src_len = tree_to_uhwi (diff);
src_len += tree_to_uhwi (len2);
if (src_len < tree_to_uhwi (len1))
src_len = tree_to_uhwi (len1);
if (src_len > 1024)
break;
/* If mempcpy value is used elsewhere, bail out, as mempcpy
with bigger length will return different result. */
if (lhs1 != NULL_TREE
&& DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY
&& (TREE_CODE (lhs1) != SSA_NAME
|| !single_imm_use (lhs1, &use_p, &use_stmt)
|| use_stmt != stmt2))
break;
/* If anything reads memory in between memcpy and memset
call, the modified memcpy call might change it. */
vdef = gimple_vdef (stmt1);
if (vdef != NULL
&& (!single_imm_use (vdef, &use_p, &use_stmt)
|| use_stmt != stmt2))
break;
ptr1_align = get_pointer_alignment (ptr1);
/* Construct the new source string literal. */
src_buf = XALLOCAVEC (char, src_len + 1);
if (callee1)
memcpy (src_buf,
TREE_STRING_POINTER (str1) + tree_to_uhwi (off1),
tree_to_uhwi (len1));
else
src_buf[0] = tree_to_shwi (src1);
memset (src_buf + tree_to_uhwi (diff),
tree_to_shwi (val2), tree_to_uhwi (len2));
src_buf[src_len] = '\0';
/* Neither builtin_strncpy_read_str nor builtin_memcpy_read_str
handle embedded '\0's. */
if (strlen (src_buf) != src_len)
break;
rtl_profile_for_bb (gimple_bb (stmt2));
/* If the new memcpy wouldn't be emitted by storing the literal
by pieces, this optimization might enlarge .rodata too much,
as commonly used string literals couldn't be shared any
longer. */
if (!can_store_by_pieces (src_len,
builtin_strncpy_read_str,
src_buf, ptr1_align, false))
break;
new_str_cst = build_string_literal (src_len, src_buf);
if (callee1)
{
/* If STMT1 is a mem{,p}cpy call, adjust it and remove
memset call. */
if (lhs1 && DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY)
gimple_call_set_lhs (stmt1, NULL_TREE);
gimple_call_set_arg (stmt1, 1, new_str_cst);
gimple_call_set_arg (stmt1, 2,
build_int_cst (TREE_TYPE (len1), src_len));
update_stmt (stmt1);
unlink_stmt_vdef (stmt2);
gsi_replace (gsi_p, gimple_build_nop (), false);
fwprop_invalidate_lattice (gimple_get_lhs (stmt2));
release_defs (stmt2);
if (lhs1 && DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY)
{
fwprop_invalidate_lattice (lhs1);
release_ssa_name (lhs1);
}
return true;
}
else
{
/* Otherwise, if STMT1 is length 1 memcpy optimized into
assignment, remove STMT1 and change memset call into
memcpy call. */
gimple_stmt_iterator gsi = gsi_for_stmt (stmt1);
if (!is_gimple_val (ptr1))
ptr1 = force_gimple_operand_gsi (gsi_p, ptr1, true, NULL_TREE,
true, GSI_SAME_STMT);
tree fndecl = builtin_decl_explicit (BUILT_IN_MEMCPY);
gimple_call_set_fndecl (stmt2, fndecl);
gimple_call_set_fntype (as_a <gcall *> (stmt2),
TREE_TYPE (fndecl));
gimple_call_set_arg (stmt2, 0, ptr1);
gimple_call_set_arg (stmt2, 1, new_str_cst);
gimple_call_set_arg (stmt2, 2,
build_int_cst (TREE_TYPE (len2), src_len));
unlink_stmt_vdef (stmt1);
gsi_remove (&gsi, true);
fwprop_invalidate_lattice (gimple_get_lhs (stmt1));
release_defs (stmt1);
update_stmt (stmt2);
return false;
}
}
break;
#define CASE_ATOMIC(NAME, OTHER, OP) \
case BUILT_IN_##NAME##_1: \
case BUILT_IN_##NAME##_2: \
case BUILT_IN_##NAME##_4: \
case BUILT_IN_##NAME##_8: \
case BUILT_IN_##NAME##_16: \
atomic_op = OP; \
other_atomic \
= (enum built_in_function) (BUILT_IN_##OTHER##_1 \
+ (DECL_FUNCTION_CODE (callee2) \
- BUILT_IN_##NAME##_1)); \
goto handle_atomic_fetch_op;
CASE_ATOMIC (ATOMIC_FETCH_ADD, ATOMIC_ADD_FETCH, PLUS_EXPR)
CASE_ATOMIC (ATOMIC_FETCH_SUB, ATOMIC_SUB_FETCH, MINUS_EXPR)
CASE_ATOMIC (ATOMIC_FETCH_AND, ATOMIC_AND_FETCH, BIT_AND_EXPR)
CASE_ATOMIC (ATOMIC_FETCH_XOR, ATOMIC_XOR_FETCH, BIT_XOR_EXPR)
CASE_ATOMIC (ATOMIC_FETCH_OR, ATOMIC_OR_FETCH, BIT_IOR_EXPR)
CASE_ATOMIC (SYNC_FETCH_AND_ADD, SYNC_ADD_AND_FETCH, PLUS_EXPR)
CASE_ATOMIC (SYNC_FETCH_AND_SUB, SYNC_SUB_AND_FETCH, MINUS_EXPR)
CASE_ATOMIC (SYNC_FETCH_AND_AND, SYNC_AND_AND_FETCH, BIT_AND_EXPR)
CASE_ATOMIC (SYNC_FETCH_AND_XOR, SYNC_XOR_AND_FETCH, BIT_XOR_EXPR)
CASE_ATOMIC (SYNC_FETCH_AND_OR, SYNC_OR_AND_FETCH, BIT_IOR_EXPR)
CASE_ATOMIC (ATOMIC_ADD_FETCH, ATOMIC_FETCH_ADD, MINUS_EXPR)
CASE_ATOMIC (ATOMIC_SUB_FETCH, ATOMIC_FETCH_SUB, PLUS_EXPR)
CASE_ATOMIC (ATOMIC_XOR_FETCH, ATOMIC_FETCH_XOR, BIT_XOR_EXPR)
CASE_ATOMIC (SYNC_ADD_AND_FETCH, SYNC_FETCH_AND_ADD, MINUS_EXPR)
CASE_ATOMIC (SYNC_SUB_AND_FETCH, SYNC_FETCH_AND_SUB, PLUS_EXPR)
CASE_ATOMIC (SYNC_XOR_AND_FETCH, SYNC_FETCH_AND_XOR, BIT_XOR_EXPR)
#undef CASE_ATOMIC
handle_atomic_fetch_op:
if (gimple_call_num_args (stmt2) >= 2 && gimple_call_lhs (stmt2))
{
tree lhs2 = gimple_call_lhs (stmt2), lhsc = lhs2;
tree arg = gimple_call_arg (stmt2, 1);
gimple *use_stmt, *cast_stmt = NULL;
use_operand_p use_p;
tree ndecl = builtin_decl_explicit (other_atomic);
if (ndecl == NULL_TREE || !single_imm_use (lhs2, &use_p, &use_stmt))
break;
if (gimple_assign_cast_p (use_stmt))
{
cast_stmt = use_stmt;
lhsc = gimple_assign_lhs (cast_stmt);
if (lhsc == NULL_TREE
|| !INTEGRAL_TYPE_P (TREE_TYPE (lhsc))
|| (TYPE_PRECISION (TREE_TYPE (lhsc))
!= TYPE_PRECISION (TREE_TYPE (lhs2)))
|| !single_imm_use (lhsc, &use_p, &use_stmt))
{
use_stmt = cast_stmt;
cast_stmt = NULL;
lhsc = lhs2;
}
}
bool ok = false;
tree oarg = NULL_TREE;
enum tree_code ccode = ERROR_MARK;
tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
if (is_gimple_assign (use_stmt)
&& gimple_assign_rhs_code (use_stmt) == atomic_op)
{
if (gimple_assign_rhs1 (use_stmt) == lhsc)
oarg = gimple_assign_rhs2 (use_stmt);
else if (atomic_op != MINUS_EXPR)
oarg = gimple_assign_rhs1 (use_stmt);
}
else if (atomic_op == MINUS_EXPR
&& is_gimple_assign (use_stmt)
&& gimple_assign_rhs_code (use_stmt) == PLUS_EXPR
&& TREE_CODE (arg) == INTEGER_CST
&& (TREE_CODE (gimple_assign_rhs2 (use_stmt))
== INTEGER_CST))
{
tree a = fold_convert (TREE_TYPE (lhs2), arg);
tree o = fold_convert (TREE_TYPE (lhs2),
gimple_assign_rhs2 (use_stmt));
if (wi::to_wide (a) == wi::neg (wi::to_wide (o)))
ok = true;
}
else if (atomic_op == BIT_AND_EXPR || atomic_op == BIT_IOR_EXPR)
;
else if (gimple_code (use_stmt) == GIMPLE_COND)
{
ccode = gimple_cond_code (use_stmt);
crhs1 = gimple_cond_lhs (use_stmt);
crhs2 = gimple_cond_rhs (use_stmt);
}
else if (is_gimple_assign (use_stmt))
{
if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
{
ccode = gimple_assign_rhs_code (use_stmt);
crhs1 = gimple_assign_rhs1 (use_stmt);
crhs2 = gimple_assign_rhs2 (use_stmt);
}
else if (gimple_assign_rhs_code (use_stmt) == COND_EXPR)
{
tree cond = gimple_assign_rhs1 (use_stmt);
if (COMPARISON_CLASS_P (cond))
{
ccode = TREE_CODE (cond);
crhs1 = TREE_OPERAND (cond, 0);
crhs2 = TREE_OPERAND (cond, 1);
}
}
}
if (ccode == EQ_EXPR || ccode == NE_EXPR)
{
/* Deal with x - y == 0 or x ^ y == 0
being optimized into x == y and x + cst == 0
into x == -cst. */
tree o = NULL_TREE;
if (crhs1 == lhsc)
o = crhs2;
else if (crhs2 == lhsc)
o = crhs1;
if (o && atomic_op != PLUS_EXPR)
oarg = o;
else if (o
&& TREE_CODE (o) == INTEGER_CST
&& TREE_CODE (arg) == INTEGER_CST)
{
tree a = fold_convert (TREE_TYPE (lhs2), arg);
o = fold_convert (TREE_TYPE (lhs2), o);
if (wi::to_wide (a) == wi::neg (wi::to_wide (o)))
ok = true;
}
}
if (oarg && !ok)
{
if (operand_equal_p (arg, oarg, 0))
ok = true;
else if (TREE_CODE (arg) == SSA_NAME
&& TREE_CODE (oarg) == SSA_NAME)
{
tree oarg2 = oarg;
if (gimple_assign_cast_p (SSA_NAME_DEF_STMT (oarg)))
{
gimple *g = SSA_NAME_DEF_STMT (oarg);
oarg2 = gimple_assign_rhs1 (g);
if (TREE_CODE (oarg2) != SSA_NAME
|| !INTEGRAL_TYPE_P (TREE_TYPE (oarg2))
|| (TYPE_PRECISION (TREE_TYPE (oarg2))
!= TYPE_PRECISION (TREE_TYPE (oarg))))
oarg2 = oarg;
}
if (gimple_assign_cast_p (SSA_NAME_DEF_STMT (arg)))
{
gimple *g = SSA_NAME_DEF_STMT (arg);
tree rhs1 = gimple_assign_rhs1 (g);
/* Handle e.g.
x.0_1 = (long unsigned int) x_4(D);
_2 = __atomic_fetch_add_8 (&vlong, x.0_1, 0);
_3 = (long int) _2;
_7 = x_4(D) + _3; */
if (rhs1 == oarg || rhs1 == oarg2)
ok = true;
/* Handle e.g.
x.18_1 = (short unsigned int) x_5(D);
_2 = (int) x.18_1;
_3 = __atomic_fetch_xor_2 (&vshort, _2, 0);
_4 = (short int) _3;
_8 = x_5(D) ^ _4;
This happens only for char/short. */
else if (TREE_CODE (rhs1) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
&& (TYPE_PRECISION (TREE_TYPE (rhs1))
== TYPE_PRECISION (TREE_TYPE (lhs2))))
{
g = SSA_NAME_DEF_STMT (rhs1);
if (gimple_assign_cast_p (g)
&& (gimple_assign_rhs1 (g) == oarg
|| gimple_assign_rhs1 (g) == oarg2))
ok = true;
}
}
if (!ok && arg == oarg2)
/* Handle e.g.
