1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
|
/* Loop splitting.
Copyright (C) 2015-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "fold-const.h"
#include "tree-cfg.h"
#include "tree-ssa.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-ssa-loop-manip.h"
#include "tree-into-ssa.h"
#include "tree-inline.h"
#include "tree-cfgcleanup.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "gimple-iterator.h"
#include "gimple-pretty-print.h"
#include "cfghooks.h"
#include "gimple-fold.h"
#include "gimplify-me.h"
/* This file implements two kinds of loop splitting.
One transformation of loops like:
for (i = 0; i < 100; i++)
{
if (i < 50)
A;
else
B;
}
into:
for (i = 0; i < 50; i++)
{
A;
}
for (; i < 100; i++)
{
B;
}
*/
/* Return true when BB inside LOOP is a potential iteration space
split point, i.e. ends with a condition like "IV < comp", which
is true on one side of the iteration space and false on the other,
and the split point can be computed. If so, also return the border
point in *BORDER and the comparison induction variable in IV. */
static tree
split_at_bb_p (class loop *loop, basic_block bb, tree *border, affine_iv *iv)
{
gimple *last;
gcond *stmt;
affine_iv iv2;
/* BB must end in a simple conditional jump. */
last = last_stmt (bb);
if (!last || gimple_code (last) != GIMPLE_COND)
return NULL_TREE;
stmt = as_a <gcond *> (last);
enum tree_code code = gimple_cond_code (stmt);
/* Only handle relational comparisons, for equality and non-equality
we'd have to split the loop into two loops and a middle statement. */
switch (code)
{
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
break;
default:
return NULL_TREE;
}
if (loop_exits_from_bb_p (loop, bb))
return NULL_TREE;
tree op0 = gimple_cond_lhs (stmt);
tree op1 = gimple_cond_rhs (stmt);
class loop *useloop = loop_containing_stmt (stmt);
if (!simple_iv (loop, useloop, op0, iv, false))
return NULL_TREE;
if (!simple_iv (loop, useloop, op1, &iv2, false))
return NULL_TREE;
/* Make it so that the first argument of the condition is
the looping one. */
if (!integer_zerop (iv2.step))
{
std::swap (op0, op1);
std::swap (*iv, iv2);
code = swap_tree_comparison (code);
gimple_cond_set_condition (stmt, code, op0, op1);
update_stmt (stmt);
}
else if (integer_zerop (iv->step))
return NULL_TREE;
if (!integer_zerop (iv2.step))
return NULL_TREE;
if (!iv->no_overflow)
return NULL_TREE;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Found potential split point: ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, " { ");
print_generic_expr (dump_file, iv->base, TDF_SLIM);
fprintf (dump_file, " + I*");
print_generic_expr (dump_file, iv->step, TDF_SLIM);
fprintf (dump_file, " } %s ", get_tree_code_name (code));
print_generic_expr (dump_file, iv2.base, TDF_SLIM);
fprintf (dump_file, "\n");
}
*border = iv2.base;
return op0;
}
/* Given a GUARD conditional stmt inside LOOP, which we want to make always
true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
(a post-increment IV) and NEWBOUND (the comparator) adjust the loop
exit test statement to loop back only if the GUARD statement will
also be true/false in the next iteration. */
static void
patch_loop_exit (class loop *loop, gcond *guard, tree nextval, tree newbound,
bool initial_true)
{
edge exit = single_exit (loop);
gcond *stmt = as_a <gcond *> (last_stmt (exit->src));
gimple_cond_set_condition (stmt, gimple_cond_code (guard),
nextval, newbound);
update_stmt (stmt);
edge stay = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
if (initial_true)
{
exit->flags |= EDGE_FALSE_VALUE;
stay->flags |= EDGE_TRUE_VALUE;
}
else
{
exit->flags |= EDGE_TRUE_VALUE;
stay->flags |= EDGE_FALSE_VALUE;
}
}
/* Give an induction variable GUARD_IV, and its affine descriptor IV,
find the loop phi node in LOOP defining it directly, or create
such phi node. Return that phi node. */
static gphi *
find_or_create_guard_phi (class loop *loop, tree guard_iv, affine_iv * /*iv*/)
{
gimple *def = SSA_NAME_DEF_STMT (guard_iv);
gphi *phi;
if ((phi = dyn_cast <gphi *> (def))
&& gimple_bb (phi) == loop->header)
return phi;
/* XXX Create the PHI instead. */
return NULL;
}
/* Returns true if the exit values of all loop phi nodes can be
determined easily (i.e. that connect_loop_phis can determine them). */
static bool
easy_exit_values (class loop *loop)
{
edge exit = single_exit (loop);
edge latch = loop_latch_edge (loop);
gphi_iterator psi;
/* Currently we regard the exit values as easy if they are the same
as the value over the backedge. Which is the case if the definition
of the backedge value dominates the exit edge. */
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
{
gphi *phi = psi.phi ();
tree next = PHI_ARG_DEF_FROM_EDGE (phi, latch);
basic_block bb;
if (TREE_CODE (next) == SSA_NAME
&& (bb = gimple_bb (SSA_NAME_DEF_STMT (next)))
&& !dominated_by_p (CDI_DOMINATORS, exit->src, bb))
return false;
}
return true;
}
/* This function updates the SSA form after connect_loops made a new
edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
conditional). I.e. the second loop can now be entered either
via the original entry or via NEW_E, so the entry values of LOOP2
phi nodes are either the original ones or those at the exit
of LOOP1. Insert new phi nodes in LOOP2 pre-header reflecting
this. The loops need to fulfill easy_exit_values(). */
static void
connect_loop_phis (class loop *loop1, class loop *loop2, edge new_e)
{
basic_block rest = loop_preheader_edge (loop2)->src;
gcc_assert (new_e->dest == rest);
edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
edge firste = loop_preheader_edge (loop1);
edge seconde = loop_preheader_edge (loop2);
edge firstn = loop_latch_edge (loop1);
gphi_iterator psi_first, psi_second;
for (psi_first = gsi_start_phis (loop1->header),
psi_second = gsi_start_phis (loop2->header);
!gsi_end_p (psi_first);
gsi_next (&psi_first), gsi_next (&psi_second))
{
tree init, next, new_init;
use_operand_p op;
gphi *phi_first = psi_first.phi ();
gphi *phi_second = psi_second.phi ();
init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
/* Prefer using original variable as a base for the new ssa name.
