1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
|
/* SSA Jump Threading
Copyright (C) 2005-2022 Free Software Foundation, Inc.
Contributed by Jeff Law <law@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "ssa.h"
#include "fold-const.h"
#include "cfgloop.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-threadupdate.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "gimple-fold.h"
#include "cfganal.h"
#include "alloc-pool.h"
#include "vr-values.h"
#include "gimple-range.h"
#include "gimple-range-path.h"
/* To avoid code explosion due to jump threading, we limit the
number of statements we are going to copy. This variable
holds the number of statements currently seen that we'll have
to copy as part of the jump threading process. */
static int stmt_count;
/* Array to record value-handles per SSA_NAME. */
vec<tree> ssa_name_values;
/* Set the value for the SSA name NAME to VALUE. */
void
set_ssa_name_value (tree name, tree value)
{
if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1, true);
if (value && TREE_OVERFLOW_P (value))
value = drop_tree_overflow (value);
ssa_name_values[SSA_NAME_VERSION (name)] = value;
}
jump_threader::jump_threader (jt_simplifier *simplifier, jt_state *state)
{
/* Initialize the per SSA_NAME value-handles array. */
gcc_assert (!ssa_name_values.exists ());
ssa_name_values.create (num_ssa_names);
dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
integer_zero_node, NULL, NULL);
m_registry = new fwd_jt_path_registry ();
m_simplifier = simplifier;
m_state = state;
}
jump_threader::~jump_threader (void)
{
ssa_name_values.release ();
ggc_free (dummy_cond);
delete m_registry;
}
void
jump_threader::remove_jump_threads_including (edge_def *e)
{
m_registry->remove_jump_threads_including (e);
}
bool
jump_threader::thread_through_all_blocks (bool may_peel_loop_headers)
{
return m_registry->thread_through_all_blocks (may_peel_loop_headers);
}
static inline bool
has_phis_p (basic_block bb)
{
return !gsi_end_p (gsi_start_phis (bb));
}
/* Return TRUE for a block with PHIs but no statements. */
static bool
empty_block_with_phis_p (basic_block bb)
{
return gsi_end_p (gsi_start_nondebug_bb (bb)) && has_phis_p (bb);
}
/* Return TRUE if we may be able to thread an incoming edge into
BB to an outgoing edge from BB. Return FALSE otherwise. */
static bool
potentially_threadable_block (basic_block bb)
{
gimple_stmt_iterator gsi;
/* Special case. We can get blocks that are forwarders, but are
not optimized away because they forward from outside a loop
to the loop header. We want to thread through them as we can
sometimes thread to the loop exit, which is obviously profitable.
The interesting case here is when the block has PHIs. */
if (empty_block_with_phis_p (bb))
return true;
/* If BB has a single successor or a single predecessor, then
there is no threading opportunity. */
if (single_succ_p (bb) || single_pred_p (bb))
return false;
/* If BB does not end with a conditional, switch or computed goto,
then there is no threading opportunity. */
gsi = gsi_last_bb (bb);
if (gsi_end_p (gsi)
|| ! gsi_stmt (gsi)
|| (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
&& gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
&& gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
return false;
return true;
}
/* Record temporary equivalences created by PHIs at the target of the
edge E.
If a PHI which prevents threading is encountered, then return FALSE
indicating we should not thread this edge, else return TRUE. */
bool
jump_threader::record_temporary_equivalences_from_phis (edge e)
{
gphi_iterator gsi;
/* Each PHI creates a temporary equivalence, record them.
These are context sensitive equivalences and will be removed
later. */
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
tree dst = gimple_phi_result (phi);
/* If the desired argument is not the same as this PHI's result
and it is set by a PHI in E->dest, then we cannot thread
through E->dest. */
if (src != dst
&& TREE_CODE (src) == SSA_NAME
&& gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
&& gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
return false;
/* We consider any non-virtual PHI as a statement since it
count result in a constant assignment or copy operation. */
if (!virtual_operand_p (dst))
stmt_count++;
m_state->register_equiv (dst, src, /*update_range=*/true);
}
return true;
}
/* Valueize hook for gimple_fold_stmt_to_constant_1. */
static tree
threadedge_valueize (tree t)
{
if (TREE_CODE (t) == SSA_NAME)
{
tree tem = SSA_NAME_VALUE (t);
if (tem)
return tem;
}
return t;
}
/* Try to simplify each statement in E->dest, ultimately leading to
a simplification of the COND_EXPR at the end of E->dest.
Record unwind information for temporary equivalences onto STACK.
Uses M_SIMPLIFIER to further simplify statements using pass specific
information.
We might consider marking just those statements which ultimately
feed the COND_EXPR. It's not clear if the overhead of bookkeeping
would be recovered by trying to simplify fewer statements.