_1 = __sync_fetch_and_add_4 (&v, x_5(D));
_2 = (int) _1;
x.0_3 = (int) x_5(D);
_7 = _2 + x.0_3; */
ok = true;
}
}
if (ok)
{
tree new_lhs = make_ssa_name (TREE_TYPE (lhs2));
gimple_call_set_lhs (stmt2, new_lhs);
gimple_call_set_fndecl (stmt2, ndecl);
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
if (ccode == ERROR_MARK)
gimple_assign_set_rhs_with_ops (&gsi, cast_stmt
? NOP_EXPR : SSA_NAME,
new_lhs);
else
{
crhs1 = new_lhs;
crhs2 = build_zero_cst (TREE_TYPE (lhs2));
if (gimple_code (use_stmt) == GIMPLE_COND)
{
gcond *cond_stmt = as_a <gcond *> (use_stmt);
gimple_cond_set_lhs (cond_stmt, crhs1);
gimple_cond_set_rhs (cond_stmt, crhs2);
}
else if (gimple_assign_rhs_class (use_stmt)
== GIMPLE_BINARY_RHS)
{
gimple_assign_set_rhs1 (use_stmt, crhs1);
gimple_assign_set_rhs2 (use_stmt, crhs2);
}
else
{
gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
== COND_EXPR);
tree cond = build2 (ccode, boolean_type_node,
crhs1, crhs2);
gimple_assign_set_rhs1 (use_stmt, cond);
}
}
update_stmt (use_stmt);
if (atomic_op != BIT_AND_EXPR
&& atomic_op != BIT_IOR_EXPR
&& !stmt_ends_bb_p (stmt2))
{
/* For the benefit of debug stmts, emit stmt(s) to set
lhs2 to the value it had from the new builtin.
E.g. if it was previously:
lhs2 = __atomic_fetch_add_8 (ptr, arg, 0);
emit:
new_lhs = __atomic_add_fetch_8 (ptr, arg, 0);
lhs2 = new_lhs - arg;
We also keep cast_stmt if any in the IL for
the same reasons.
These stmts will be DCEd later and proper debug info
will be emitted.
This is only possible for reversible operations
(+/-/^) and without -fnon-call-exceptions. */
gsi = gsi_for_stmt (stmt2);
tree type = TREE_TYPE (lhs2);
if (TREE_CODE (arg) == INTEGER_CST)
arg = fold_convert (type, arg);
else if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
{
tree narg = make_ssa_name (type);
gimple *g = gimple_build_assign (narg, NOP_EXPR, arg);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
arg = narg;
}
enum tree_code rcode;
switch (atomic_op)
{
case PLUS_EXPR: rcode = MINUS_EXPR; break;
case MINUS_EXPR: rcode = PLUS_EXPR; break;
case BIT_XOR_EXPR: rcode = atomic_op; break;
default: gcc_unreachable ();
}
gimple *g = gimple_build_assign (lhs2, rcode, new_lhs, arg);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
update_stmt (stmt2);
}
else
{
/* For e.g.
lhs2 = __atomic_fetch_or_8 (ptr, arg, 0);
after we change it to
new_lhs = __atomic_or_fetch_8 (ptr, arg, 0);
there is no way to find out the lhs2 value (i.e.
what the atomic memory contained before the operation),
values of some bits are lost. We have checked earlier
that we don't have any non-debug users except for what
we are already changing, so we need to reset the
debug stmts and remove the cast_stmt if any. */
imm_use_iterator iter;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs2)
if (use_stmt != cast_stmt)
{
gcc_assert (is_gimple_debug (use_stmt));
gimple_debug_bind_reset_value (use_stmt);
update_stmt (use_stmt);
}
if (cast_stmt)
{
gsi = gsi_for_stmt (cast_stmt);
gsi_remove (&gsi, true);
}
update_stmt (stmt2);
release_ssa_name (lhs2);
}
}
}
break;
default:
break;
}
return false;
}
/* Given a ssa_name in NAME see if it was defined by an assignment and
set CODE to be the code and ARG1 to the first operand on the rhs and ARG2
to the second operand on the rhs. */
static inline void
defcodefor_name (tree name, enum tree_code *code, tree *arg1, tree *arg2)
{
gimple *def;
enum tree_code code1;
tree arg11;
tree arg21;
tree arg31;
enum gimple_rhs_class grhs_class;
code1 = TREE_CODE (name);
arg11 = name;
arg21 = NULL_TREE;
arg31 = NULL_TREE;
grhs_class = get_gimple_rhs_class (code1);
if (code1 == SSA_NAME)
{
def = SSA_NAME_DEF_STMT (name);
if (def && is_gimple_assign (def)
&& can_propagate_from (def))
{
code1 = gimple_assign_rhs_code (def);
arg11 = gimple_assign_rhs1 (def);
arg21 = gimple_assign_rhs2 (def);
arg31 = gimple_assign_rhs3 (def);
}
}
else if (grhs_class != GIMPLE_SINGLE_RHS)
code1 = ERROR_MARK;
*code = code1;
*arg1 = arg11;
if (arg2)
*arg2 = arg21;
if (arg31)
*code = ERROR_MARK;
}
/* Recognize rotation patterns. Return true if a transformation
applied, otherwise return false.
We are looking for X with unsigned type T with bitsize B, OP being
+, | or ^, some type T2 wider than T. For:
(X << CNT1) OP (X >> CNT2) iff CNT1 + CNT2 == B
((T) ((T2) X << CNT1)) OP ((T) ((T2) X >> CNT2)) iff CNT1 + CNT2 == B
transform these into:
X r<< CNT1
Or for:
(X << Y) OP (X >> (B - Y))
(X << (int) Y) OP (X >> (int) (B - Y))
((T) ((T2) X << Y)) OP ((T) ((T2) X >> (B - Y)))
((T) ((T2) X << (int) Y)) OP ((T) ((T2) X >> (int) (B - Y)))
(X << Y) | (X >> ((-Y) & (B - 1)))
(X << (int) Y) | (X >> (int) ((-Y) & (B - 1)))
((T) ((T2) X << Y)) | ((T) ((T2) X >> ((-Y) & (B - 1))))
((T) ((T2) X << (int) Y)) | ((T) ((T2) X >> (int) ((-Y) & (B - 1))))
transform these into:
X r<< Y
Or for:
(X << (Y & (B - 1))) | (X >> ((-Y) & (B - 1)))
(X << (int) (Y & (B - 1))) | (X >> (int) ((-Y) & (B - 1)))
((T) ((T2) X << (Y & (B - 1)))) | ((T) ((T2) X >> ((-Y) & (B - 1))))
((T) ((T2) X << (int) (Y & (B - 1)))) \
| ((T) ((T2) X >> (int) ((-Y) & (B - 1))))
transform these into:
X r<< (Y & (B - 1))
Note, in the patterns with T2 type, the type of OP operands
might be even a signed type, but should have precision B.
Expressions with & (B - 1) should be recognized only if B is
a power of 2. */
static bool
simplify_rotate (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree arg[2], rtype, rotcnt = NULL_TREE;
tree def_arg1[2], def_arg2[2];
enum tree_code def_code[2];
tree lhs;
int i;
bool swapped_p = false;
gimple *g;
arg[0] = gimple_assign_rhs1 (stmt);
arg[1] = gimple_assign_rhs2 (stmt);
rtype = TREE_TYPE (arg[0]);
/* Only create rotates in complete modes. Other cases are not
expanded properly. */
if (!INTEGRAL_TYPE_P (rtype)
|| !type_has_mode_precision_p (rtype))
return false;
for (i = 0; i < 2; i++)
defcodefor_name (arg[i], &def_code[i], &def_arg1[i], &def_arg2[i]);
/* Look through narrowing (or same precision) conversions. */
if (CONVERT_EXPR_CODE_P (def_code[0])
&& CONVERT_EXPR_CODE_P (def_code[1])
&& INTEGRAL_TYPE_P (TREE_TYPE (def_arg1[0]))
&& INTEGRAL_TYPE_P (TREE_TYPE (def_arg1[1]))
&& TYPE_PRECISION (TREE_TYPE (def_arg1[0]))
== TYPE_PRECISION (TREE_TYPE (def_arg1[1]))
&& TYPE_PRECISION (TREE_TYPE (def_arg1[0])) >= TYPE_PRECISION (rtype)
&& has_single_use (arg[0])
&& has_single_use (arg[1]))
{
for (i = 0; i < 2; i++)
{
arg[i] = def_arg1[i];
defcodefor_name (arg[i], &def_code[i], &def_arg1[i], &def_arg2[i]);
}
}
else
{
/* Handle signed rotate; the RSHIFT_EXPR has to be done
in unsigned type but LSHIFT_EXPR could be signed. */
i = (def_code[0] == LSHIFT_EXPR || def_code[0] == RSHIFT_EXPR);
if (CONVERT_EXPR_CODE_P (def_code[i])
&& (def_code[1 - i] == LSHIFT_EXPR || def_code[1 - i] == RSHIFT_EXPR)
&& INTEGRAL_TYPE_P (TREE_TYPE (def_arg1[i]))
&& TYPE_PRECISION (rtype) == TYPE_PRECISION (TREE_TYPE (def_arg1[i]))
&& has_single_use (arg[i]))
{
arg[i] = def_arg1[i];
defcodefor_name (arg[i], &def_code[i], &def_arg1[i], &def_arg2[i]);
}
}
/* One operand has to be LSHIFT_EXPR and one RSHIFT_EXPR. */
for (i = 0; i < 2; i++)
if (def_code[i] != LSHIFT_EXPR && def_code[i] != RSHIFT_EXPR)
return false;
else if (!has_single_use (arg[i]))
return false;
if (def_code[0] == def_code[1])
return false;
/* If we've looked through narrowing conversions before, look through
widening conversions from unsigned type with the same precision
as rtype here. */
if (TYPE_PRECISION (TREE_TYPE (def_arg1[0])) != TYPE_PRECISION (rtype))
for (i = 0; i < 2; i++)
{
tree tem;
enum tree_code code;
defcodefor_name (def_arg1[i], &code, &tem, NULL);
if (!CONVERT_EXPR_CODE_P (code)
|| !INTEGRAL_TYPE_P (TREE_TYPE (tem))
|| TYPE_PRECISION (TREE_TYPE (tem)) != TYPE_PRECISION (rtype))
return false;
def_arg1[i] = tem;
}
/* Both shifts have to use the same first operand. */
if (!operand_equal_for_phi_arg_p (def_arg1[0], def_arg1[1])
|| !types_compatible_p (TREE_TYPE (def_arg1[0]),
TREE_TYPE (def_arg1[1])))
{
if ((TYPE_PRECISION (TREE_TYPE (def_arg1[0]))
!= TYPE_PRECISION (TREE_TYPE (def_arg1[1])))
|| (TYPE_UNSIGNED (TREE_TYPE (def_arg1[0]))
== TYPE_UNSIGNED (TREE_TYPE (def_arg1[1]))))
return false;
/* Handle signed rotate; the RSHIFT_EXPR has to be done
in unsigned type but LSHIFT_EXPR could be signed. */
i = def_code[0] != RSHIFT_EXPR;
if (!TYPE_UNSIGNED (TREE_TYPE (def_arg1[i])))
return false;
tree tem;
enum tree_code code;
defcodefor_name (def_arg1[i], &code, &tem, NULL);
if (!CONVERT_EXPR_CODE_P (code)
|| !INTEGRAL_TYPE_P (TREE_TYPE (tem))
|| TYPE_PRECISION (TREE_TYPE (tem)) != TYPE_PRECISION (rtype))
return false;
def_arg1[i] = tem;
if (!operand_equal_for_phi_arg_p (def_arg1[0], def_arg1[1])
|| !types_compatible_p (TREE_TYPE (def_arg1[0]),
TREE_TYPE (def_arg1[1])))
return false;
}
else if (!TYPE_UNSIGNED (TREE_TYPE (def_arg1[0])))
return false;
/* CNT1 + CNT2 == B case above. */
if (tree_fits_uhwi_p (def_arg2[0])
&& tree_fits_uhwi_p (def_arg2[1])
&& tree_to_uhwi (def_arg2[0])
+ tree_to_uhwi (def_arg2[1]) == TYPE_PRECISION (rtype))
rotcnt = def_arg2[0];
else if (TREE_CODE (def_arg2[0]) != SSA_NAME
|| TREE_CODE (def_arg2[1]) != SSA_NAME)
return false;
else
{
tree cdef_arg1[2], cdef_arg2[2], def_arg2_alt[2];
enum tree_code cdef_code[2];
/* Look through conversion of the shift count argument.