This is necessary for virtual ops, and useful in order to avoid
losing debug info for real ops. */
if (TREE_CODE (next) == SSA_NAME
&& useless_type_conversion_p (TREE_TYPE (next),
TREE_TYPE (init)))
new_init = copy_ssa_name (next);
else if (TREE_CODE (init) == SSA_NAME
&& useless_type_conversion_p (TREE_TYPE (init),
TREE_TYPE (next)))
new_init = copy_ssa_name (init);
else if (useless_type_conversion_p (TREE_TYPE (next),
TREE_TYPE (init)))
new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
"unrinittmp");
else
new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
"unrinittmp");
gphi * newphi = create_phi_node (new_init, rest);
add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
SET_USE (op, new_init);
}
}
/* The two loops LOOP1 and LOOP2 were just created by loop versioning,
they are still equivalent and placed in two arms of a diamond, like so:
.------if (cond)------.
v v
pre1 pre2
| |
.--->h1 h2<----.
| | | |
| ex1---. .---ex2 |
| / | | \ |
'---l1 X | l2---'
| |
| |
'--->join<---'
This function transforms the program such that LOOP1 is conditionally
falling through to LOOP2, or skipping it. This is done by splitting
the ex1->join edge at X in the diagram above, and inserting a condition
whose one arm goes to pre2, resulting in this situation:
.------if (cond)------.
v v
pre1 .---------->pre2
| | |
.--->h1 | h2<----.
| | | | |
| ex1---. | .---ex2 |
| / v | | \ |
'---l1 skip---' | l2---'
| |
| |
'--->join<---'
The condition used is the exit condition of LOOP1, which effectively means
that when the first loop exits (for whatever reason) but the real original
exit expression is still false the second loop will be entered.
The function returns the new edge cond->pre2.
This doesn't update the SSA form, see connect_loop_phis for that. */
static edge
connect_loops (class loop *loop1, class loop *loop2)
{
edge exit = single_exit (loop1);
basic_block skip_bb = split_edge (exit);
gcond *skip_stmt;
gimple_stmt_iterator gsi;
edge new_e, skip_e;
gimple *stmt = last_stmt (exit->src);
skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
gimple_cond_lhs (stmt),
gimple_cond_rhs (stmt),
NULL_TREE, NULL_TREE);
gsi = gsi_last_bb (skip_bb);
gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
skip_e = EDGE_SUCC (skip_bb, 0);
skip_e->flags &= ~EDGE_FALLTHRU;
new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
if (exit->flags & EDGE_TRUE_VALUE)
{
skip_e->flags |= EDGE_TRUE_VALUE;
new_e->flags |= EDGE_FALSE_VALUE;
}
else
{
skip_e->flags |= EDGE_FALSE_VALUE;
new_e->flags |= EDGE_TRUE_VALUE;
}
new_e->probability = profile_probability::likely ();
skip_e->probability = new_e->probability.invert ();
return new_e;
}
/* This returns the new bound for iterations given the original iteration
space in NITER, an arbitrary new bound BORDER, assumed to be some
comparison value with a different IV, the initial value GUARD_INIT of
that other IV, and the comparison code GUARD_CODE that compares
that other IV with BORDER. We return an SSA name, and place any
necessary statements for that computation into *STMTS.
For example for such a loop:
for (i = beg, j = guard_init; i < end; i++, j++)
if (j < border) // this is supposed to be true/false
...
we want to return a new bound (on j) that makes the loop iterate
as long as the condition j < border stays true. We also don't want
to iterate more often than the original loop, so we have to introduce
some cut-off as well (via min/max), effectively resulting in:
newend = min (end+guard_init-beg, border)
for (i = beg; j = guard_init; j < newend; i++, j++)
if (j < c)
...
Depending on the direction of the IVs and if the exit tests
are strict or non-strict we need to use MIN or MAX,
and add or subtract 1. This routine computes newend above. */
static tree
compute_new_first_bound (gimple_seq *stmts, class tree_niter_desc *niter,
tree border,
enum tree_code guard_code, tree guard_init)
{
/* The niter structure contains the after-increment IV, we need
the loop-enter base, so subtract STEP once. */
tree controlbase = force_gimple_operand (niter->control.base,
stmts, true, NULL_TREE);
tree controlstep = niter->control.step;
tree enddiff;
if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
{
controlstep = gimple_build (stmts, NEGATE_EXPR,
TREE_TYPE (controlstep), controlstep);
enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
TREE_TYPE (controlbase),
controlbase, controlstep);
}
else
enddiff = gimple_build (stmts, MINUS_EXPR,
TREE_TYPE (controlbase),
controlbase, controlstep);
/* Compute end-beg. */
gimple_seq stmts2;
tree end = force_gimple_operand (niter->bound, &stmts2,
true, NULL_TREE);
gimple_seq_add_seq_without_update (stmts, stmts2);
if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
{
tree tem = gimple_convert (stmts, sizetype, enddiff);
tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
TREE_TYPE (enddiff),
end, tem);
}
else
enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
end, enddiff);
/* Compute guard_init + (end-beg). */
tree newbound;
enddiff = gimple_convert (stmts, TREE_TYPE (guard_init), enddiff);
if (POINTER_TYPE_P (TREE_TYPE (guard_init)))
{
enddiff = gimple_convert (stmts, sizetype, enddiff);
newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
TREE_TYPE (guard_init),
guard_init, enddiff);
}
else
newbound = gimple_build (stmts, PLUS_EXPR, TREE_TYPE (guard_init),
guard_init, enddiff);
/* Depending on the direction of the IVs the new bound for the first
loop is the minimum or maximum of old bound and border.