If we are able to simplify a statement into the form
SSA_NAME = (SSA_NAME | gimple invariant), then we can record
a context sensitive equivalence which may help us simplify
later statements in E->dest. */
gimple *
jump_threader::record_temporary_equivalences_from_stmts_at_dest (edge e)
{
gimple *stmt = NULL;
gimple_stmt_iterator gsi;
int max_stmt_count;
max_stmt_count = param_max_jump_thread_duplication_stmts;
/* Walk through each statement in the block recording equivalences
we discover. Note any equivalences we discover are context
sensitive (ie, are dependent on traversing E) and must be unwound
when we're finished processing E. */
for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
stmt = gsi_stmt (gsi);
/* Ignore empty statements and labels. */
if (gimple_code (stmt) == GIMPLE_NOP
|| gimple_code (stmt) == GIMPLE_LABEL
|| is_gimple_debug (stmt))
continue;
/* If the statement has volatile operands, then we assume we
cannot thread through this block. This is overly
conservative in some ways. */
if (gimple_code (stmt) == GIMPLE_ASM
&& gimple_asm_volatile_p (as_a <gasm *> (stmt)))
return NULL;
/* If the statement is a unique builtin, we cannot thread
through here. */
if (gimple_code (stmt) == GIMPLE_CALL
&& gimple_call_internal_p (stmt)
&& gimple_call_internal_unique_p (stmt))
return NULL;
/* We cannot thread through __builtin_constant_p, because an
expression that is constant on two threading paths may become
non-constant (i.e.: phi) when they merge. */
if (gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P))
return NULL;
/* If duplicating this block is going to cause too much code
expansion, then do not thread through this block. */
stmt_count++;
if (stmt_count > max_stmt_count)
{
/* If any of the stmts in the PATH's dests are going to be
killed due to threading, grow the max count
accordingly. */
if (max_stmt_count
== param_max_jump_thread_duplication_stmts)
{
max_stmt_count += estimate_threading_killed_stmts (e->dest);
if (dump_file)
fprintf (dump_file, "threading bb %i up to %i stmts\n",
e->dest->index, max_stmt_count);
}
/* If we're still past the limit, we're done. */
if (stmt_count > max_stmt_count)
return NULL;
}
m_state->record_ranges_from_stmt (stmt, true);
/* If this is not a statement that sets an SSA_NAME to a new
value, then do not try to simplify this statement as it will
not simplify in any way that is helpful for jump threading. */
if ((gimple_code (stmt) != GIMPLE_ASSIGN
|| TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
&& (gimple_code (stmt) != GIMPLE_CALL
|| gimple_call_lhs (stmt) == NULL_TREE
|| TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
continue;
/* The result of __builtin_object_size depends on all the arguments
of a phi node. Temporarily using only one edge produces invalid
results. For example
if (x < 6)
goto l;
else
goto l;
l:
r = PHI <&w[2].a[1](2), &a.a[6](3)>
__builtin_object_size (r, 0)
The result of __builtin_object_size is defined to be the maximum of
remaining bytes. If we use only one edge on the phi, the result will
change to be the remaining bytes for the corresponding phi argument.
Similarly for __builtin_constant_p:
r = PHI <1(2), 2(3)>
__builtin_constant_p (r)
Both PHI arguments are constant, but x ? 1 : 2 is still not
constant. */
if (is_gimple_call (stmt))
{
tree fndecl = gimple_call_fndecl (stmt);
if (fndecl
&& fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
&& (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
continue;
}
m_state->register_equivs_stmt (stmt, e->src, m_simplifier);
}
return stmt;
}
/* Simplify the control statement at the end of the block E->dest.
Use SIMPLIFY (a pointer to a callback function) to further simplify
a condition using pass specific information.
Return the simplified condition or NULL if simplification could
not be performed. When simplifying a GIMPLE_SWITCH, we may return
the CASE_LABEL_EXPR that will be taken. */
tree
jump_threader::simplify_control_stmt_condition (edge e, gimple *stmt)
{
tree cond, cached_lhs;
enum gimple_code code = gimple_code (stmt);
/* For comparisons, we have to update both operands, then try
to simplify the comparison. */
if (code == GIMPLE_COND)
{
tree op0, op1;
enum tree_code cond_code;
op0 = gimple_cond_lhs (stmt);
op1 = gimple_cond_rhs (stmt);
cond_code = gimple_cond_code (stmt);
/* Get the current value of both operands. */
if (TREE_CODE (op0) == SSA_NAME)
{
for (int i = 0; i < 2; i++)
{
if (TREE_CODE (op0) == SSA_NAME
&& SSA_NAME_VALUE (op0))
op0 = SSA_NAME_VALUE (op0);
else
break;
}
}
if (TREE_CODE (op1) == SSA_NAME)
{
for (int i = 0; i < 2; i++)
{
if (TREE_CODE (op1) == SSA_NAME
&& SSA_NAME_VALUE (op1))
op1 = SSA_NAME_VALUE (op1);
else
break;
}
}
const unsigned recursion_limit = 4;
cached_lhs
= simplify_control_stmt_condition_1 (e, stmt, op0, cond_code, op1,
recursion_limit);
/* If we were testing an integer/pointer against a constant,
then we can trace the value of the SSA_NAME. If a value is
found, then the condition will collapse to a constant.