The C/C++ FE cast any shift count argument to integer_type_node.
The only problem might be if the shift count type maximum value
is equal or smaller than number of bits in rtype. */
for (i = 0; i < 2; i++)
{
def_arg2_alt[i] = def_arg2[i];
defcodefor_name (def_arg2[i], &cdef_code[i],
&cdef_arg1[i], &cdef_arg2[i]);
if (CONVERT_EXPR_CODE_P (cdef_code[i])
&& INTEGRAL_TYPE_P (TREE_TYPE (cdef_arg1[i]))
&& TYPE_PRECISION (TREE_TYPE (cdef_arg1[i]))
> floor_log2 (TYPE_PRECISION (rtype))
&& type_has_mode_precision_p (TREE_TYPE (cdef_arg1[i])))
{
def_arg2_alt[i] = cdef_arg1[i];
defcodefor_name (def_arg2_alt[i], &cdef_code[i],
&cdef_arg1[i], &cdef_arg2[i]);
}
}
for (i = 0; i < 2; i++)
/* Check for one shift count being Y and the other B - Y,
with optional casts. */
if (cdef_code[i] == MINUS_EXPR
&& tree_fits_shwi_p (cdef_arg1[i])
&& tree_to_shwi (cdef_arg1[i]) == TYPE_PRECISION (rtype)
&& TREE_CODE (cdef_arg2[i]) == SSA_NAME)
{
tree tem;
enum tree_code code;
if (cdef_arg2[i] == def_arg2[1 - i]
|| cdef_arg2[i] == def_arg2_alt[1 - i])
{
rotcnt = cdef_arg2[i];
break;
}
defcodefor_name (cdef_arg2[i], &code, &tem, NULL);
if (CONVERT_EXPR_CODE_P (code)
&& INTEGRAL_TYPE_P (TREE_TYPE (tem))
&& TYPE_PRECISION (TREE_TYPE (tem))
> floor_log2 (TYPE_PRECISION (rtype))
&& type_has_mode_precision_p (TREE_TYPE (tem))
&& (tem == def_arg2[1 - i]
|| tem == def_arg2_alt[1 - i]))
{
rotcnt = tem;
break;
}
}
/* The above sequence isn't safe for Y being 0,
because then one of the shifts triggers undefined behavior.
This alternative is safe even for rotation count of 0.
One shift count is Y and the other (-Y) & (B - 1).
Or one shift count is Y & (B - 1) and the other (-Y) & (B - 1). */
else if (cdef_code[i] == BIT_AND_EXPR
&& pow2p_hwi (TYPE_PRECISION (rtype))
&& tree_fits_shwi_p (cdef_arg2[i])
&& tree_to_shwi (cdef_arg2[i])
== TYPE_PRECISION (rtype) - 1
&& TREE_CODE (cdef_arg1[i]) == SSA_NAME
&& gimple_assign_rhs_code (stmt) == BIT_IOR_EXPR)
{
tree tem;
enum tree_code code;
defcodefor_name (cdef_arg1[i], &code, &tem, NULL);
if (CONVERT_EXPR_CODE_P (code)
&& INTEGRAL_TYPE_P (TREE_TYPE (tem))
&& TYPE_PRECISION (TREE_TYPE (tem))
> floor_log2 (TYPE_PRECISION (rtype))
&& type_has_mode_precision_p (TREE_TYPE (tem)))
defcodefor_name (tem, &code, &tem, NULL);
if (code == NEGATE_EXPR)
{
if (tem == def_arg2[1 - i] || tem == def_arg2_alt[1 - i])
{
rotcnt = tem;
break;
}
tree tem2;
defcodefor_name (tem, &code, &tem2, NULL);
if (CONVERT_EXPR_CODE_P (code)
&& INTEGRAL_TYPE_P (TREE_TYPE (tem2))
&& TYPE_PRECISION (TREE_TYPE (tem2))
> floor_log2 (TYPE_PRECISION (rtype))
&& type_has_mode_precision_p (TREE_TYPE (tem2)))
{
if (tem2 == def_arg2[1 - i]
|| tem2 == def_arg2_alt[1 - i])
{
rotcnt = tem2;
break;
}
}
else
tem2 = NULL_TREE;
if (cdef_code[1 - i] == BIT_AND_EXPR
&& tree_fits_shwi_p (cdef_arg2[1 - i])
&& tree_to_shwi (cdef_arg2[1 - i])
== TYPE_PRECISION (rtype) - 1
&& TREE_CODE (cdef_arg1[1 - i]) == SSA_NAME)
{
if (tem == cdef_arg1[1 - i]
|| tem2 == cdef_arg1[1 - i])
{
rotcnt = def_arg2[1 - i];
break;
}
tree tem3;
defcodefor_name (cdef_arg1[1 - i], &code, &tem3, NULL);
if (CONVERT_EXPR_CODE_P (code)
&& INTEGRAL_TYPE_P (TREE_TYPE (tem3))
&& TYPE_PRECISION (TREE_TYPE (tem3))
> floor_log2 (TYPE_PRECISION (rtype))
&& type_has_mode_precision_p (TREE_TYPE (tem3)))
{
if (tem == tem3 || tem2 == tem3)
{
rotcnt = def_arg2[1 - i];
break;
}
}
}
}
}
if (rotcnt == NULL_TREE)
return false;
swapped_p = i != 1;
}
if (!useless_type_conversion_p (TREE_TYPE (def_arg2[0]),
TREE_TYPE (rotcnt)))
{
g = gimple_build_assign (make_ssa_name (TREE_TYPE (def_arg2[0])),
NOP_EXPR, rotcnt);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
rotcnt = gimple_assign_lhs (g);
}
lhs = gimple_assign_lhs (stmt);
if (!useless_type_conversion_p (rtype, TREE_TYPE (def_arg1[0])))
lhs = make_ssa_name (TREE_TYPE (def_arg1[0]));
g = gimple_build_assign (lhs,
((def_code[0] == LSHIFT_EXPR) ^ swapped_p)
? LROTATE_EXPR : RROTATE_EXPR, def_arg1[0], rotcnt);
if (!useless_type_conversion_p (rtype, TREE_TYPE (def_arg1[0])))
{
gsi_insert_before (gsi, g, GSI_SAME_STMT);
g = gimple_build_assign (gimple_assign_lhs (stmt), NOP_EXPR, lhs);
}
gsi_replace (gsi, g, false);
return true;
}
/* Check whether an array contains a valid ctz table. */
static bool
check_ctz_array (tree ctor, unsigned HOST_WIDE_INT mulc,
HOST_WIDE_INT &zero_val, unsigned shift, unsigned bits)
{
tree elt, idx;
unsigned HOST_WIDE_INT i, mask;
unsigned matched = 0;
mask = ((HOST_WIDE_INT_1U << (bits - shift)) - 1) << shift;
zero_val = 0;
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), i, idx, elt)
{
if (TREE_CODE (idx) != INTEGER_CST || TREE_CODE (elt) != INTEGER_CST)
return false;
if (i > bits * 2)
return false;
unsigned HOST_WIDE_INT index = tree_to_shwi (idx);
HOST_WIDE_INT val = tree_to_shwi (elt);
if (index == 0)
{
zero_val = val;
matched++;
}
if (val >= 0 && val < bits && (((mulc << val) & mask) >> shift) == index)
matched++;
if (matched > bits)
return true;
}
return false;
}
/* Check whether a string contains a valid ctz table. */
static bool
check_ctz_string (tree string, unsigned HOST_WIDE_INT mulc,
HOST_WIDE_INT &zero_val, unsigned shift, unsigned bits)
{
unsigned HOST_WIDE_INT len = TREE_STRING_LENGTH (string);
unsigned HOST_WIDE_INT mask;
unsigned matched = 0;
const unsigned char *p = (const unsigned char *) TREE_STRING_POINTER (string);
if (len < bits || len > bits * 2)
return false;
mask = ((HOST_WIDE_INT_1U << (bits - shift)) - 1) << shift;
zero_val = p[0];
for (unsigned i = 0; i < len; i++)
if (p[i] < bits && (((mulc << p[i]) & mask) >> shift) == i)
matched++;
return matched == bits;
}
/* Recognize count trailing zeroes idiom.