Also, if the guard condition isn't strictly less or greater,
we need to adjust the bound. */
int addbound = 0;
enum tree_code minmax;
if (niter->cmp == LT_EXPR)
{
/* GT and LE are the same, inverted. */
if (guard_code == GT_EXPR || guard_code == LE_EXPR)
addbound = -1;
minmax = MIN_EXPR;
}
else
{
gcc_assert (niter->cmp == GT_EXPR);
if (guard_code == GE_EXPR || guard_code == LT_EXPR)
addbound = 1;
minmax = MAX_EXPR;
}
if (addbound)
{
tree type2 = TREE_TYPE (newbound);
if (POINTER_TYPE_P (type2))
type2 = sizetype;
newbound = gimple_build (stmts,
POINTER_TYPE_P (TREE_TYPE (newbound))
? POINTER_PLUS_EXPR : PLUS_EXPR,
TREE_TYPE (newbound),
newbound,
build_int_cst (type2, addbound));
}
tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
border, newbound);
return newend;
}
/* Fix the two loop's bb count after split based on the split edge probability,
don't adjust the bbs dominated by true branches of that loop to avoid
dropping 1s down. */
static void
fix_loop_bb_probability (class loop *loop1, class loop *loop2, edge true_edge,
edge false_edge)
{
update_ssa (TODO_update_ssa);
/* Proportion first loop's bb counts except those dominated by true
branch to avoid drop 1s down. */
basic_block *bbs1, *bbs2;
bbs1 = get_loop_body (loop1);
unsigned j;
for (j = 0; j < loop1->num_nodes; j++)
if (bbs1[j] == loop1->latch
|| !dominated_by_p (CDI_DOMINATORS, bbs1[j], true_edge->dest))
bbs1[j]->count
= bbs1[j]->count.apply_probability (true_edge->probability);
free (bbs1);
/* Proportion second loop's bb counts except those dominated by false
branch to avoid drop 1s down. */
basic_block bbi_copy = get_bb_copy (false_edge->dest);
bbs2 = get_loop_body (loop2);
for (j = 0; j < loop2->num_nodes; j++)
if (bbs2[j] == loop2->latch
|| !dominated_by_p (CDI_DOMINATORS, bbs2[j], bbi_copy))
bbs2[j]->count
= bbs2[j]->count.apply_probability (true_edge->probability.invert ());
free (bbs2);
}
/* Checks if LOOP contains an conditional block whose condition
depends on which side in the iteration space it is, and if so
splits the iteration space into two loops. Returns true if the
loop was split. NITER must contain the iteration descriptor for the
single exit of LOOP. */
static bool
split_loop (class loop *loop1)
{
class tree_niter_desc niter;
basic_block *bbs;
unsigned i;
bool changed = false;
tree guard_iv;
tree border = NULL_TREE;
affine_iv iv;
edge exit1;
if (!(exit1 = single_exit (loop1))
|| EDGE_COUNT (exit1->src->succs) != 2
/* ??? We could handle non-empty latches when we split the latch edge
(not the exit edge), and put the new exit condition in the new block.
OTOH this executes some code unconditionally that might have been
skipped by the original exit before. */
|| !empty_block_p (loop1->latch)
|| !easy_exit_values (loop1)
|| !number_of_iterations_exit (loop1, exit1, &niter, false, true)
|| niter.cmp == ERROR_MARK
/* We can't yet handle loops controlled by a != predicate. */
|| niter.cmp == NE_EXPR)
return false;
bbs = get_loop_body (loop1);
if (!can_copy_bbs_p (bbs, loop1->num_nodes))
{
free (bbs);
return false;
}
/* Find a splitting opportunity. */
for (i = 0; i < loop1->num_nodes; i++)
if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv)))
{
/* Handling opposite steps is not implemented yet. Neither
is handling different step sizes. */
if ((tree_int_cst_sign_bit (iv.step)
!= tree_int_cst_sign_bit (niter.control.step))
|| !tree_int_cst_equal (iv.step, niter.control.step))
continue;
/* Find a loop PHI node that defines guard_iv directly,
or create one doing that. */
gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
if (!phi)
continue;
gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i]));
tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
loop_preheader_edge (loop1));
enum tree_code guard_code = gimple_cond_code (guard_stmt);
/* Loop splitting is implemented by versioning the loop, placing
the new loop after the old loop, make the first loop iterate
as long as the conditional stays true (or false) and let the
second (new) loop handle the rest of the iterations.
First we need to determine if the condition will start being true
or false in the first loop. */
bool initial_true;
switch (guard_code)
{
case LT_EXPR:
case LE_EXPR:
initial_true = !tree_int_cst_sign_bit (iv.step);
break;
case GT_EXPR:
case GE_EXPR:
initial_true = tree_int_cst_sign_bit (iv.step);
break;
default:
gcc_unreachable ();
}
/* Build a condition that will skip the first loop when the
guard condition won't ever be true (or false). */
gimple_seq stmts2;
border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
if (stmts2)
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
stmts2);
tree cond = build2 (guard_code, boolean_type_node, guard_init, border);
if (!initial_true)
cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
edge true_edge, false_edge;
extract_true_false_edges_from_block (bbs[i], &true_edge, &false_edge);
/* Now version the loop, placing loop2 after loop1 connecting
them, and fix up SSA form for that. */
initialize_original_copy_tables ();
basic_block cond_bb;
class loop *loop2 = loop_version (loop1, cond, &cond_bb,
true_edge->probability,
true_edge->probability.invert (),
profile_probability::always (),
profile_probability::always (),
true);
gcc_assert (loop2);
edge new_e = connect_loops (loop1, loop2);
connect_loop_phis (loop1, loop2, new_e);
/* The iterations of the second loop is now already
exactly those that the first loop didn't do, but the
iteration space of the first loop is still the original one.