Return the SSA_NAME we want to trace back rather than the full
expression and give the threader a chance to find its value. */
if (cached_lhs == NULL)
{
/* Recover the original operands. They may have been simplified
using context sensitive equivalences. Those context sensitive
equivalences may not be valid on paths. */
tree op0 = gimple_cond_lhs (stmt);
tree op1 = gimple_cond_rhs (stmt);
if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
|| POINTER_TYPE_P (TREE_TYPE (op0)))
&& TREE_CODE (op0) == SSA_NAME
&& TREE_CODE (op1) == INTEGER_CST)
return op0;
}
return cached_lhs;
}
if (code == GIMPLE_SWITCH)
cond = gimple_switch_index (as_a <gswitch *> (stmt));
else if (code == GIMPLE_GOTO)
cond = gimple_goto_dest (stmt);
else
gcc_unreachable ();
/* We can have conditionals which just test the state of a variable
rather than use a relational operator. These are simpler to handle. */
if (TREE_CODE (cond) == SSA_NAME)
{
tree original_lhs = cond;
cached_lhs = cond;
/* Get the variable's current value from the equivalence chains.
It is possible to get loops in the SSA_NAME_VALUE chains
(consider threading the backedge of a loop where we have
a loop invariant SSA_NAME used in the condition). */
if (cached_lhs)
{
for (int i = 0; i < 2; i++)
{
if (TREE_CODE (cached_lhs) == SSA_NAME
&& SSA_NAME_VALUE (cached_lhs))
cached_lhs = SSA_NAME_VALUE (cached_lhs);
else
break;
}
}
/* If we haven't simplified to an invariant yet, then use the
pass specific callback to try and simplify it further. */
if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
{
if (code == GIMPLE_SWITCH)
{
/* Replace the index operand of the GIMPLE_SWITCH with any LHS
we found before handing off to VRP. If simplification is
possible, the simplified value will be a CASE_LABEL_EXPR of
the label that is proven to be taken. */
gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt));
gimple_switch_set_index (dummy_switch, cached_lhs);
cached_lhs = m_simplifier->simplify (dummy_switch, stmt, e->src,
m_state);
ggc_free (dummy_switch);
}
else
cached_lhs = m_simplifier->simplify (stmt, stmt, e->src, m_state);
}
/* We couldn't find an invariant. But, callers of this
function may be able to do something useful with the
unmodified destination. */
if (!cached_lhs)
cached_lhs = original_lhs;
}
else
cached_lhs = NULL;
return cached_lhs;
}
/* Recursive helper for simplify_control_stmt_condition. */
tree
jump_threader::simplify_control_stmt_condition_1
(edge e,
gimple *stmt,
tree op0,
enum tree_code cond_code,
tree op1,
unsigned limit)
{
if (limit == 0)
return NULL_TREE;
/* We may need to canonicalize the comparison. For
example, op0 might be a constant while op1 is an
SSA_NAME. Failure to canonicalize will cause us to
miss threading opportunities. */
if (tree_swap_operands_p (op0, op1))
{
cond_code = swap_tree_comparison (cond_code);
std::swap (op0, op1);
}
/* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then
recurse into the LHS to see if there is a dominating ASSERT_EXPR
of A or of B that makes this condition always true or always false
along the edge E. */
if ((cond_code == EQ_EXPR || cond_code == NE_EXPR)
&& TREE_CODE (op0) == SSA_NAME
&& integer_zerop (op1))
{
gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
;
else if (gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR
|| gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
{
enum tree_code rhs_code = gimple_assign_rhs_code (def_stmt);
const tree rhs1 = gimple_assign_rhs1 (def_stmt);
const tree rhs2 = gimple_assign_rhs2 (def_stmt);
/* Is A != 0 ? */
const tree res1
= simplify_control_stmt_condition_1 (e, def_stmt,
rhs1, NE_EXPR, op1,
limit - 1);
if (res1 == NULL_TREE)
;
else if (rhs_code == BIT_AND_EXPR && integer_zerop (res1))
{
/* If A == 0 then (A & B) != 0 is always false. */
if (cond_code == NE_EXPR)
return boolean_false_node;
/* If A == 0 then (A & B) == 0 is always true. */
if (cond_code == EQ_EXPR)
return boolean_true_node;
}
else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res1))
{
/* If A != 0 then (A | B) != 0 is always true. */
if (cond_code == NE_EXPR)
return boolean_true_node;
/* If A != 0 then (A | B) == 0 is always false. */
if (cond_code == EQ_EXPR)
return boolean_false_node;
}
/* Is B != 0 ? */
const tree res2
= simplify_control_stmt_condition_1 (e, def_stmt,
rhs2, NE_EXPR, op1,
limit - 1);
if (res2 == NULL_TREE)
;
else if (rhs_code == BIT_AND_EXPR && integer_zerop (res2))
{
/* If B == 0 then (A & B) != 0 is always false. */
if (cond_code == NE_EXPR)
return boolean_false_node;
/* If B == 0 then (A & B) == 0 is always true. */
if (cond_code == EQ_EXPR)
return boolean_true_node;
}
else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res2))
{
/* If B != 0 then (A | B) != 0 is always true. */
if (cond_code == NE_EXPR)
return boolean_true_node;
/* If B != 0 then (A | B) == 0 is always false. */
if (cond_code == EQ_EXPR)
return boolean_false_node;
}
if (res1 != NULL_TREE && res2 != NULL_TREE)
{
if (rhs_code == BIT_AND_EXPR
&& TYPE_PRECISION (TREE_TYPE (op0)) == 1
&& integer_nonzerop (res1)
&& integer_nonzerop (res2))
{
/* If A != 0 and B != 0 then (bool)(A & B) != 0 is true. */
if (cond_code == NE_EXPR)
return boolean_true_node;