The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
constant which when multiplied by a power of 2 creates a unique value
in the top 5 or 6 bits. This is then indexed into a table which maps it
to the number of trailing zeroes. Array[0] is returned so the caller can
emit an appropriate sequence depending on whether ctz (0) is defined on
the target. */
static bool
optimize_count_trailing_zeroes (tree array_ref, tree x, tree mulc,
tree tshift, HOST_WIDE_INT &zero_val)
{
tree type = TREE_TYPE (array_ref);
tree array = TREE_OPERAND (array_ref, 0);
gcc_assert (TREE_CODE (mulc) == INTEGER_CST);
gcc_assert (TREE_CODE (tshift) == INTEGER_CST);
tree input_type = TREE_TYPE (x);
unsigned input_bits = tree_to_shwi (TYPE_SIZE (input_type));
/* Check the array element type is not wider than 32 bits and the input is
an unsigned 32-bit or 64-bit type. */
if (TYPE_PRECISION (type) > 32 || !TYPE_UNSIGNED (input_type))
return false;
if (input_bits != 32 && input_bits != 64)
return false;
if (!direct_internal_fn_supported_p (IFN_CTZ, input_type, OPTIMIZE_FOR_BOTH))
return false;
/* Check the lower bound of the array is zero. */
tree low = array_ref_low_bound (array_ref);
if (!low || !integer_zerop (low))
return false;
unsigned shiftval = tree_to_shwi (tshift);
/* Check the shift extracts the top 5..7 bits. */
if (shiftval < input_bits - 7 || shiftval > input_bits - 5)
return false;
tree ctor = ctor_for_folding (array);
if (!ctor)
return false;
unsigned HOST_WIDE_INT val = tree_to_uhwi (mulc);
if (TREE_CODE (ctor) == CONSTRUCTOR)
return check_ctz_array (ctor, val, zero_val, shiftval, input_bits);
if (TREE_CODE (ctor) == STRING_CST
&& TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
return check_ctz_string (ctor, val, zero_val, shiftval, input_bits);
return false;
}
/* Match.pd function to match the ctz expression. */
extern bool gimple_ctz_table_index (tree, tree *, tree (*)(tree));
static bool
simplify_count_trailing_zeroes (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree array_ref = gimple_assign_rhs1 (stmt);
tree res_ops[3];
HOST_WIDE_INT zero_val;
gcc_checking_assert (TREE_CODE (array_ref) == ARRAY_REF);
if (!gimple_ctz_table_index (TREE_OPERAND (array_ref, 1), &res_ops[0], NULL))
return false;
if (optimize_count_trailing_zeroes (array_ref, res_ops[0],
res_ops[1], res_ops[2], zero_val))
{
tree type = TREE_TYPE (res_ops[0]);
HOST_WIDE_INT ctz_val = 0;
HOST_WIDE_INT type_size = tree_to_shwi (TYPE_SIZE (type));
bool zero_ok
= CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (type), ctz_val) == 2;
/* If the input value can't be zero, don't special case ctz (0). */
if (tree_expr_nonzero_p (res_ops[0]))
{
zero_ok = true;
zero_val = 0;
ctz_val = 0;
}
/* Skip if there is no value defined at zero, or if we can't easily
return the correct value for zero. */
if (!zero_ok)
return false;
if (zero_val != ctz_val && !(zero_val == 0 && ctz_val == type_size))
return false;
gimple_seq seq = NULL;
gimple *g;
gcall *call = gimple_build_call_internal (IFN_CTZ, 1, res_ops[0]);
gimple_set_location (call, gimple_location (stmt));
gimple_set_lhs (call, make_ssa_name (integer_type_node));
gimple_seq_add_stmt (&seq, call);
tree prev_lhs = gimple_call_lhs (call);
/* Emit ctz (x) & 31 if ctz (0) is 32 but we need to return 0. */
if (zero_val == 0 && ctz_val == type_size)
{
g = gimple_build_assign (make_ssa_name (integer_type_node),
BIT_AND_EXPR, prev_lhs,
build_int_cst (integer_type_node,
type_size - 1));
gimple_set_location (g, gimple_location (stmt));
gimple_seq_add_stmt (&seq, g);
prev_lhs = gimple_assign_lhs (g);
}
g = gimple_build_assign (gimple_assign_lhs (stmt), NOP_EXPR, prev_lhs);
gimple_seq_add_stmt (&seq, g);
gsi_replace_with_seq (gsi, seq, true);
return true;
}
return false;
}
/* Combine an element access with a shuffle. Returns true if there were
any changes made, else it returns false. */
static bool
simplify_bitfield_ref (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
gimple *def_stmt;
tree op, op0, op1;
tree elem_type;
unsigned idx, size;
enum tree_code code;
op = gimple_assign_rhs1 (stmt);
gcc_checking_assert (TREE_CODE (op) == BIT_FIELD_REF);
op0 = TREE_OPERAND (op, 0);
if (TREE_CODE (op0) != SSA_NAME
|| TREE_CODE (TREE_TYPE (op0)) != VECTOR_TYPE)
return false;
def_stmt = get_prop_source_stmt (op0, false, NULL);
if (!def_stmt || !can_propagate_from (def_stmt))
return false;
op1 = TREE_OPERAND (op, 1);
code = gimple_assign_rhs_code (def_stmt);
elem_type = TREE_TYPE (TREE_TYPE (op0));
if (TREE_TYPE (op) != elem_type)
return false;
size = TREE_INT_CST_LOW (TYPE_SIZE (elem_type));
if (maybe_ne (bit_field_size (op), size))
return false;
if (code == VEC_PERM_EXPR
&& constant_multiple_p (bit_field_offset (op), size, &idx))
{
tree p, m, tem;
unsigned HOST_WIDE_INT nelts;
m = gimple_assign_rhs3 (def_stmt);
if (TREE_CODE (m) != VECTOR_CST
|| !VECTOR_CST_NELTS (m).is_constant (&nelts))
return false;
idx = TREE_INT_CST_LOW (VECTOR_CST_ELT (m, idx));
idx %= 2 * nelts;
if (idx < nelts)
{
p = gimple_assign_rhs1 (def_stmt);
}
else
{
p = gimple_assign_rhs2 (def_stmt);
idx -= nelts;
}
tem = build3 (BIT_FIELD_REF, TREE_TYPE (op),
unshare_expr (p), op1, bitsize_int (idx * size));
gimple_assign_set_rhs1 (stmt, tem);
fold_stmt (gsi);
update_stmt (gsi_stmt (*gsi));
return true;
}
return false;
}
/* Determine whether applying the 2 permutations (mask1 then mask2)
gives back one of the input. */
static int
is_combined_permutation_identity (tree mask1, tree mask2)
{
tree mask;
unsigned HOST_WIDE_INT nelts, i, j;
bool maybe_identity1 = true;
bool maybe_identity2 = true;
gcc_checking_assert (TREE_CODE (mask1) == VECTOR_CST
&& TREE_CODE (mask2) == VECTOR_CST);
mask = fold_ternary (VEC_PERM_EXPR, TREE_TYPE (mask1), mask1, mask1, mask2);
if (mask == NULL_TREE || TREE_CODE (mask) != VECTOR_CST)
return 0;
if (!VECTOR_CST_NELTS (mask).is_constant (&nelts))
return 0;
for (i = 0; i < nelts; i++)
{
tree val = VECTOR_CST_ELT (mask, i);
gcc_assert (TREE_CODE (val) == INTEGER_CST);
j = TREE_INT_CST_LOW (val) & (2 * nelts - 1);
if (j == i)
maybe_identity2 = false;
else if (j == i + nelts)
maybe_identity1 = false;
else
return 0;
}
return maybe_identity1 ? 1 : maybe_identity2 ? 2 : 0;
}
/* Combine a shuffle with its arguments. Returns 1 if there were any
changes made, 2 if cfg-cleanup needs to run. Else it returns 0. */
static int
simplify_permutation (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
gimple *def_stmt = NULL;
tree op0, op1, op2, op3, arg0, arg1;
enum tree_code code, code2 = ERROR_MARK;
bool single_use_op0 = false;
gcc_checking_assert (gimple_assign_rhs_code (stmt) == VEC_PERM_EXPR);
op0 = gimple_assign_rhs1 (stmt);
op1 = gimple_assign_rhs2 (stmt);
op2 = gimple_assign_rhs3 (stmt);
if (TREE_CODE (op2) != VECTOR_CST)
return 0;
if (TREE_CODE (op0) == VECTOR_CST)
{
code = VECTOR_CST;
arg0 = op0;
}
else if (TREE_CODE (op0) == SSA_NAME)
{
def_stmt = get_prop_source_stmt (op0, false, &single_use_op0);
if (!def_stmt)
return 0;
code = gimple_assign_rhs_code (def_stmt);
if (code == VIEW_CONVERT_EXPR)
{
tree rhs = gimple_assign_rhs1 (def_stmt);
tree name = TREE_OPERAND (rhs, 0);
if (TREE_CODE (name) != SSA_NAME)
return 0;
if (!has_single_use (name))
single_use_op0 = false;
/* Here we update the def_stmt through this VIEW_CONVERT_EXPR,
but still keep the code to indicate it comes from
VIEW_CONVERT_EXPR. */
def_stmt = SSA_NAME_DEF_STMT (name);
if (!def_stmt || !is_gimple_assign (def_stmt))
return 0;
if (gimple_assign_rhs_code (def_stmt) != CONSTRUCTOR)
return 0;
}
if (!can_propagate_from (def_stmt))
return 0;