Compute the new bound for the guarding IV and patch the
loop exit to use it instead of original IV and bound. */
gimple_seq stmts = NULL;
tree newend = compute_new_first_bound (&stmts, &niter, border,
guard_code, guard_init);
if (stmts)
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
stmts);
tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true);
fix_loop_bb_probability (loop1, loop2, true_edge, false_edge);
/* Fix first loop's exit probability after scaling. */
edge exit_to_latch1;
if (EDGE_SUCC (exit1->src, 0) == exit1)
exit_to_latch1 = EDGE_SUCC (exit1->src, 1);
else
exit_to_latch1 = EDGE_SUCC (exit1->src, 0);
exit_to_latch1->probability *= true_edge->probability;
exit1->probability = exit_to_latch1->probability.invert ();
/* Finally patch out the two copies of the condition to be always
true/false (or opposite). */
gcond *force_true = as_a<gcond *> (last_stmt (bbs[i]));
gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i])));
if (!initial_true)
std::swap (force_true, force_false);
gimple_cond_make_true (force_true);
gimple_cond_make_false (force_false);
update_stmt (force_true);
update_stmt (force_false);
free_original_copy_tables ();
changed = true;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ";; Loop split.\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, guard_stmt, "loop split\n");
/* Only deal with the first opportunity. */
break;
}
free (bbs);
return changed;
}
/* Another transformation of loops like:
for (i = INIT (); CHECK (i); i = NEXT ())
{
if (expr (a_1, a_2, ..., a_n)) // expr is pure
a_j = ...; // change at least one a_j
else
S; // not change any a_j
}
into:
for (i = INIT (); CHECK (i); i = NEXT ())
{
if (expr (a_1, a_2, ..., a_n))
a_j = ...;
else
{
S;
i = NEXT ();
break;
}
}
for (; CHECK (i); i = NEXT ())
{
S;
}
*/
/* Data structure to hold temporary information during loop split upon
semi-invariant conditional statement. */
class split_info {
public:
/* Array of all basic blocks in a loop, returned by get_loop_body(). */
basic_block *bbs;
/* All memory store/clobber statements in a loop. */
auto_vec<gimple *> memory_stores;
/* Whether above memory stores vector has been filled. */
int need_init;
/* Control dependencies of basic blocks in a loop. */
auto_vec<hash_set<basic_block> *> control_deps;
split_info () : bbs (NULL), need_init (true) { }
~split_info ()
{
if (bbs)
free (bbs);
for (unsigned i = 0; i < control_deps.length (); i++)
delete control_deps[i];
}
};
/* Find all statements with memory-write effect in LOOP, including memory
store and non-pure function call, and keep those in a vector. This work
is only done one time, for the vector should be constant during analysis
stage of semi-invariant condition. */
static void
find_vdef_in_loop (struct loop *loop)
{
split_info *info = (split_info *) loop->aux;
gphi *vphi = get_virtual_phi (loop->header);
/* Indicate memory store vector has been filled. */
info->need_init = false;
/* If loop contains memory operation, there must be a virtual PHI node in
loop header basic block. */
if (vphi == NULL)
return;
/* All virtual SSA names inside the loop are connected to be a cyclic
graph via virtual PHI nodes. The virtual PHI node in loop header just
links the first and the last virtual SSA names, by using the last as
PHI operand to define the first. */
const edge latch = loop_latch_edge (loop);
const tree first = gimple_phi_result (vphi);
const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch);
/* The virtual SSA cyclic graph might consist of only one SSA name, who
is defined by itself.
.MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)>
This means the loop contains only memory loads, so we can skip it. */
if (first == last)
return;
auto_vec<gimple *> other_stores;
auto_vec<tree> worklist;
auto_bitmap visited;
bitmap_set_bit (visited, SSA_NAME_VERSION (first));
bitmap_set_bit (visited, SSA_NAME_VERSION (last));
worklist.safe_push (last);
do
{
tree vuse = worklist.pop ();
gimple *stmt = SSA_NAME_DEF_STMT (vuse);
/* We mark the first and last SSA names as visited at the beginning,
and reversely start the process from the last SSA name towards the
first, which ensures that this do-while will not touch SSA names
defined outside the loop. */
gcc_assert (gimple_bb (stmt)
&& flow_bb_inside_loop_p (loop, gimple_bb (stmt)));
if (gimple_code (stmt) == GIMPLE_PHI)
{
gphi *phi = as_a <gphi *> (stmt);
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
{
tree arg = gimple_phi_arg_def (stmt, i);
if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
worklist.safe_push (arg);
}
}
else
{
tree prev = gimple_vuse (stmt);
/* Non-pure call statement is conservatively assumed to impact all
memory locations. So place call statements ahead of other memory
stores in the vector with an idea of using them as shortcut
terminators to memory alias analysis. */
if (gimple_code (stmt) == GIMPLE_CALL)
info->memory_stores.safe_push (stmt);
else
other_stores.safe_push (stmt);
if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev)))
worklist.safe_push (prev);
}
} while (!worklist.is_empty ());
info->memory_stores.safe_splice (other_stores);
}
/* Two basic blocks have equivalent control dependency if one dominates to
the other, and it is post-dominated by the latter. Given a basic block
BB in LOOP, find farest equivalent dominating basic block. For BB, there
is a constraint that BB does not post-dominate loop header of LOOP, this
means BB is control-dependent on at least one basic block in LOOP. */
static basic_block
get_control_equiv_head_block (struct loop *loop, basic_block bb)
{
while (!bb->aux)
{
basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
gcc_checking_assert (dom_bb && flow_bb_inside_loop_p (loop, dom_bb));
if (!dominated_by_p (CDI_POST_DOMINATORS, dom_bb, bb))
break;
bb = dom_bb;
}
return bb;
}
/* Given a BB in LOOP, find out all basic blocks in LOOP that BB is control-
dependent on. */
static hash_set<basic_block> *
find_control_dep_blocks (struct loop *loop, basic_block bb)
{
/* BB has same control dependency as loop header, then it is not control-
dependent on any basic block in LOOP. */
if (dominated_by_p (CDI_POST_DOMINATORS, loop->header, bb))
return NULL;
basic_block equiv_head = get_control_equiv_head_block (loop, bb);
if (equiv_head->aux)
{
/* There is a basic block containing control dependency equivalent
to BB. No need to recompute that, and also set this information
to other equivalent basic blocks. */
for (; bb != equiv_head;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
bb->aux = equiv_head->aux;
return (hash_set<basic_block> *) equiv_head->aux;
}
/* A basic block X is control-dependent on another Y iff there exists
a path from X to Y, in which every basic block other than X and Y
is post-dominated by Y, but X is not post-dominated by Y.