/* If A != 0 and B != 0 then (bool)(A & B) == 0 is false. */
if (cond_code == EQ_EXPR)
return boolean_false_node;
}
if (rhs_code == BIT_IOR_EXPR
&& integer_zerop (res1)
&& integer_zerop (res2))
{
/* If A == 0 and B == 0 then (A | B) != 0 is false. */
if (cond_code == NE_EXPR)
return boolean_false_node;
/* If A == 0 and B == 0 then (A | B) == 0 is true. */
if (cond_code == EQ_EXPR)
return boolean_true_node;
}
}
}
/* Handle (A CMP B) CMP 0. */
else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
== tcc_comparison)
{
tree rhs1 = gimple_assign_rhs1 (def_stmt);
tree rhs2 = gimple_assign_rhs2 (def_stmt);
tree_code new_cond = gimple_assign_rhs_code (def_stmt);
if (cond_code == EQ_EXPR)
new_cond = invert_tree_comparison (new_cond, false);
tree res
= simplify_control_stmt_condition_1 (e, def_stmt,
rhs1, new_cond, rhs2,
limit - 1);
if (res != NULL_TREE && is_gimple_min_invariant (res))
return res;
}
}
gimple_cond_set_code (dummy_cond, cond_code);
gimple_cond_set_lhs (dummy_cond, op0);
gimple_cond_set_rhs (dummy_cond, op1);
/* We absolutely do not care about any type conversions
we only care about a zero/nonzero value. */
fold_defer_overflow_warnings ();
tree res = fold_binary (cond_code, boolean_type_node, op0, op1);
if (res)
while (CONVERT_EXPR_P (res))
res = TREE_OPERAND (res, 0);
fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)),
stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
/* If we have not simplified the condition down to an invariant,
then use the pass specific callback to simplify the condition. */
if (!res
|| !is_gimple_min_invariant (res))
res = m_simplifier->simplify (dummy_cond, stmt, e->src, m_state);
return res;
}
/* Copy debug stmts from DEST's chain of single predecessors up to
SRC, so that we don't lose the bindings as PHI nodes are introduced
when DEST gains new predecessors. */
void
propagate_threaded_block_debug_into (basic_block dest, basic_block src)
{
if (!MAY_HAVE_DEBUG_BIND_STMTS)
return;
if (!single_pred_p (dest))
return;
gcc_checking_assert (dest != src);
gimple_stmt_iterator gsi = gsi_after_labels (dest);
int i = 0;
const int alloc_count = 16; // ?? Should this be a PARAM?
/* Estimate the number of debug vars overridden in the beginning of
DEST, to tell how many we're going to need to begin with. */
for (gimple_stmt_iterator si = gsi;
i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
if (!is_gimple_debug (stmt))
break;
if (gimple_debug_nonbind_marker_p (stmt))
continue;
i++;
}
auto_vec<tree, alloc_count> fewvars;
hash_set<tree> *vars = NULL;
/* If we're already starting with 3/4 of alloc_count, go for a
hash_set, otherwise start with an unordered stack-allocated
VEC. */
if (i * 4 > alloc_count * 3)
vars = new hash_set<tree>;
/* Now go through the initial debug stmts in DEST again, this time
actually inserting in VARS or FEWVARS. Don't bother checking for
duplicates in FEWVARS. */
for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
if (!is_gimple_debug (stmt))
break;
tree var;
if (gimple_debug_bind_p (stmt))
var = gimple_debug_bind_get_var (stmt);
else if (gimple_debug_source_bind_p (stmt))
var = gimple_debug_source_bind_get_var (stmt);
else if (gimple_debug_nonbind_marker_p (stmt))
continue;
else
gcc_unreachable ();
if (vars)
vars->add (var);
else
fewvars.quick_push (var);
}
basic_block bb = dest;
do
{
bb = single_pred (bb);
for (gimple_stmt_iterator si = gsi_last_bb (bb);
!gsi_end_p (si); gsi_prev (&si))
{
gimple *stmt = gsi_stmt (si);
if (!is_gimple_debug (stmt))
continue;
tree var;
if (gimple_debug_bind_p (stmt))
var = gimple_debug_bind_get_var (stmt);
else if (gimple_debug_source_bind_p (stmt))
var = gimple_debug_source_bind_get_var (stmt);
else if (gimple_debug_nonbind_marker_p (stmt))
continue;
else
gcc_unreachable ();
/* Discard debug bind overlaps. Unlike stmts from src,
copied into a new block that will precede BB, debug bind
stmts in bypassed BBs may actually be discarded if
they're overwritten by subsequent debug bind stmts. We
want to copy binds for all modified variables, so that we
retain a bind to the shared def if there is one, or to a
newly introduced PHI node if there is one. Our bind will
end up reset if the value is dead, but that implies the
variable couldn't have survived, so it's fine. We are
not actually running the code that performed the binds at
this point, we're just adding binds so that they survive
the new confluence, so markers should not be copied. */
if (vars && vars->add (var))
continue;
else if (!vars)
{
int i = fewvars.length ();
while (i--)
if (fewvars[i] == var)
break;
if (i >= 0)
continue;
else if (fewvars.length () < (unsigned) alloc_count)
fewvars.quick_push (var);
else
{
vars = new hash_set<tree>;
for (i = 0; i < alloc_count; i++)
vars->add (fewvars[i]);
fewvars.release ();
vars->add (var);
}
}
stmt = gimple_copy (stmt);
/* ??? Should we drop the location of the copy to denote
they're artificial bindings? */
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
}
}
while (bb != src && single_pred_p (bb));
if (vars)
delete vars;
else if (fewvars.exists ())
fewvars.release ();
}
/* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
need not be duplicated as part of the CFG/SSA updating process).