arg0 = gimple_assign_rhs1 (def_stmt);
}
else
return 0;
/* Two consecutive shuffles. */
if (code == VEC_PERM_EXPR)
{
tree orig;
int ident;
if (op0 != op1)
return 0;
op3 = gimple_assign_rhs3 (def_stmt);
if (TREE_CODE (op3) != VECTOR_CST)
return 0;
ident = is_combined_permutation_identity (op3, op2);
if (!ident)
return 0;
orig = (ident == 1) ? gimple_assign_rhs1 (def_stmt)
: gimple_assign_rhs2 (def_stmt);
gimple_assign_set_rhs1 (stmt, unshare_expr (orig));
gimple_assign_set_rhs_code (stmt, TREE_CODE (orig));
gimple_set_num_ops (stmt, 2);
update_stmt (stmt);
return remove_prop_source_from_use (op0) ? 2 : 1;
}
else if (code == CONSTRUCTOR
|| code == VECTOR_CST
|| code == VIEW_CONVERT_EXPR)
{
if (op0 != op1)
{
if (TREE_CODE (op0) == SSA_NAME && !single_use_op0)
return 0;
if (TREE_CODE (op1) == VECTOR_CST)
arg1 = op1;
else if (TREE_CODE (op1) == SSA_NAME)
{
gimple *def_stmt2 = get_prop_source_stmt (op1, true, NULL);
if (!def_stmt2)
return 0;
code2 = gimple_assign_rhs_code (def_stmt2);
if (code2 == VIEW_CONVERT_EXPR)
{
tree rhs = gimple_assign_rhs1 (def_stmt2);
tree name = TREE_OPERAND (rhs, 0);
if (TREE_CODE (name) != SSA_NAME)
return 0;
if (!has_single_use (name))
return 0;
def_stmt2 = SSA_NAME_DEF_STMT (name);
if (!def_stmt2 || !is_gimple_assign (def_stmt2))
return 0;
if (gimple_assign_rhs_code (def_stmt2) != CONSTRUCTOR)
return 0;
}
else if (code2 != CONSTRUCTOR && code2 != VECTOR_CST)
return 0;
if (!can_propagate_from (def_stmt2))
return 0;
arg1 = gimple_assign_rhs1 (def_stmt2);
}
else
return 0;
}
else
{
/* Already used twice in this statement. */
if (TREE_CODE (op0) == SSA_NAME && num_imm_uses (op0) > 2)
return 0;
arg1 = arg0;
}
/* If there are any VIEW_CONVERT_EXPRs found when finding permutation
operands source, check whether it's valid to transform and prepare
the required new operands. */
if (code == VIEW_CONVERT_EXPR || code2 == VIEW_CONVERT_EXPR)
{
/* Figure out the target vector type to which operands should be
converted. If both are CONSTRUCTOR, the types should be the
same, otherwise, use the one of CONSTRUCTOR. */
tree tgt_type = NULL_TREE;
if (code == VIEW_CONVERT_EXPR)
{
gcc_assert (gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR);
code = CONSTRUCTOR;
tgt_type = TREE_TYPE (arg0);
}
if (code2 == VIEW_CONVERT_EXPR)
{
tree arg1_type = TREE_TYPE (arg1);
if (tgt_type == NULL_TREE)
tgt_type = arg1_type;
else if (tgt_type != arg1_type)
return 0;
}
if (!VECTOR_TYPE_P (tgt_type))
return 0;
tree op2_type = TREE_TYPE (op2);
/* Figure out the shrunk factor. */
poly_uint64 tgt_units = TYPE_VECTOR_SUBPARTS (tgt_type);
poly_uint64 op2_units = TYPE_VECTOR_SUBPARTS (op2_type);
if (maybe_gt (tgt_units, op2_units))
return 0;
unsigned int factor;
if (!constant_multiple_p (op2_units, tgt_units, &factor))
return 0;
/* Build the new permutation control vector as target vector. */
vec_perm_builder builder;
if (!tree_to_vec_perm_builder (&builder, op2))
return 0;
vec_perm_indices indices (builder, 2, op2_units);
vec_perm_indices new_indices;
if (new_indices.new_shrunk_vector (indices, factor))
{
tree mask_type = tgt_type;
if (!VECTOR_INTEGER_TYPE_P (mask_type))
{
tree elem_type = TREE_TYPE (mask_type);
unsigned elem_size = TREE_INT_CST_LOW (TYPE_SIZE (elem_type));
tree int_type = build_nonstandard_integer_type (elem_size, 0);
mask_type = build_vector_type (int_type, tgt_units);
}
op2 = vec_perm_indices_to_tree (mask_type, new_indices);
}
else
return 0;
/* Convert the VECTOR_CST to the appropriate vector type. */
if (tgt_type != TREE_TYPE (arg0))
arg0 = fold_build1 (VIEW_CONVERT_EXPR, tgt_type, arg0);
else if (tgt_type != TREE_TYPE (arg1))
arg1 = fold_build1 (VIEW_CONVERT_EXPR, tgt_type, arg1);
}
/* VIEW_CONVERT_EXPR should be updated to CONSTRUCTOR before. */
gcc_assert (code == CONSTRUCTOR || code == VECTOR_CST);
/* Shuffle of a constructor. */
bool ret = false;
tree res_type = TREE_TYPE (arg0);
tree opt = fold_ternary (VEC_PERM_EXPR, res_type, arg0, arg1, op2);
if (!opt
|| (TREE_CODE (opt) != CONSTRUCTOR && TREE_CODE (opt) != VECTOR_CST))
return 0;
/* Found VIEW_CONVERT_EXPR before, need one explicit conversion. */
if (res_type != TREE_TYPE (op0))
{
tree name = make_ssa_name (TREE_TYPE (opt));
gimple *ass_stmt = gimple_build_assign (name, opt);
gsi_insert_before (gsi, ass_stmt, GSI_SAME_STMT);
opt = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (op0), name);
}
gimple_assign_set_rhs_from_tree (gsi, opt);
update_stmt (gsi_stmt (*gsi));
if (TREE_CODE (op0) == SSA_NAME)
ret = remove_prop_source_from_use (op0);
if (op0 != op1 && TREE_CODE (op1) == SSA_NAME)
ret |= remove_prop_source_from_use (op1);
return ret ? 2 : 1;
}
return 0;
}
/* Get the BIT_FIELD_REF definition of VAL, if any, looking through
conversions with code CONV_CODE or update it if still ERROR_MARK.
Return NULL_TREE if no such matching def was found. */
static tree
get_bit_field_ref_def (tree val, enum tree_code &conv_code)
{
if (TREE_CODE (val) != SSA_NAME)
return NULL_TREE ;
gimple *def_stmt = get_prop_source_stmt (val, false, NULL);
if (!def_stmt)
return NULL_TREE;
enum tree_code code = gimple_assign_rhs_code (def_stmt);
if (code == FLOAT_EXPR
|| code == FIX_TRUNC_EXPR
|| CONVERT_EXPR_CODE_P (code))
{
tree op1 = gimple_assign_rhs1 (def_stmt);
if (conv_code == ERROR_MARK)
conv_code = code;
else if (conv_code != code)
return NULL_TREE;
if (TREE_CODE (op1) != SSA_NAME)
return NULL_TREE;
def_stmt = SSA_NAME_DEF_STMT (op1);
if (! is_gimple_assign (def_stmt))
return NULL_TREE;
code = gimple_assign_rhs_code (def_stmt);
}
if (code != BIT_FIELD_REF)
return NULL_TREE;
return gimple_assign_rhs1 (def_stmt);
}
/* Recognize a VEC_PERM_EXPR. Returns true if there were any changes. */
static bool
simplify_vector_constructor (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree op, orig[2], type, elem_type;
unsigned elem_size, i;
unsigned HOST_WIDE_INT nelts;
unsigned HOST_WIDE_INT refnelts;
enum tree_code conv_code;
constructor_elt *elt;
op = gimple_assign_rhs1 (stmt);
type = TREE_TYPE (op);
gcc_checking_assert (TREE_CODE (op) == CONSTRUCTOR
&& TREE_CODE (type) == VECTOR_TYPE);
if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
return false;
elem_type = TREE_TYPE (type);
elem_size = TREE_INT_CST_LOW (TYPE_SIZE (elem_type));
orig[0] = NULL;
orig[1] = NULL;
conv_code = ERROR_MARK;
bool maybe_ident = true;
bool maybe_blend[2] = { true, true };
tree one_constant = NULL_TREE;
tree one_nonconstant = NULL_TREE;
auto_vec<tree> constants;
constants.safe_grow_cleared (nelts, true);
auto_vec<std::pair<unsigned, unsigned>, 64> elts;
FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (op), i, elt)
{
tree ref, op1;
unsigned int elem;
if (i >= nelts)
return false;
/* Look for elements extracted and possibly converted from
another vector. */
op1 = get_bit_field_ref_def (elt->value, conv_code);
if (op1
&& TREE_CODE ((ref = TREE_OPERAND (op1, 0))) == SSA_NAME
&& VECTOR_TYPE_P (TREE_TYPE (ref))
&& useless_type_conversion_p (TREE_TYPE (op1),
TREE_TYPE (TREE_TYPE (ref)))
&& constant_multiple_p (bit_field_offset (op1),
bit_field_size (op1), &elem)
&& TYPE_VECTOR_SUBPARTS (TREE_TYPE (ref)).is_constant (&refnelts))
{
unsigned int j;
for (j = 0; j < 2; ++j)
{
if (!orig[j])
{
if (j == 0
|| useless_type_conversion_p (TREE_TYPE (orig[0]),
TREE_TYPE (ref)))
break;
}
else if (ref == orig[j])
break;
}
/* Found a suitable vector element. */
if (j < 2)
{
orig[j] = ref;
if (elem != i || j != 0)
maybe_ident = false;
if (elem != i)
maybe_blend[j] = false;
elts.safe_push (std::make_pair (j, elem));
continue;
}
/* Else fallthru. */
}
/* Handle elements not extracted from a vector.