According to this rule, traverse basic blocks in the loop backwards
starting from BB, if a basic block is post-dominated by BB, extend
current post-dominating path to this block, otherwise it is another
one that BB is control-dependent on. */
auto_vec<basic_block> pdom_worklist;
hash_set<basic_block> pdom_visited;
hash_set<basic_block> *dep_bbs = new hash_set<basic_block>;
pdom_worklist.safe_push (equiv_head);
do
{
basic_block pdom_bb = pdom_worklist.pop ();
edge_iterator ei;
edge e;
if (pdom_visited.add (pdom_bb))
continue;
FOR_EACH_EDGE (e, ei, pdom_bb->preds)
{
basic_block pred_bb = e->src;
if (!dominated_by_p (CDI_POST_DOMINATORS, pred_bb, bb))
{
dep_bbs->add (pred_bb);
continue;
}
pred_bb = get_control_equiv_head_block (loop, pred_bb);
if (pdom_visited.contains (pred_bb))
continue;
if (!pred_bb->aux)
{
pdom_worklist.safe_push (pred_bb);
continue;
}
/* If control dependency of basic block is available, fast extend
post-dominating path using the information instead of advancing
forward step-by-step. */
hash_set<basic_block> *pred_dep_bbs
= (hash_set<basic_block> *) pred_bb->aux;
for (hash_set<basic_block>::iterator iter = pred_dep_bbs->begin ();
iter != pred_dep_bbs->end (); ++iter)
{
basic_block pred_dep_bb = *iter;
/* Basic blocks can either be in control dependency of BB, or
must be post-dominated by BB, if so, extend the path from
these basic blocks. */
if (!dominated_by_p (CDI_POST_DOMINATORS, pred_dep_bb, bb))
dep_bbs->add (pred_dep_bb);
else if (!pdom_visited.contains (pred_dep_bb))
pdom_worklist.safe_push (pred_dep_bb);
}
}
} while (!pdom_worklist.is_empty ());
/* Record computed control dependencies in loop so that we can reach them
when reclaiming resources. */
((split_info *) loop->aux)->control_deps.safe_push (dep_bbs);
/* Associate control dependence with related equivalent basic blocks. */
for (equiv_head->aux = dep_bbs; bb != equiv_head;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
bb->aux = dep_bbs;
return dep_bbs;
}
/* Forward declaration */
static bool
stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
const_basic_block skip_head,
hash_map<gimple *, bool> &stmt_stat);
/* Given STMT, memory load or pure call statement, check whether it is impacted
by some memory store in LOOP, excluding trace starting from SKIP_HEAD (the
trace is composed of SKIP_HEAD and those basic block dominated by it, always
corresponds to one branch of a conditional statement). If SKIP_HEAD is
NULL, all basic blocks of LOOP are checked. */
static bool
vuse_semi_invariant_p (struct loop *loop, gimple *stmt,
const_basic_block skip_head)
{
split_info *info = (split_info *) loop->aux;
tree rhs = NULL_TREE;
ao_ref ref;
gimple *store;
unsigned i;
/* Collect memory store/clobber statements if haven't done that. */
if (info->need_init)
find_vdef_in_loop (loop);
if (is_gimple_assign (stmt))
rhs = gimple_assign_rhs1 (stmt);
ao_ref_init (&ref, rhs);
FOR_EACH_VEC_ELT (info->memory_stores, i, store)
{
/* Skip basic blocks dominated by SKIP_HEAD, if non-NULL. */
if (skip_head
&& dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head))
continue;
if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref))
return false;
}
return true;
}
/* Suppose one condition branch, led by SKIP_HEAD, is not executed since
certain iteration of LOOP, check whether an SSA name (NAME) remains
unchanged in next iteration. We call this characteristic semi-
invariantness. SKIP_HEAD might be NULL, if so, nothing excluded, all basic
blocks and control flows in the loop will be considered. Semi-invariant
state of checked statement is cached in hash map STMT_STAT to avoid
redundant computation in possible following re-check. */
static inline bool
ssa_semi_invariant_p (struct loop *loop, tree name,
const_basic_block skip_head,
hash_map<gimple *, bool> &stmt_stat)
{
gimple *def = SSA_NAME_DEF_STMT (name);
const_basic_block def_bb = gimple_bb (def);
/* An SSA name defined outside loop is definitely semi-invariant. */
if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb))
return true;
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return false;
return stmt_semi_invariant_p_1 (loop, def, skip_head, stmt_stat);
}
/* Check whether a loop iteration PHI node (LOOP_PHI) defines a value that is
semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
are excluded from LOOP. */
static bool
loop_iter_phi_semi_invariant_p (struct loop *loop, gphi *loop_phi,
const_basic_block skip_head)
{
const_edge latch = loop_latch_edge (loop);
tree name = gimple_phi_result (loop_phi);
tree from = PHI_ARG_DEF_FROM_EDGE (loop_phi, latch);
gcc_checking_assert (from);
/* Loop iteration PHI node locates in loop header, and it has two source
operands, one is an initial value coming from outside the loop, the other
is a value through latch of the loop, which is derived in last iteration,
we call the latter latch value. From the PHI node to definition of latch
value, if excluding branch trace starting from SKIP_HEAD, except copy-
assignment or likewise, there is no other kind of value redefinition, SSA
name defined by the PHI node is semi-invariant.
loop entry
| .--- latch ---.