If it is threadable, add it to PATH and VISITED and recurse, ultimately
returning TRUE from the toplevel call. Otherwise do nothing and
return false. */
bool
jump_threader::thread_around_empty_blocks (vec<jump_thread_edge *> *path,
edge taken_edge,
bitmap visited)
{
basic_block bb = taken_edge->dest;
gimple_stmt_iterator gsi;
gimple *stmt;
tree cond;
/* The key property of these blocks is that they need not be duplicated
when threading. Thus they cannot have visible side effects such
as PHI nodes. */
if (has_phis_p (bb))
return false;
/* Skip over DEBUG statements at the start of the block. */
gsi = gsi_start_nondebug_bb (bb);
/* If the block has no statements, but does have a single successor, then
it's just a forwarding block and we can thread through it trivially.
However, note that just threading through empty blocks with single
successors is not inherently profitable. For the jump thread to
be profitable, we must avoid a runtime conditional.
By taking the return value from the recursive call, we get the
desired effect of returning TRUE when we found a profitable jump
threading opportunity and FALSE otherwise.
This is particularly important when this routine is called after
processing a joiner block. Returning TRUE too aggressively in
that case results in pointless duplication of the joiner block. */
if (gsi_end_p (gsi))
{
if (single_succ_p (bb))
{
taken_edge = single_succ_edge (bb);
if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
return false;
if (!bitmap_bit_p (visited, taken_edge->dest->index))
{
m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK);
m_state->append_path (taken_edge->dest);
bitmap_set_bit (visited, taken_edge->dest->index);
return thread_around_empty_blocks (path, taken_edge, visited);
}
}
/* We have a block with no statements, but multiple successors? */
return false;
}
/* The only real statements this block can have are a control
flow altering statement. Anything else stops the thread. */
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_COND
&& gimple_code (stmt) != GIMPLE_GOTO
&& gimple_code (stmt) != GIMPLE_SWITCH)
return false;
/* Extract and simplify the condition. */
cond = simplify_control_stmt_condition (taken_edge, stmt);
/* If the condition can be statically computed and we have not already
visited the destination edge, then add the taken edge to our thread
path. */
if (cond != NULL_TREE
&& (is_gimple_min_invariant (cond)
|| TREE_CODE (cond) == CASE_LABEL_EXPR))
{
if (TREE_CODE (cond) == CASE_LABEL_EXPR)
taken_edge = find_edge (bb, label_to_block (cfun, CASE_LABEL (cond)));
else
taken_edge = find_taken_edge (bb, cond);
if (!taken_edge
|| (taken_edge->flags & EDGE_DFS_BACK) != 0)
return false;
if (bitmap_bit_p (visited, taken_edge->dest->index))
return false;
bitmap_set_bit (visited, taken_edge->dest->index);
m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK);
m_state->append_path (taken_edge->dest);
thread_around_empty_blocks (path, taken_edge, visited);
return true;
}
return false;
}
/* We are exiting E->src, see if E->dest ends with a conditional
jump which has a known value when reached via E.
E->dest can have arbitrary side effects which, if threading is
successful, will be maintained.
Special care is necessary if E is a back edge in the CFG as we
may have already recorded equivalences for E->dest into our
various tables, including the result of the conditional at
the end of E->dest. Threading opportunities are severely
limited in that case to avoid short-circuiting the loop
incorrectly.
Positive return value is success. Zero return value is failure, but
the block can still be duplicated as a joiner in a jump thread path,
negative indicates the block should not be duplicated and thus is not
suitable for a joiner in a jump threading path. */
int
jump_threader::thread_through_normal_block (vec<jump_thread_edge *> *path,
edge e, bitmap visited)
{
m_state->register_equivs_edge (e);
/* PHIs create temporary equivalences.