1. constants by permuting with constant vector
2. a unique non-constant element by permuting with a splat vector */
if (orig[1]
&& orig[1] != error_mark_node)
return false;
orig[1] = error_mark_node;
if (CONSTANT_CLASS_P (elt->value))
{
if (one_nonconstant)
return false;
if (!one_constant)
one_constant = elt->value;
constants[i] = elt->value;
}
else
{
if (one_constant)
return false;
if (!one_nonconstant)
one_nonconstant = elt->value;
else if (!operand_equal_p (one_nonconstant, elt->value, 0))
return false;
}
elts.safe_push (std::make_pair (1, i));
maybe_ident = false;
}
if (i < nelts)
return false;
if (! orig[0]
|| ! VECTOR_TYPE_P (TREE_TYPE (orig[0])))
return false;
refnelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (orig[0])).to_constant ();
/* We currently do not handle larger destination vectors. */
if (refnelts < nelts)
return false;
if (maybe_ident)
{
tree conv_src_type
= (nelts != refnelts
? (conv_code != ERROR_MARK
? build_vector_type (TREE_TYPE (TREE_TYPE (orig[0])), nelts)
: type)
: TREE_TYPE (orig[0]));
if (conv_code != ERROR_MARK
&& !supportable_convert_operation (conv_code, type, conv_src_type,
&conv_code))
{
/* Only few targets implement direct conversion patterns so try
some simple special cases via VEC_[UN]PACK[_FLOAT]_LO_EXPR. */
optab optab;
tree halfvectype, dblvectype;
enum tree_code unpack_op;
if (!BYTES_BIG_ENDIAN)
unpack_op = (FLOAT_TYPE_P (TREE_TYPE (type))
? VEC_UNPACK_FLOAT_LO_EXPR
: VEC_UNPACK_LO_EXPR);
else
unpack_op = (FLOAT_TYPE_P (TREE_TYPE (type))
? VEC_UNPACK_FLOAT_HI_EXPR
: VEC_UNPACK_HI_EXPR);
/* Conversions between DFP and FP have no special tree code
but we cannot handle those since all relevant vector conversion
optabs only have a single mode. */
if (CONVERT_EXPR_CODE_P (conv_code)
&& FLOAT_TYPE_P (TREE_TYPE (type))
&& (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (type))
!= DECIMAL_FLOAT_TYPE_P (TREE_TYPE (conv_src_type))))
return false;
if (CONVERT_EXPR_CODE_P (conv_code)
&& (2 * TYPE_PRECISION (TREE_TYPE (TREE_TYPE (orig[0])))
== TYPE_PRECISION (TREE_TYPE (type)))
&& mode_for_vector (as_a <scalar_mode>
(TYPE_MODE (TREE_TYPE (TREE_TYPE (orig[0])))),
nelts * 2).exists ()
&& (dblvectype
= build_vector_type (TREE_TYPE (TREE_TYPE (orig[0])),
nelts * 2))
/* Only use it for vector modes or for vector booleans
represented as scalar bitmasks. See PR95528. */
&& (VECTOR_MODE_P (TYPE_MODE (dblvectype))
|| VECTOR_BOOLEAN_TYPE_P (dblvectype))
&& (optab = optab_for_tree_code (unpack_op,
dblvectype,
optab_default))
&& (optab_handler (optab, TYPE_MODE (dblvectype))
!= CODE_FOR_nothing))
{
gimple_seq stmts = NULL;
tree dbl;
if (refnelts == nelts)
{
/* ??? Paradoxical subregs don't exist, so insert into
the lower half of a wider zero vector. */
dbl = gimple_build (&stmts, BIT_INSERT_EXPR, dblvectype,
build_zero_cst (dblvectype), orig[0],
bitsize_zero_node);
}
else if (refnelts == 2 * nelts)
dbl = orig[0];
else
dbl = gimple_build (&stmts, BIT_FIELD_REF, dblvectype,
orig[0], TYPE_SIZE (dblvectype),
bitsize_zero_node);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gimple_assign_set_rhs_with_ops (gsi, unpack_op, dbl);
}
else if (CONVERT_EXPR_CODE_P (conv_code)
&& (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (orig[0])))
== 2 * TYPE_PRECISION (TREE_TYPE (type)))
&& mode_for_vector (as_a <scalar_mode>
(TYPE_MODE
(TREE_TYPE (TREE_TYPE (orig[0])))),
nelts / 2).exists ()
&& (halfvectype
= build_vector_type (TREE_TYPE (TREE_TYPE (orig[0])),
nelts / 2))
/* Only use it for vector modes or for vector booleans
represented as scalar bitmasks. See PR95528. */
&& (VECTOR_MODE_P (TYPE_MODE (halfvectype))
|| VECTOR_BOOLEAN_TYPE_P (halfvectype))
&& (optab = optab_for_tree_code (VEC_PACK_TRUNC_EXPR,
halfvectype,
optab_default))
&& (optab_handler (optab, TYPE_MODE (halfvectype))
!= CODE_FOR_nothing))
{
gimple_seq stmts = NULL;
tree low = gimple_build (&stmts, BIT_FIELD_REF, halfvectype,
orig[0], TYPE_SIZE (halfvectype),
bitsize_zero_node);
tree hig = gimple_build (&stmts, BIT_FIELD_REF, halfvectype,
orig[0], TYPE_SIZE (halfvectype),
TYPE_SIZE (halfvectype));
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gimple_assign_set_rhs_with_ops (gsi, VEC_PACK_TRUNC_EXPR,
low, hig);
}
else
return false;
update_stmt (gsi_stmt (*gsi));
return true;
}
if (nelts != refnelts)
{
gassign *lowpart
= gimple_build_assign (make_ssa_name (conv_src_type),
build3 (BIT_FIELD_REF, conv_src_type,
orig[0], TYPE_SIZE (conv_src_type),
bitsize_zero_node));
gsi_insert_before (gsi, lowpart, GSI_SAME_STMT);
orig[0] = gimple_assign_lhs (lowpart);
}
if (conv_code == ERROR_MARK)
{
tree src_type = TREE_TYPE (orig[0]);
if (!useless_type_conversion_p (type, src_type))
{
gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type),
TYPE_VECTOR_SUBPARTS (src_type))
&& useless_type_conversion_p (TREE_TYPE (type),
TREE_TYPE (src_type)));
tree rhs = build1 (VIEW_CONVERT_EXPR, type, orig[0]);
orig[0] = make_ssa_name (type);
gassign *assign = gimple_build_assign (orig[0], rhs);
gsi_insert_before (gsi, assign, GSI_SAME_STMT);
}
gimple_assign_set_rhs_from_tree (gsi, orig[0]);
}
else
gimple_assign_set_rhs_with_ops (gsi, conv_code, orig[0],
NULL_TREE, NULL_TREE);
}
else
{
/* If we combine a vector with a non-vector avoid cases where
we'll obviously end up with more GIMPLE stmts which is when
we'll later not fold this to a single insert into the vector
and we had a single extract originally. See PR92819. */
if (nelts == 2
&& refnelts > 2
&& orig[1] == error_mark_node
&& !maybe_blend[0])
return false;
tree mask_type, perm_type, conv_src_type;
perm_type = TREE_TYPE (orig[0]);
conv_src_type = (nelts == refnelts
? perm_type
: build_vector_type (TREE_TYPE (perm_type), nelts));
if (conv_code != ERROR_MARK
&& !supportable_convert_operation (conv_code, type, conv_src_type,
&conv_code))
return false;
/* Now that we know the number of elements of the source build the
permute vector.
??? When the second vector has constant values we can shuffle
it and its source indexes to make the permutation supported.
For now it mimics a blend. */
vec_perm_builder sel (refnelts, refnelts, 1);
bool all_same_p = true;
for (i = 0; i < elts.length (); ++i)
{
sel.quick_push (elts[i].second + elts[i].first * refnelts);
all_same_p &= known_eq (sel[i], sel[0]);
}
/* And fill the tail with "something". It's really don't care,
and ideally we'd allow VEC_PERM to have a smaller destination
vector. As a heuristic:
(a) if what we have so far duplicates a single element, make the
tail do the same
(b) otherwise preserve a uniform orig[0]. This facilitates
later pattern-matching of VEC_PERM_EXPR to a BIT_INSERT_EXPR. */
for (; i < refnelts; ++i)
sel.quick_push (all_same_p
? sel[0]
: (elts[0].second == 0 && elts[0].first == 0
? 0 : refnelts) + i);
vec_perm_indices indices (sel, orig[1] ? 2 : 1, refnelts);
if (!can_vec_perm_const_p (TYPE_MODE (perm_type), indices))
return false;
mask_type
= build_vector_type (build_nonstandard_integer_type (elem_size, 1),
refnelts);
if (GET_MODE_CLASS (TYPE_MODE (mask_type)) != MODE_VECTOR_INT
|| maybe_ne (GET_MODE_SIZE (TYPE_MODE (mask_type)),
GET_MODE_SIZE (TYPE_MODE (perm_type))))
return false;
tree op2 = vec_perm_indices_to_tree (mask_type, indices);
bool converted_orig1 = false;
gimple_seq stmts = NULL;
if (!orig[1])
orig[1] = orig[0];
else if (orig[1] == error_mark_node
&& one_nonconstant)
{
/* ??? We can see if we can safely convert to the original
element type. */
converted_orig1 = conv_code != ERROR_MARK;
orig[1] = gimple_build_vector_from_val (&stmts, UNKNOWN_LOCATION,
converted_orig1
? type : perm_type,
one_nonconstant);
}
else if (orig[1] == error_mark_node)
{
/* ??? See if we can convert the vector to the original type. */
converted_orig1 = conv_code != ERROR_MARK;
unsigned n = converted_orig1 ? nelts : refnelts;
tree_vector_builder vec (converted_orig1
? type : perm_type, n, 1);
for (unsigned i = 0; i < n; ++i)
if (i < nelts && constants[i])
vec.quick_push (constants[i]);
else
/* ??? Push a don't-care value. */
vec.quick_push (one_constant);
orig[1] = vec.build ();
}
tree blend_op2 = NULL_TREE;
if (converted_orig1)
{
/* Make sure we can do a blend in the target type. */
vec_perm_builder sel (nelts, nelts, 1);
for (i = 0; i < elts.length (); ++i)
sel.quick_push (elts[i].first
? elts[i].second + nelts : i);
vec_perm_indices indices (sel, 2, nelts);
if (!can_vec_perm_const_p (TYPE_MODE (type), indices))
return false;
mask_type
= build_vector_type (build_nonstandard_integer_type (elem_size, 1),
nelts);
if (GET_MODE_CLASS (TYPE_MODE (mask_type)) != MODE_VECTOR_INT
|| maybe_ne (GET_MODE_SIZE (TYPE_MODE (mask_type)),
GET_MODE_SIZE (TYPE_MODE (type))))
return false;
blend_op2 = vec_perm_indices_to_tree (mask_type, indices);
}
tree orig1_for_perm
= converted_orig1 ? build_zero_cst (perm_type) : orig[1];
tree res = gimple_build (&stmts, VEC_PERM_EXPR, perm_type,
orig[0], orig1_for_perm, op2);
if (nelts != refnelts)
res = gimple_build (&stmts, BIT_FIELD_REF,
conv_code != ERROR_MARK ? conv_src_type : type,
res, TYPE_SIZE (type), bitsize_zero_node);
if (conv_code != ERROR_MARK)
res = gimple_build (&stmts, conv_code, type, res);
else if (!useless_type_conversion_p (type, TREE_TYPE (res)))
{
gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type),
TYPE_VECTOR_SUBPARTS (perm_type))
&& useless_type_conversion_p (TREE_TYPE (type),
TREE_TYPE (perm_type)));
res = gimple_build (&stmts, VIEW_CONVERT_EXPR, type, res);
}
/* Blend in the actual constant. */
if (converted_orig1)
res = gimple_build (&stmts, VEC_PERM_EXPR, type,
res, orig[1], blend_op2);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gimple_assign_set_rhs_with_ops (gsi, SSA_NAME, res);
}
update_stmt (gsi_stmt (*gsi));
return true;
}
/* Rewrite the vector load at *GSI to component-wise loads if the load
is only used in BIT_FIELD_REF extractions with eventual intermediate
widening. */
static void
optimize_vector_load (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree lhs = gimple_assign_lhs (stmt);
tree rhs = gimple_assign_rhs1 (stmt);
/* Gather BIT_FIELD_REFs to rewrite, looking through
VEC_UNPACK_{LO,HI}_EXPR. */
use_operand_p use_p;
imm_use_iterator iter;
bool rewrite = true;
auto_vec<gimple *, 8> bf_stmts;
auto_vec<tree, 8> worklist;
worklist.quick_push (lhs);
do
{
tree def = worklist.pop ();
unsigned HOST_WIDE_INT def_eltsize
= TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (TREE_TYPE (def))));
FOR_EACH_IMM_USE_FAST (use_p, iter, def)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!is_gimple_assign (use_stmt))
{
rewrite = false;
break;
}
enum tree_code use_code = gimple_assign_rhs_code (use_stmt);
tree use_rhs = gimple_assign_rhs1 (use_stmt);
if (use_code == BIT_FIELD_REF
&& TREE_OPERAND (use_rhs, 0) == def
/* If its on the VEC_UNPACK_{HI,LO}_EXPR
def need to verify it is element aligned. */
&& (def == lhs
|| (known_eq (bit_field_size (use_rhs), def_eltsize)
&& constant_multiple_p (bit_field_offset (use_rhs),
def_eltsize))))
{
bf_stmts.safe_push (use_stmt);
continue;
}
/* Walk through one level of VEC_UNPACK_{LO,HI}_EXPR. */
if (def == lhs
&& (use_code == VEC_UNPACK_HI_EXPR
|| use_code == VEC_UNPACK_LO_EXPR)
&& use_rhs == lhs)
{
worklist.safe_push (gimple_assign_lhs (use_stmt));
continue;
}
rewrite = false;
break;
}
if (!rewrite)
break;
}
while (!worklist.is_empty ());
if (!rewrite)
{
gsi_next (gsi);
return;
}
/* We now have all ultimate uses of the load to rewrite in bf_stmts. */
/* Prepare the original ref to be wrapped in adjusted BIT_FIELD_REFs.