| | |
v v |
x_1 = PHI <x_0, x_3> |
| |
v |
.------- if (cond) -------. |
| | |
| [ SKIP ] |
| | |
| x_2 = ... |
| | |
'---- T ---->.<---- F ----' |
| |
v |
x_3 = PHI <x_1, x_2> |
| |
'----------------------'
Suppose in certain iteration, execution flow in above graph goes through
true branch, which means that one source value to define x_3 in false
branch (x_2) is skipped, x_3 only comes from x_1, and x_1 in next
iterations is defined by x_3, we know that x_1 will never changed if COND
always chooses true branch from then on. */
while (from != name)
{
/* A new value comes from a CONSTANT. */
if (TREE_CODE (from) != SSA_NAME)
return false;
gimple *stmt = SSA_NAME_DEF_STMT (from);
const_basic_block bb = gimple_bb (stmt);
/* A new value comes from outside the loop. */
if (!bb || !flow_bb_inside_loop_p (loop, bb))
return false;
from = NULL_TREE;
if (gimple_code (stmt) == GIMPLE_PHI)
{
gphi *phi = as_a <gphi *> (stmt);
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
{
if (skip_head)
{
const_edge e = gimple_phi_arg_edge (phi, i);
/* Don't consider redefinitions in excluded basic blocks. */
if (dominated_by_p (CDI_DOMINATORS, e->src, skip_head))
continue;
}
tree arg = gimple_phi_arg_def (phi, i);
if (!from)
from = arg;
else if (!operand_equal_p (from, arg, 0))
/* There are more than one source operands that provide
different values to the SSA name, it is variant. */
return false;
}
}
else if (gimple_code (stmt) == GIMPLE_ASSIGN)
{
/* For simple value copy, check its rhs instead. */
if (gimple_assign_ssa_name_copy_p (stmt))
from = gimple_assign_rhs1 (stmt);
}
/* Any other kind of definition is deemed to introduce a new value
to the SSA name. */
if (!from)
return false;
}
return true;
}
/* Check whether conditional predicates that BB is control-dependent on, are
semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
are excluded from LOOP. Semi-invariant state of checked statement is cached
in hash map STMT_STAT. */
static bool
control_dep_semi_invariant_p (struct loop *loop, basic_block bb,
const_basic_block skip_head,
hash_map<gimple *, bool> &stmt_stat)
{
hash_set<basic_block> *dep_bbs = find_control_dep_blocks (loop, bb);
if (!dep_bbs)
return true;
for (hash_set<basic_block>::iterator iter = dep_bbs->begin ();
iter != dep_bbs->end (); ++iter)
{
gimple *last = last_stmt (*iter);
if (!last)
return false;
/* Only check condition predicates. */
if (gimple_code (last) != GIMPLE_COND
&& gimple_code (last) != GIMPLE_SWITCH)
return false;
if (!stmt_semi_invariant_p_1 (loop, last, skip_head, stmt_stat))
return false;
}
return true;
}
/* Check whether STMT is semi-invariant in LOOP, iff all its operands are
semi-invariant, consequently, all its defined values are semi-invariant.
Basic blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP.
Semi-invariant state of checked statement is cached in hash map
STMT_STAT. */
static bool
stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
const_basic_block skip_head,
hash_map<gimple *, bool> &stmt_stat)
{
bool existed;
bool &invar = stmt_stat.get_or_insert (stmt, &existed);
if (existed)
return invar;
/* A statement might depend on itself, which is treated as variant. So set
state of statement under check to be variant to ensure that. */
invar = false;
if (gimple_code (stmt) == GIMPLE_PHI)
{
gphi *phi = as_a <gphi *> (stmt);
if (gimple_bb (stmt) == loop->header)
{
/* If the entry value is subject to abnormal coalescing
avoid the transform since we're going to duplicate the
loop header and thus likely introduce overlapping life-ranges
between the PHI def and the entry on the path when the
first loop is skipped. */
tree entry_def
= PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
if (TREE_CODE (entry_def) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (entry_def))
return false;
invar = loop_iter_phi_semi_invariant_p (loop, phi, skip_head);
return invar;
}
/* For a loop PHI node that does not locate in loop header, it is semi-
invariant only if two conditions are met. The first is its source
values are derived from CONSTANT (including loop-invariant value), or
from SSA name defined by semi-invariant loop iteration PHI node. The
second is its source incoming edges are control-dependent on semi-
invariant conditional predicates. */
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
{
const_edge e = gimple_phi_arg_edge (phi, i);
tree arg = gimple_phi_arg_def (phi, i);
if (TREE_CODE (arg) == SSA_NAME)
{
if (!ssa_semi_invariant_p (loop, arg, skip_head, stmt_stat))
return false;
/* If source value is defined in location from where the source
edge comes in, no need to check control dependency again
since this has been done in above SSA name check stage. */
if (e->src == gimple_bb (SSA_NAME_DEF_STMT (arg)))
continue;
}
if (!control_dep_semi_invariant_p (loop, e->src, skip_head,
stmt_stat))
return false;
}
}
else
{
ssa_op_iter iter;
tree use;
/* Volatile memory load or return of normal (non-const/non-pure) call
should not be treated as constant in each iteration of loop. */
if (gimple_has_side_effects (stmt))
return false;
/* Check if any memory store may kill memory load at this place. */
if (gimple_vuse (stmt) && !vuse_semi_invariant_p (loop, stmt, skip_head))
return false;
/* Although operand of a statement might be SSA name, CONSTANT or
VARDECL, here we only need to check SSA name operands. This is
because check on VARDECL operands, which involve memory loads,
must have been done prior to invocation of this function in
vuse_semi_invariant_p. */
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
if (!ssa_semi_invariant_p (loop, use, skip_head, stmt_stat))
return false;
}
if (!control_dep_semi_invariant_p (loop, gimple_bb (stmt), skip_head,
stmt_stat))
return false;
/* Here we SHOULD NOT use invar = true, since hash map might be changed due
to new insertion, and thus invar may point to invalid memory. */
stmt_stat.put (stmt, true);