Note that if we found a PHI that made the block non-threadable, then
we need to bubble that up to our caller in the same manner we do
when we prematurely stop processing statements below. */
if (!record_temporary_equivalences_from_phis (e))
return -1;
/* Now walk each statement recording any context sensitive
temporary equivalences we can detect. */
gimple *stmt = record_temporary_equivalences_from_stmts_at_dest (e);
/* There's two reasons STMT might be null, and distinguishing
between them is important.
First the block may not have had any statements. For example, it
might have some PHIs and unconditionally transfer control elsewhere.
Such blocks are suitable for jump threading, particularly as a
joiner block.
The second reason would be if we did not process all the statements
in the block (because there were too many to make duplicating the
block profitable. If we did not look at all the statements, then
we may not have invalidated everything needing invalidation. Thus
we must signal to our caller that this block is not suitable for
use as a joiner in a threading path. */
if (!stmt)
{
/* First case. The statement simply doesn't have any instructions, but
does have PHIs. */
if (empty_block_with_phis_p (e->dest))
return 0;
/* Second case. */
return -1;
}
/* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
will be taken. */
if (gimple_code (stmt) == GIMPLE_COND
|| gimple_code (stmt) == GIMPLE_GOTO
|| gimple_code (stmt) == GIMPLE_SWITCH)
{
tree cond;
/* Extract and simplify the condition. */
cond = simplify_control_stmt_condition (e, stmt);
if (!cond)
return 0;
if (is_gimple_min_invariant (cond)
|| TREE_CODE (cond) == CASE_LABEL_EXPR)
{
edge taken_edge;
if (TREE_CODE (cond) == CASE_LABEL_EXPR)
taken_edge = find_edge (e->dest,
label_to_block (cfun, CASE_LABEL (cond)));
else
taken_edge = find_taken_edge (e->dest, cond);
basic_block dest = (taken_edge ? taken_edge->dest : NULL);
/* DEST could be NULL for a computed jump to an absolute
address. */
if (dest == NULL
|| dest == e->dest
|| (taken_edge->flags & EDGE_DFS_BACK) != 0
|| bitmap_bit_p (visited, dest->index))
return 0;
/* Only push the EDGE_START_JUMP_THREAD marker if this is
first edge on the path. */
if (path->length () == 0)
m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD);
m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_BLOCK);
m_state->append_path (taken_edge->dest);
/* See if we can thread through DEST as well, this helps capture
secondary effects of threading without having to re-run DOM or
VRP.
We don't want to thread back to a block we have already
visited. This may be overly conservative. */
bitmap_set_bit (visited, dest->index);
bitmap_set_bit (visited, e->dest->index);
thread_around_empty_blocks (path, taken_edge, visited);
return 1;
}
}
return 0;
}
/* There are basic blocks look like:
<P0>
p0 = a CMP b ; or p0 = (INT) (a CMP b)
goto <X>;
<P1>
p1 = c CMP d
goto <X>;
<X>
# phi = PHI <p0 (P0), p1 (P1)>
if (phi != 0) goto <Y>; else goto <Z>;
Then, edge (P0,X) or (P1,X) could be marked as EDGE_START_JUMP_THREAD
And edge (X,Y), (X,Z) is EDGE_COPY_SRC_JOINER_BLOCK
Return true if E is (P0,X) or (P1,X) */
bool
edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (edge e)
{
/* See if there is only one stmt which is gcond. */
gcond *gs;
if (!(gs = safe_dyn_cast<gcond *> (last_and_only_stmt (e->dest))))
return false;
/* See if gcond's cond is "(phi !=/== 0/1)" in the basic block. */
tree cond = gimple_cond_lhs (gs);
enum tree_code code = gimple_cond_code (gs);
tree rhs = gimple_cond_rhs (gs);
if (TREE_CODE (cond) != SSA_NAME
|| (code != NE_EXPR && code != EQ_EXPR)
|| (!integer_onep (rhs) && !integer_zerop (rhs)))
return false;
gphi *phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (cond));
if (phi == NULL || gimple_bb (phi) != e->dest)
return false;
/* Check if phi's incoming value is CMP. */
gassign *def;
tree value = PHI_ARG_DEF_FROM_EDGE (phi, e);
if (TREE_CODE (value) != SSA_NAME
|| !has_single_use (value)
|| !(def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (value))))
return false;
/* Or if it is (INT) (a CMP b). */
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
{
value = gimple_assign_rhs1 (def);
if (TREE_CODE (value) != SSA_NAME
|| !has_single_use (value)
|| !(def = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (value))))
return false;
}
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
return false;
return true;
}
/* We are exiting E->src, see if E->dest ends with a conditional jump
which has a known value when reached via E. If so, thread the
edge. */
void
jump_threader::thread_across_edge (edge e)
{
auto_bitmap visited;
m_state->push (e);
stmt_count = 0;
vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();
bitmap_set_bit (visited, e->src->index);
bitmap_set_bit (visited, e->dest->index);
int threaded = 0;
if ((e->flags & EDGE_DFS_BACK) == 0)
threaded = thread_through_normal_block (path, e, visited);
if (threaded > 0)
{
propagate_threaded_block_debug_into (path->last ()->e->dest,
e->dest);
m_registry->register_jump_thread (path);
m_state->pop ();
return;
}
gcc_checking_assert (path->length () == 0);
path->release ();
if (threaded < 0)
{
/* The target block was deemed too big to duplicate. Just quit
now rather than trying to use the block as a joiner in a jump
threading path.