For TARGET_MEM_REFs we have to separate the LEA from the reference. */
tree load_rhs = rhs;
if (TREE_CODE (load_rhs) == TARGET_MEM_REF)
{
if (TREE_CODE (TREE_OPERAND (load_rhs, 0)) == ADDR_EXPR)
mark_addressable (TREE_OPERAND (TREE_OPERAND (load_rhs, 0), 0));
tree tem = make_ssa_name (TREE_TYPE (TREE_OPERAND (load_rhs, 0)));
gimple *new_stmt
= gimple_build_assign (tem, build1 (ADDR_EXPR, TREE_TYPE (tem),
unshare_expr (load_rhs)));
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
load_rhs = build2_loc (EXPR_LOCATION (load_rhs),
MEM_REF, TREE_TYPE (load_rhs), tem,
build_int_cst
(TREE_TYPE (TREE_OPERAND (load_rhs, 1)), 0));
}
/* Rewrite the BIT_FIELD_REFs to be actual loads, re-emitting them at
the place of the original load. */
for (gimple *use_stmt : bf_stmts)
{
tree bfr = gimple_assign_rhs1 (use_stmt);
tree new_rhs = unshare_expr (load_rhs);
if (TREE_OPERAND (bfr, 0) != lhs)
{
/* When the BIT_FIELD_REF is on the promoted vector we have to
adjust it and emit a conversion afterwards. */
gimple *def_stmt
= SSA_NAME_DEF_STMT (TREE_OPERAND (bfr, 0));
enum tree_code def_code
= gimple_assign_rhs_code (def_stmt);
/* The adjusted BIT_FIELD_REF is of the promotion source
vector size and at half of the offset... */
new_rhs = fold_build3 (BIT_FIELD_REF,
TREE_TYPE (TREE_TYPE (lhs)),
new_rhs,
TYPE_SIZE (TREE_TYPE (TREE_TYPE (lhs))),
size_binop (EXACT_DIV_EXPR,
TREE_OPERAND (bfr, 2),
bitsize_int (2)));
/* ... and offsetted by half of the vector if VEC_UNPACK_HI_EXPR. */
if (def_code == (!BYTES_BIG_ENDIAN
? VEC_UNPACK_HI_EXPR : VEC_UNPACK_LO_EXPR))
TREE_OPERAND (new_rhs, 2)
= size_binop (PLUS_EXPR, TREE_OPERAND (new_rhs, 2),
size_binop (EXACT_DIV_EXPR,
TYPE_SIZE (TREE_TYPE (lhs)),
bitsize_int (2)));
tree tem = make_ssa_name (TREE_TYPE (TREE_TYPE (lhs)));
gimple *new_stmt = gimple_build_assign (tem, new_rhs);
location_t loc = gimple_location (use_stmt);
gimple_set_location (new_stmt, loc);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
/* Perform scalar promotion. */
new_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
NOP_EXPR, tem);
gimple_set_location (new_stmt, loc);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
}
else
{
/* When the BIT_FIELD_REF is on the original load result
we can just wrap that. */
tree new_rhs = fold_build3 (BIT_FIELD_REF, TREE_TYPE (bfr),
unshare_expr (load_rhs),
TREE_OPERAND (bfr, 1),
TREE_OPERAND (bfr, 2));
gimple *new_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
new_rhs);
location_t loc = gimple_location (use_stmt);
gimple_set_location (new_stmt, loc);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
}
gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
unlink_stmt_vdef (use_stmt);
gsi_remove (&gsi2, true);
}
/* Finally get rid of the intermediate stmts. */
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
{
if (is_gimple_debug (use_stmt))
{
if (gimple_debug_bind_p (use_stmt))
{
gimple_debug_bind_reset_value (use_stmt);
update_stmt (use_stmt);
}
continue;
}
gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
unlink_stmt_vdef (use_stmt);
release_defs (use_stmt);
gsi_remove (&gsi2, true);
}
/* And the original load. */
release_defs (stmt);
gsi_remove (gsi, true);
}
/* Primitive "lattice" function for gimple_simplify. */
static tree
fwprop_ssa_val (tree name)
{
/* First valueize NAME. */
if (TREE_CODE (name) == SSA_NAME
&& SSA_NAME_VERSION (name) < lattice.length ())
{
tree val = lattice[SSA_NAME_VERSION (name)];
if (val)
name = val;
}
/* We continue matching along SSA use-def edges for SSA names
that are not single-use. Currently there are no patterns
that would cause any issues with that. */
return name;
}
/* Main entry point for the forward propagation and statement combine
optimizer. */
namespace {
const pass_data pass_data_forwprop =
{
GIMPLE_PASS, /* type */
"forwprop", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_FORWPROP, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_forwprop : public gimple_opt_pass
{
public:
pass_forwprop (gcc::context *ctxt)
: gimple_opt_pass (pass_data_forwprop, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_forwprop (m_ctxt); }
virtual bool gate (function *) { return flag_tree_forwprop; }
virtual unsigned int execute (function *);
}; // class pass_forwprop
unsigned int
pass_forwprop::execute (function *fun)
{
unsigned int todoflags = 0;
cfg_changed = false;
/* Combine stmts with the stmts defining their operands. Do that
in an order that guarantees visiting SSA defs before SSA uses. */
lattice.create (num_ssa_names);
lattice.quick_grow_cleared (num_ssa_names);
int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (fun));
int postorder_num = pre_and_rev_post_order_compute_fn (cfun, NULL,
postorder, false);
auto_vec<gimple *, 4> to_fixup;
auto_vec<gimple *, 32> to_remove;
to_purge = BITMAP_ALLOC (NULL);
for (int i = 0; i < postorder_num; ++i)
{
gimple_stmt_iterator gsi;
basic_block bb = BASIC_BLOCK_FOR_FN (fun, postorder[i]);
/* Record degenerate PHIs in the lattice. */
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
gphi *phi = si.phi ();
tree res = gimple_phi_result (phi);
if (virtual_operand_p (res))
continue;
use_operand_p use_p;
ssa_op_iter it;
tree first = NULL_TREE;
bool all_same = true;
FOR_EACH_PHI_ARG (use_p, phi, it, SSA_OP_USE)
{
tree use = USE_FROM_PTR (use_p);
if (! first)
first = use;
else if (! operand_equal_p (first, use, 0))
{
all_same = false;
break;
}
}
if (all_same)
{
if (may_propagate_copy (res, first))
to_remove.safe_push (phi);
fwprop_set_lattice_val (res, first);
}
}
/* Apply forward propagation to all stmts in the basic-block.
Note we update GSI within the loop as necessary. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
{
gimple *stmt = gsi_stmt (gsi);
tree lhs, rhs;
enum tree_code code;
if (!is_gimple_assign (stmt))
{
gsi_next (&gsi);
continue;
}
lhs = gimple_assign_lhs (stmt);
rhs = gimple_assign_rhs1 (stmt);
code = gimple_assign_rhs_code (stmt);
if (TREE_CODE (lhs) != SSA_NAME
|| has_zero_uses (lhs))
{
gsi_next (&gsi);
continue;
}
/* If this statement sets an SSA_NAME to an address,
try to propagate the address into the uses of the SSA_NAME. */
if ((code == ADDR_EXPR
/* Handle pointer conversions on invariant addresses
as well, as this is valid gimple. */
|| (CONVERT_EXPR_CODE_P (code)
&& TREE_CODE (rhs) == ADDR_EXPR
&& POINTER_TYPE_P (TREE_TYPE (lhs))))
&& TREE_CODE (TREE_OPERAND (rhs, 0)) != TARGET_MEM_REF)
{
tree base = get_base_address (TREE_OPERAND (rhs, 0));
if ((!base
|| !DECL_P (base)
|| decl_address_invariant_p (base))
&& !stmt_references_abnormal_ssa_name (stmt)
&& forward_propagate_addr_expr (lhs, rhs, true))
{
fwprop_invalidate_lattice (gimple_get_lhs (stmt));
release_defs (stmt);
gsi_remove (&gsi, true);
}
else
gsi_next (&gsi);
}
else if (code == POINTER_PLUS_EXPR)
{
tree off = gimple_assign_rhs2 (stmt);
if (TREE_CODE (off) == INTEGER_CST
&& can_propagate_from (stmt)
&& !simple_iv_increment_p (stmt)
/* ??? Better adjust the interface to that function
instead of building new trees here. */
&& forward_propagate_addr_expr
(lhs,
build1_loc (gimple_location (stmt),
ADDR_EXPR, TREE_TYPE (rhs),
fold_build2 (MEM_REF,
TREE_TYPE (TREE_TYPE (rhs)),
rhs,
fold_convert (ptr_type_node,
off))), true))
{
fwprop_invalidate_lattice (gimple_get_lhs (stmt));
release_defs (stmt);
gsi_remove (&gsi, true);
}
else if (is_gimple_min_invariant (rhs))
{
/* Make sure to fold &a[0] + off_1 here. */
fold_stmt_inplace (&gsi);
update_stmt (stmt);
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
gsi_next (&gsi);
}
else
gsi_next (&gsi);
}
else if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE
&& gimple_assign_load_p (stmt)
&& !gimple_has_volatile_ops (stmt)
&& (TREE_CODE (gimple_assign_rhs1 (stmt))
!= TARGET_MEM_REF)
&& !stmt_can_throw_internal (cfun, stmt))
{
/* Rewrite loads used only in real/imagpart extractions to
component-wise loads. */
use_operand_p use_p;
imm_use_iterator iter;
bool rewrite = true;
FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!is_gimple_assign (use_stmt)
|| (gimple_assign_rhs_code (use_stmt) != REALPART_EXPR
&& gimple_assign_rhs_code (use_stmt) != IMAGPART_EXPR)
|| TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) != lhs)
{
rewrite = false;
break;
}
}
if (rewrite)
{
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
{
if (is_gimple_debug (use_stmt))
{
if (gimple_debug_bind_p (use_stmt))
{
gimple_debug_bind_reset_value (use_stmt);
update_stmt (use_stmt);
}
continue;
}
tree new_rhs = build1 (gimple_assign_rhs_code (use_stmt),
TREE_TYPE (TREE_TYPE (rhs)),
unshare_expr (rhs));
gimple *new_stmt
= gimple_build_assign (gimple_assign_lhs (use_stmt),
new_rhs);
location_t loc = gimple_location (use_stmt);
gimple_set_location (new_stmt, loc);
gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
unlink_stmt_vdef (use_stmt);
gsi_remove (&gsi2, true);
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
}
release_defs (stmt);
gsi_remove (&gsi, true);
}
else
gsi_next (&gsi);
}
else if (TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE
&& (TYPE_MODE (TREE_TYPE (lhs)) == BLKmode
/* After vector lowering rewrite all loads, but
initially do not since this conflicts with
vector CONSTRUCTOR to shuffle optimization. */
|| (fun->curr_properties & PROP_gimple_lvec))
&& gimple_assign_load_p (stmt)
&& !gimple_has_volatile_ops (stmt)
&& !stmt_can_throw_internal (cfun, stmt)