return true;
}
/* A helper function to check whether STMT is semi-invariant in LOOP. Basic
blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP. */
static bool
stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
const_basic_block skip_head)
{
hash_map<gimple *, bool> stmt_stat;
return stmt_semi_invariant_p_1 (loop, stmt, skip_head, stmt_stat);
}
/* Determine when conditional statement never transfers execution to one of its
branch, whether we can remove the branch's leading basic block (BRANCH_BB)
and those basic blocks dominated by BRANCH_BB. */
static bool
branch_removable_p (basic_block branch_bb)
{
edge_iterator ei;
edge e;
if (single_pred_p (branch_bb))
return true;
FOR_EACH_EDGE (e, ei, branch_bb->preds)
{
if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb))
continue;
if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src))
continue;
/* The branch can be reached from opposite branch, or from some
statement not dominated by the conditional statement. */
return false;
}
return true;
}
/* Find out which branch of a conditional statement (COND) is invariant in the
execution context of LOOP. That is: once the branch is selected in certain
iteration of the loop, any operand that contributes to computation of the
conditional statement remains unchanged in all following iterations. */
static edge
get_cond_invariant_branch (struct loop *loop, gcond *cond)
{
basic_block cond_bb = gimple_bb (cond);
basic_block targ_bb[2];
bool invar[2];
unsigned invar_checks = 0;
for (unsigned i = 0; i < 2; i++)
{
targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest;
/* One branch directs to loop exit, no need to perform loop split upon
this conditional statement. Firstly, it is trivial if the exit branch
is semi-invariant, for the statement is just to break loop. Secondly,
if the opposite branch is semi-invariant, it means that the statement
is real loop-invariant, which is covered by loop unswitch. */
if (!flow_bb_inside_loop_p (loop, targ_bb[i]))
return NULL;
}
for (unsigned i = 0; i < 2; i++)
{
invar[!i] = false;
if (!branch_removable_p (targ_bb[i]))
continue;
/* Given a semi-invariant branch, if its opposite branch dominates
loop latch, it and its following trace will only be executed in
final iteration of loop, namely it is not part of repeated body
of the loop. Similar to the above case that the branch is loop
exit, no need to split loop. */
if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i]))
continue;
invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]);
invar_checks++;
}
/* With both branches being invariant (handled by loop unswitch) or
variant is not what we want. */
if (invar[0] ^ !invar[1])
return NULL;
/* Found a real loop-invariant condition, do nothing. */
if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL))
return NULL;
return EDGE_SUCC (cond_bb, invar[0] ? 0 : 1);
}
/* Calculate increased code size measured by estimated insn number if applying
loop split upon certain branch (BRANCH_EDGE) of a conditional statement. */
static int
compute_added_num_insns (struct loop *loop, const_edge branch_edge)
{
basic_block cond_bb = branch_edge->src;
unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge;
basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest;
basic_block *bbs = ((split_info *) loop->aux)->bbs;
int num = 0;
for (unsigned i = 0; i < loop->num_nodes; i++)
{
/* Do no count basic blocks only in opposite branch. */
if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb))
continue;
num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights);
}
/* It is unnecessary to evaluate expression of the conditional statement
in new loop that contains only invariant branch. This expression should
be constant value (either true or false). Exclude code size of insns
that contribute to computation of the expression. */
auto_vec<gimple *> worklist;
hash_set<gimple *> removed;
gimple *stmt = last_stmt (cond_bb);
worklist.safe_push (stmt);
removed.add (stmt);
num -= estimate_num_insns (stmt, &eni_size_weights);
do
{
ssa_op_iter opnd_iter;
use_operand_p opnd_p;
stmt = worklist.pop ();
FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE)
{
tree opnd = USE_FROM_PTR (opnd_p);
if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (opnd))
continue;
gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd);
use_operand_p use_p;
imm_use_iterator use_iter;
if (removed.contains (opnd_stmt)
|| !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt)))
continue;
FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd)
{
gimple *use_stmt = USE_STMT (use_p);
if (!is_gimple_debug (use_stmt) && !removed.contains (use_stmt))
{
opnd_stmt = NULL;
break;
}
}
if (opnd_stmt)
{
worklist.safe_push (opnd_stmt);
removed.add (opnd_stmt);
num -= estimate_num_insns (opnd_stmt, &eni_size_weights);
}
}
} while (!worklist.is_empty ());
gcc_assert (num >= 0);
return num;
}
/* Find out loop-invariant branch of a conditional statement (COND) if it has,
and check whether it is eligible and profitable to perform loop split upon
this branch in LOOP. */
static edge
get_cond_branch_to_split_loop (struct loop *loop, gcond *cond)
{
edge invar_branch = get_cond_invariant_branch (loop, cond);
if (!invar_branch)
return NULL;
/* When accurate profile information is available, and execution
frequency of the branch is too low, just let it go. */
profile_probability prob = invar_branch->probability;
if (prob.reliable_p ())
{
int thres = param_min_loop_cond_split_prob;
if (prob < profile_probability::always ().apply_scale (thres, 100))
return NULL;
}
/* Add a threshold for increased code size to disable loop split. */
if (compute_added_num_insns (loop, invar_branch) > param_max_peeled_insns)
return NULL;
return invar_branch;
}
/* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some
conditional statement, perform loop split transformation illustrated
as the following graph.