This prevents unnecessary code growth, but more importantly if we
do not look at all the statements in the block, then we may have
missed some invalidations if we had traversed a backedge! */
m_state->pop ();
return;
}
/* We were unable to determine what out edge from E->dest is taken. However,
we might still be able to thread through successors of E->dest. This
often occurs when E->dest is a joiner block which then fans back out
based on redundant tests.
If so, we'll copy E->dest and redirect the appropriate predecessor to
the copy. Within the copy of E->dest, we'll thread one or more edges
to points deeper in the CFG.
This is a stopgap until we have a more structured approach to path
isolation. */
{
edge taken_edge;
edge_iterator ei;
bool found;
/* If E->dest has abnormal outgoing edges, then there's no guarantee
we can safely redirect any of the edges. Just punt those cases. */
FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
if (taken_edge->flags & EDGE_COMPLEX)
{
m_state->pop ();
return;
}
/* Look at each successor of E->dest to see if we can thread through it. */
FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
{
if ((e->flags & EDGE_DFS_BACK) != 0
|| (taken_edge->flags & EDGE_DFS_BACK) != 0)
continue;
m_state->push (taken_edge);
/* Avoid threading to any block we have already visited. */
bitmap_clear (visited);
bitmap_set_bit (visited, e->src->index);
bitmap_set_bit (visited, e->dest->index);
bitmap_set_bit (visited, taken_edge->dest->index);
vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();
m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD);
m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
found = thread_around_empty_blocks (path, taken_edge, visited);
if (!found)
found = thread_through_normal_block (path,
path->last ()->e, visited) > 0;
/* If we were able to thread through a successor of E->dest, then
record the jump threading opportunity. */
if (found
|| edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (e))
{
if (taken_edge->dest != path->last ()->e->dest)
propagate_threaded_block_debug_into (path->last ()->e->dest,
taken_edge->dest);
m_registry->register_jump_thread (path);
}
else
path->release ();
m_state->pop ();
}
}
m_state->pop ();
}
/* Return TRUE if BB has a single successor to a block with multiple
incoming and outgoing edges. */
bool
single_succ_to_potentially_threadable_block (basic_block bb)
{
int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
return (single_succ_p (bb)
&& (single_succ_edge (bb)->flags & flags) == 0
&& potentially_threadable_block (single_succ (bb)));
}
/* Examine the outgoing edges from BB and conditionally
try to thread them. */
void
jump_threader::thread_outgoing_edges (basic_block bb)
{
int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
gimple *last;
if (!flag_thread_jumps)
return;
/* If we have an outgoing edge to a block with multiple incoming and
outgoing edges, then we may be able to thread the edge, i.e., we
may be able to statically determine which of the outgoing edges
will be traversed when the incoming edge from BB is traversed. */
if (single_succ_to_potentially_threadable_block (bb))
thread_across_edge (single_succ_edge (bb));
else if ((last = last_stmt (bb))
&& gimple_code (last) == GIMPLE_COND
&& EDGE_COUNT (bb->succs) == 2
&& (EDGE_SUCC (bb, 0)->flags & flags) == 0
&& (EDGE_SUCC (bb, 1)->flags & flags) == 0)
{
edge true_edge, false_edge;
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
/* Only try to thread the edge if it reaches a target block with
more than one predecessor and more than one successor. */
if (potentially_threadable_block (true_edge->dest))
thread_across_edge (true_edge);
/* Similarly for the ELSE arm. */
if (potentially_threadable_block (false_edge->dest))
thread_across_edge (false_edge);
}
}
// Marker to keep track of the start of the current path.
const basic_block jt_state::BB_MARKER = (basic_block) -1;
// Record that E is being crossed.
void
jt_state::push (edge e)
{
m_blocks.safe_push (BB_MARKER);
if (m_blocks.length () == 1)
m_blocks.safe_push (e->src);
m_blocks.safe_push (e->dest);
}
// Pop to the last pushed state.
void
jt_state::pop ()
{
if (!m_blocks.is_empty ())
{
while (m_blocks.last () != BB_MARKER)
m_blocks.pop ();
// Pop marker.
m_blocks.pop ();
}
}
// Add BB to the list of blocks seen.
void
jt_state::append_path (basic_block bb)
{
gcc_checking_assert (!m_blocks.is_empty ());
m_blocks.safe_push (bb);
}
void
jt_state::dump (FILE *out)
{
if (!m_blocks.is_empty ())
{
auto_vec<basic_block> path;
get_path (path);
dump_ranger (out, path);
}
}
void
jt_state::debug ()
{
push_dump_file save (stderr, TDF_DETAILS);
dump (stderr);
}
// Convert the current path in jt_state into a path suitable for the
// path solver. Return the resulting path in PATH.