&& (!VAR_P (rhs) || !DECL_HARD_REGISTER (rhs)))
optimize_vector_load (&gsi);
else if (code == COMPLEX_EXPR)
{
/* Rewrite stores of a single-use complex build expression
to component-wise stores. */
use_operand_p use_p;
gimple *use_stmt;
if (single_imm_use (lhs, &use_p, &use_stmt)
&& gimple_store_p (use_stmt)
&& !gimple_has_volatile_ops (use_stmt)
&& is_gimple_assign (use_stmt)
&& (TREE_CODE (gimple_assign_lhs (use_stmt))
!= TARGET_MEM_REF))
{
tree use_lhs = gimple_assign_lhs (use_stmt);
if (auto_var_p (use_lhs))
DECL_NOT_GIMPLE_REG_P (use_lhs) = 1;
tree new_lhs = build1 (REALPART_EXPR,
TREE_TYPE (TREE_TYPE (use_lhs)),
unshare_expr (use_lhs));
gimple *new_stmt = gimple_build_assign (new_lhs, rhs);
location_t loc = gimple_location (use_stmt);
gimple_set_location (new_stmt, loc);
gimple_set_vuse (new_stmt, gimple_vuse (use_stmt));
gimple_set_vdef (new_stmt, make_ssa_name (gimple_vop (cfun)));
SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt;
gimple_set_vuse (use_stmt, gimple_vdef (new_stmt));
gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
gsi_insert_before (&gsi2, new_stmt, GSI_SAME_STMT);
new_lhs = build1 (IMAGPART_EXPR,
TREE_TYPE (TREE_TYPE (use_lhs)),
unshare_expr (use_lhs));
gimple_assign_set_lhs (use_stmt, new_lhs);
gimple_assign_set_rhs1 (use_stmt, gimple_assign_rhs2 (stmt));
update_stmt (use_stmt);
release_defs (stmt);
gsi_remove (&gsi, true);
}
else
gsi_next (&gsi);
}
else if (code == CONSTRUCTOR
&& VECTOR_TYPE_P (TREE_TYPE (rhs))
&& TYPE_MODE (TREE_TYPE (rhs)) == BLKmode
&& CONSTRUCTOR_NELTS (rhs) > 0
&& (!VECTOR_TYPE_P (TREE_TYPE (CONSTRUCTOR_ELT (rhs, 0)->value))
|| (TYPE_MODE (TREE_TYPE (CONSTRUCTOR_ELT (rhs, 0)->value))
!= BLKmode)))
{
/* Rewrite stores of a single-use vector constructors
to component-wise stores if the mode isn't supported. */
use_operand_p use_p;
gimple *use_stmt;
if (single_imm_use (lhs, &use_p, &use_stmt)
&& gimple_store_p (use_stmt)
&& !gimple_has_volatile_ops (use_stmt)
&& !stmt_can_throw_internal (cfun, use_stmt)
&& is_gimple_assign (use_stmt)
&& (TREE_CODE (gimple_assign_lhs (use_stmt))
!= TARGET_MEM_REF))
{
tree elt_t = TREE_TYPE (CONSTRUCTOR_ELT (rhs, 0)->value);
unsigned HOST_WIDE_INT elt_w
= tree_to_uhwi (TYPE_SIZE (elt_t));
unsigned HOST_WIDE_INT n
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (rhs)));
tree use_lhs = gimple_assign_lhs (use_stmt);
if (auto_var_p (use_lhs))
DECL_NOT_GIMPLE_REG_P (use_lhs) = 1;
for (unsigned HOST_WIDE_INT bi = 0; bi < n; bi += elt_w)
{
unsigned HOST_WIDE_INT ci = bi / elt_w;
tree new_rhs;
if (ci < CONSTRUCTOR_NELTS (rhs))
new_rhs = CONSTRUCTOR_ELT (rhs, ci)->value;
else
new_rhs = build_zero_cst (elt_t);
tree new_lhs = build3 (BIT_FIELD_REF,
elt_t,
unshare_expr (use_lhs),
bitsize_int (elt_w),
bitsize_int (bi));
gimple *new_stmt = gimple_build_assign (new_lhs, new_rhs);
location_t loc = gimple_location (use_stmt);
gimple_set_location (new_stmt, loc);
gimple_set_vuse (new_stmt, gimple_vuse (use_stmt));
gimple_set_vdef (new_stmt,
make_ssa_name (gimple_vop (cfun)));
SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt;
gimple_set_vuse (use_stmt, gimple_vdef (new_stmt));
gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
gsi_insert_before (&gsi2, new_stmt, GSI_SAME_STMT);
}
gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
unlink_stmt_vdef (use_stmt);
release_defs (use_stmt);
gsi_remove (&gsi2, true);
release_defs (stmt);
gsi_remove (&gsi, true);
}
else
gsi_next (&gsi);
}
else
gsi_next (&gsi);
}
/* Combine stmts with the stmts defining their operands.
Note we update GSI within the loop as necessary. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
/* Mark stmt as potentially needing revisiting. */
gimple_set_plf (stmt, GF_PLF_1, false);
/* Substitute from our lattice. We need to do so only once. */
bool substituted_p = false;
use_operand_p usep;
ssa_op_iter iter;
FOR_EACH_SSA_USE_OPERAND (usep, stmt, iter, SSA_OP_USE)
{
tree use = USE_FROM_PTR (usep);
tree val = fwprop_ssa_val (use);
if (val && val != use && may_propagate_copy (use, val))
{
propagate_value (usep, val);
substituted_p = true;
}
}
if (substituted_p
&& is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR)
recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt));
bool changed;
do
{
gimple *orig_stmt = stmt = gsi_stmt (gsi);
bool was_noreturn = (is_gimple_call (stmt)
&& gimple_call_noreturn_p (stmt));
changed = false;
if (fold_stmt (&gsi, fwprop_ssa_val))
{
changed = true;
stmt = gsi_stmt (gsi);
/* Cleanup the CFG if we simplified a condition to
true or false. */
if (gcond *cond = dyn_cast <gcond *> (stmt))
if (gimple_cond_true_p (cond)
|| gimple_cond_false_p (cond))
cfg_changed = true;
}
if (changed || substituted_p)
{
if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
bitmap_set_bit (to_purge, bb->index);
if (!was_noreturn
&& is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
to_fixup.safe_push (stmt);
update_stmt (stmt);
substituted_p = false;
}
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
{
tree rhs1 = gimple_assign_rhs1 (stmt);
enum tree_code code = gimple_assign_rhs_code (stmt);
if (code == COND_EXPR)
{
/* In this case the entire COND_EXPR is in rhs1. */
if (forward_propagate_into_cond (&gsi))
{
changed = true;
stmt = gsi_stmt (gsi);
}
}
else if (TREE_CODE_CLASS (code) == tcc_comparison)
{
int did_something;
did_something = forward_propagate_into_comparison (&gsi);
if (maybe_clean_or_replace_eh_stmt (stmt, gsi_stmt (gsi)))
bitmap_set_bit (to_purge, bb->index);
if (did_something == 2)
cfg_changed = true;
changed = did_something != 0;
}
else if ((code == PLUS_EXPR
|| code == BIT_IOR_EXPR
|| code == BIT_XOR_EXPR)
&& simplify_rotate (&gsi))
changed = true;
else if (code == VEC_PERM_EXPR)
{
int did_something = simplify_permutation (&gsi);
if (did_something == 2)
cfg_changed = true;
changed = did_something != 0;
}
else if (code == BIT_FIELD_REF)
changed = simplify_bitfield_ref (&gsi);
else if (code == CONSTRUCTOR
&& TREE_CODE (TREE_TYPE (rhs1)) == VECTOR_TYPE)
changed = simplify_vector_constructor (&gsi);
else if (code == ARRAY_REF)
changed = simplify_count_trailing_zeroes (&gsi);
break;
}
case GIMPLE_SWITCH:
changed = simplify_gimple_switch (as_a <gswitch *> (stmt));
break;
case GIMPLE_COND:
{
int did_something = forward_propagate_into_gimple_cond
(as_a <gcond *> (stmt));
if (did_something == 2)
cfg_changed = true;
changed = did_something != 0;
break;
}
case GIMPLE_CALL:
{
tree callee = gimple_call_fndecl (stmt);
if (callee != NULL_TREE
&& fndecl_built_in_p (callee, BUILT_IN_NORMAL))
changed = simplify_builtin_call (&gsi, callee);
break;
}
default:;
}
if (changed)
{
/* If the stmt changed then re-visit it and the statements
inserted before it. */
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
if (gimple_plf (gsi_stmt (gsi), GF_PLF_1))
break;
if (gsi_end_p (gsi))
gsi = gsi_start_bb (bb);
else
gsi_next (&gsi);
}
}
while (changed);
/* Stmt no longer needs to be revisited. */
stmt = gsi_stmt (gsi);
gcc_checking_assert (!gimple_plf (stmt, GF_PLF_1));
gimple_set_plf (stmt, GF_PLF_1, true);
/* Fill up the lattice. */
if (gimple_assign_single_p (stmt))
{
tree lhs = gimple_assign_lhs (stmt);
tree rhs = gimple_assign_rhs1 (stmt);
if (TREE_CODE (lhs) == SSA_NAME)
{
tree val = lhs;
if (TREE_CODE (rhs) == SSA_NAME)
val = fwprop_ssa_val (rhs);
else if (is_gimple_min_invariant (rhs))
val = rhs;
/* If we can propagate the lattice-value mark the
stmt for removal. */
if (val != lhs
&& may_propagate_copy (lhs, val))
to_remove.safe_push (stmt);
fwprop_set_lattice_val (lhs, val);
}
}
else if (gimple_nop_p (stmt))
to_remove.safe_push (stmt);
}
/* Substitute in destination PHI arguments. */
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, bb->succs)
for (gphi_iterator gsi = gsi_start_phis (e->dest);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
tree arg = USE_FROM_PTR (use_p);
if (TREE_CODE (arg) != SSA_NAME
|| virtual_operand_p (arg))
continue;
tree val = fwprop_ssa_val (arg);
if (val != arg
&& may_propagate_copy (arg, val))
propagate_value (use_p, val);
}
}
free (postorder);
lattice.release ();
/* Remove stmts in reverse order to make debug stmt creation possible. */
while (!to_remove.is_empty())
{
gimple *stmt = to_remove.pop ();
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Removing dead stmt ");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "\n");
}
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
if (gimple_code (stmt) == GIMPLE_PHI)
remove_phi_node (&gsi, true);
else
{
unlink_stmt_vdef (stmt);
gsi_remove (&gsi, true);
release_defs (stmt);
}
}
/* Fixup stmts that became noreturn calls. This may require splitting
blocks and thus isn't possible during the walk. Do this
in reverse order so we don't inadvertedly remove a stmt we want to
fixup by visiting a dominating now noreturn call first. */
while (!to_fixup.is_empty ())
{
gimple *stmt = to_fixup.pop ();
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "Fixing up noreturn call ");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "\n");
}
cfg_changed |= fixup_noreturn_call (stmt);
}
cfg_changed |= gimple_purge_all_dead_eh_edges (to_purge);
BITMAP_FREE (to_purge);
if (cfg_changed)
todoflags |= TODO_cleanup_cfg;
return todoflags;
}
} // anon namespace
gimple_opt_pass *
make_pass_forwprop (gcc::context *ctxt)
{
return new pass_forwprop (ctxt);
}
|