.-------T------ if (true) ------F------.
| .---------------. |
| | | |
v | v v
pre-header | pre-header
| .------------. | | .------------.
| | | | | | |
| v | | | v |
header | | header |
| | | | |
.--- if (cond) ---. | | .--- if (true) ---. |
| | | | | | |
invariant | | | invariant | |
| | | | | | |
'---T--->.<---F---' | | '---T--->.<---F---' |
| | / | |
stmts | / stmts |
| F T | |
/ \ | / / \ |
.-------* * [ if (cond) ] .-------* * |
| | | | | |
| latch | | latch |
| | | | | |
| '------------' | '------------'
'------------------------. .-----------'
loop1 | | loop2
v v
exits
In the graph, loop1 represents the part derived from original one, and
loop2 is duplicated using loop_version (), which corresponds to the part
of original one being splitted out. In original latch edge of loop1, we
insert a new conditional statement duplicated from the semi-invariant cond,
and one of its branch goes back to loop1 header as a latch edge, and the
other branch goes to loop2 pre-header as an entry edge. And also in loop2,
we abandon the variant branch of the conditional statement by setting a
constant bool condition, based on which branch is semi-invariant. */
static bool
do_split_loop_on_cond (struct loop *loop1, edge invar_branch)
{
basic_block cond_bb = invar_branch->src;
bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE);
gcond *cond = as_a <gcond *> (last_stmt (cond_bb));
gcc_assert (cond_bb->loop_father == loop1);
if (dump_enabled_p ())
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, cond,
"loop split on semi-invariant condition at %s branch\n",
true_invar ? "true" : "false");
initialize_original_copy_tables ();
struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL,
invar_branch->probability.invert (),
invar_branch->probability,
profile_probability::always (),
profile_probability::always (),
true);
if (!loop2)
{
free_original_copy_tables ();
return false;
}
basic_block cond_bb_copy = get_bb_copy (cond_bb);
gcond *cond_copy = as_a<gcond *> (last_stmt (cond_bb_copy));
/* Replace the condition in loop2 with a bool constant to let PassManager
remove the variant branch after current pass completes. */
if (true_invar)
gimple_cond_make_true (cond_copy);
else
gimple_cond_make_false (cond_copy);
update_stmt (cond_copy);
/* Insert a new conditional statement on latch edge of loop1, its condition
is duplicated from the semi-invariant. This statement acts as a switch
to transfer execution from loop1 to loop2, when loop1 enters into
invariant state. */
basic_block latch_bb = split_edge (loop_latch_edge (loop1));
basic_block break_bb = split_edge (single_pred_edge (latch_bb));
gimple *break_cond = gimple_build_cond (gimple_cond_code(cond),
gimple_cond_lhs (cond),
gimple_cond_rhs (cond),
NULL_TREE, NULL_TREE);
gimple_stmt_iterator gsi = gsi_last_bb (break_bb);
gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT);
edge to_loop1 = single_succ_edge (break_bb);
edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, 0);
to_loop1->flags &= ~EDGE_FALLTHRU;
to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE;
to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE;
/* Due to introduction of a control flow edge from loop1 latch to loop2
pre-header, we should update PHIs in loop2 to reflect this connection
between loop1 and loop2. */
connect_loop_phis (loop1, loop2, to_loop2);
edge true_edge, false_edge, skip_edge1, skip_edge2;
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
skip_edge1 = true_invar ? false_edge : true_edge;
skip_edge2 = true_invar ? true_edge : false_edge;
fix_loop_bb_probability (loop1, loop2, skip_edge1, skip_edge2);
/* Fix first loop's exit probability after scaling. */
to_loop1->probability = invar_branch->probability.invert ();
to_loop2->probability = invar_branch->probability;
free_original_copy_tables ();
return true;
}
/* Traverse all conditional statements in LOOP, to find out a good candidate
upon which we can do loop split. */
static bool
split_loop_on_cond (struct loop *loop)
{
split_info *info = new split_info ();
basic_block *bbs = info->bbs = get_loop_body (loop);
bool do_split = false;
/* Allocate an area to keep temporary info, and associate its address
with loop aux field. */
loop->aux = info;
for (unsigned i = 0; i < loop->num_nodes; i++)
bbs[i]->aux = NULL;
for (unsigned i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
/* We only consider conditional statement, which be executed at most once
in each iteration of the loop. So skip statements in inner loops. */
if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP))
continue;
/* Actually this check is not a must constraint. With it, we can ensure
conditional statement will always be executed in each iteration. */
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
continue;
gimple *last = last_stmt (bb);
if (!last || gimple_code (last) != GIMPLE_COND)
continue;
gcond *cond = as_a <gcond *> (last);
edge branch_edge = get_cond_branch_to_split_loop (loop, cond);
if (branch_edge)
{
do_split_loop_on_cond (loop, branch_edge);
do_split = true;
break;
}
}
delete info;
loop->aux = NULL;
return do_split;
}
/* Main entry point. Perform loop splitting on all suitable loops. */
static unsigned int
tree_ssa_split_loops (void)
{
bool changed = false;
gcc_assert (scev_initialized_p ());
calculate_dominance_info (CDI_POST_DOMINATORS);
for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT))
loop->aux = NULL;
/* Go through all loops starting from innermost. */
for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
{
if (loop->aux)
{
/* If any of our inner loops was split, don't split us,
and mark our containing loop as having had splits as well. */
loop_outer (loop)->aux = loop;
continue;
}
if (optimize_loop_for_size_p (loop))
continue;
if (split_loop (loop) || split_loop_on_cond (loop))
{
/* Mark our containing loop as having had some split inner loops. */
loop_outer (loop)->aux = loop;
changed = true;
}
}
for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT))
loop->aux = NULL;
clear_aux_for_blocks ();
free_dominance_info (CDI_POST_DOMINATORS);
if (changed)
{
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
return TODO_cleanup_cfg;
}
return 0;
}
/* Loop splitting pass. */
namespace {
const pass_data pass_data_loop_split =
{
GIMPLE_PASS, /* type */
"lsplit", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_LOOP_SPLIT, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_loop_split : public gimple_opt_pass
{
public:
pass_loop_split (gcc::context *ctxt)
: gimple_opt_pass (pass_data_loop_split, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_split_loops != 0; }
virtual unsigned int execute (function *);
}; // class pass_loop_split
unsigned int
pass_loop_split::execute (function *fun)
{
if (number_of_loops (fun) <= 1)
return 0;
return tree_ssa_split_loops ();
}
} // anon namespace
gimple_opt_pass *
make_pass_loop_split (gcc::context *ctxt)
{
return new pass_loop_split (ctxt);
}
|