void
jt_state::get_path (vec<basic_block> &path)
{
path.truncate (0);
for (int i = (int) m_blocks.length () - 1; i >= 0; --i)
{
basic_block bb = m_blocks[i];
if (bb != BB_MARKER)
path.safe_push (bb);
}
}
// Record an equivalence from DST to SRC. If UPDATE_RANGE is TRUE,
// update the value range associated with DST.
void
jt_state::register_equiv (tree dest ATTRIBUTE_UNUSED,
tree src ATTRIBUTE_UNUSED,
bool update_range ATTRIBUTE_UNUSED)
{
}
// Record any ranges calculated in STMT. If TEMPORARY is TRUE, then
// this is a temporary equivalence and should be recorded into the
// unwind table, instead of the global table.
void
jt_state::record_ranges_from_stmt (gimple *,
bool temporary ATTRIBUTE_UNUSED)
{
}
// Record any equivalences created by traversing E.
void
jt_state::register_equivs_edge (edge)
{
}
void
jt_state::register_equivs_stmt (gimple *stmt, basic_block bb,
jt_simplifier *simplifier)
{
/* At this point we have a statement which assigns an RHS to an
SSA_VAR on the LHS. We want to try and simplify this statement
to expose more context sensitive equivalences which in turn may
allow us to simplify the condition at the end of the loop.
Handle simple copy operations. */
tree cached_lhs = NULL;
if (gimple_assign_single_p (stmt)
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
cached_lhs = gimple_assign_rhs1 (stmt);
else
{
/* A statement that is not a trivial copy.
Try to fold the new expression. Inserting the
expression into the hash table is unlikely to help. */
/* ??? The DOM callback below can be changed to setting
the mprts_hook around the call to thread_across_edge,
avoiding the use substitution. */
cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
threadedge_valueize);
if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0
&& (!cached_lhs
|| (TREE_CODE (cached_lhs) != SSA_NAME
&& !is_gimple_min_invariant (cached_lhs))))
{
/* We're going to temporarily copy propagate the operands
and see if that allows us to simplify this statement. */
tree *copy;
ssa_op_iter iter;
use_operand_p use_p;
unsigned int num, i = 0;
num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
copy = XALLOCAVEC (tree, num);
/* Make a copy of the uses & vuses into USES_COPY, then cprop into
the operands. */
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
{
tree tmp = NULL;
tree use = USE_FROM_PTR (use_p);
copy[i++] = use;
if (TREE_CODE (use) == SSA_NAME)
tmp = SSA_NAME_VALUE (use);
if (tmp)
SET_USE (use_p, tmp);
}
cached_lhs = simplifier->simplify (stmt, stmt, bb, this);
/* Restore the statement's original uses/defs. */
i = 0;
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
SET_USE (use_p, copy[i++]);
}
}
/* Record the context sensitive equivalence if we were able
to simplify this statement. */
if (cached_lhs
&& (TREE_CODE (cached_lhs) == SSA_NAME
|| is_gimple_min_invariant (cached_lhs)))
register_equiv (gimple_get_lhs (stmt), cached_lhs,
/*update_range=*/false);
}
// Hybrid threader implementation.
hybrid_jt_simplifier::hybrid_jt_simplifier (gimple_ranger *r,
path_range_query *q)
{
m_ranger = r;
m_query = q;
}
tree
hybrid_jt_simplifier::simplify (gimple *stmt, gimple *, basic_block,
jt_state *state)
{
int_range_max r;
compute_ranges_from_state (stmt, state);
if (gimple_code (stmt) == GIMPLE_COND
|| gimple_code (stmt) == GIMPLE_ASSIGN)
{
tree ret;
if (m_query->range_of_stmt (r, stmt) && r.singleton_p (&ret))
return ret;
}
else if (gimple_code (stmt) == GIMPLE_SWITCH)
{
gswitch *switch_stmt = dyn_cast <gswitch *> (stmt);
tree index = gimple_switch_index (switch_stmt);
if (m_query->range_of_expr (r, index, stmt))
return find_case_label_range (switch_stmt, &r);
}
return NULL;
}
// Use STATE to generate the list of imports needed for the solver,
// and calculate the ranges along the path.
void
hybrid_jt_simplifier::compute_ranges_from_state (gimple *stmt, jt_state *state)
{
auto_bitmap imports;
gori_compute &gori = m_ranger->gori ();
state->get_path (m_path);
// Start with the imports to the final conditional.
bitmap_copy (imports, gori.imports (m_path[0]));
// Add any other interesting operands we may have missed.
if (gimple_bb (stmt) != m_path[0])
{
for (unsigned i = 0; i < gimple_num_ops (stmt); ++i)
{
tree op = gimple_op (stmt, i);
if (op
&& TREE_CODE (op) == SSA_NAME
&& irange::supports_type_p (TREE_TYPE (op)))
bitmap_set_bit (imports, SSA_NAME_VERSION (op));
}
}
m_query->compute_ranges (m_path, imports);
}
|