1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
|
/* Data References Analysis and Manipulation Utilities for Vectorization.
Copyright (C) 2003-2022 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com>
and Ira Rosen <irar@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "cgraph.h"
#include "dumpfile.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "expr.h"
#include "builtins.h"
#include "tree-cfg.h"
#include "tree-hash-traits.h"
#include "vec-perm-indices.h"
#include "internal-fn.h"
#include "gimple-fold.h"
/* Return true if load- or store-lanes optab OPTAB is implemented for
COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
static bool
vect_lanes_optab_supported_p (const char *name, convert_optab optab,
tree vectype, unsigned HOST_WIDE_INT count)
{
machine_mode mode, array_mode;
bool limit_p;
mode = TYPE_MODE (vectype);
if (!targetm.array_mode (mode, count).exists (&array_mode))
{
poly_uint64 bits = count * GET_MODE_BITSIZE (mode);
limit_p = !targetm.array_mode_supported_p (mode, count);
if (!int_mode_for_size (bits, limit_p).exists (&array_mode))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"no array mode for %s[%wu]\n",
GET_MODE_NAME (mode), count);
return false;
}
}
if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"cannot use %s<%s><%s>\n", name,
GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
return false;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
GET_MODE_NAME (mode));
return true;
}
/* Return the smallest scalar part of STMT_INFO.
This is used to determine the vectype of the stmt. We generally set the
vectype according to the type of the result (lhs). For stmts whose
result-type is different than the type of the arguments (e.g., demotion,
promotion), vectype will be reset appropriately (later). Note that we have
to visit the smallest datatype in this function, because that determines the
VF. If the smallest datatype in the loop is present only as the rhs of a
promotion operation - we'd miss it.
Such a case, where a variable of this datatype does not appear in the lhs
anywhere in the loop, can only occur if it's an invariant: e.g.:
'int_x = (int) short_inv', which we'd expect to have been optimized away by
invariant motion. However, we cannot rely on invariant motion to always
take invariants out of the loop, and so in the case of promotion we also
have to check the rhs.
LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
types. */
tree
vect_get_smallest_scalar_type (stmt_vec_info stmt_info, tree scalar_type)
{
HOST_WIDE_INT lhs, rhs;
/* During the analysis phase, this function is called on arbitrary
statements that might not have scalar results. */
if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (scalar_type)))
return scalar_type;
lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
if (assign)
{
scalar_type = TREE_TYPE (gimple_assign_lhs (assign));
if (gimple_assign_cast_p (assign)
|| gimple_assign_rhs_code (assign) == DOT_PROD_EXPR
|| gimple_assign_rhs_code (assign) == WIDEN_SUM_EXPR
|| gimple_assign_rhs_code (assign) == WIDEN_MULT_EXPR
|| gimple_assign_rhs_code (assign) == WIDEN_LSHIFT_EXPR
|| gimple_assign_rhs_code (assign) == WIDEN_PLUS_EXPR
|| gimple_assign_rhs_code (assign) == WIDEN_MINUS_EXPR
|| gimple_assign_rhs_code (assign) == FLOAT_EXPR)
{
tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
if (rhs < lhs)
scalar_type = rhs_type;
}
}
else if (gcall *call = dyn_cast <gcall *> (stmt_info->stmt))
{
unsigned int i = 0;
if (gimple_call_internal_p (call))
{
internal_fn ifn = gimple_call_internal_fn (call);
if (internal_load_fn_p (ifn))
/* For loads the LHS type does the trick. */
i = ~0U;
else if (internal_store_fn_p (ifn))
{
/* For stores use the tyep of the stored value. */
i = internal_fn_stored_value_index (ifn);
scalar_type = TREE_TYPE (gimple_call_arg (call, i));
i = ~0U;
}
else if (internal_fn_mask_index (ifn) == 0)
i = 1;
}
if (i < gimple_call_num_args (call))
{
tree rhs_type = TREE_TYPE (gimple_call_arg (call, i));
if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (rhs_type)))
{
rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
if (rhs < lhs)
scalar_type = rhs_type;
}
}
}
return scalar_type;
}
/* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
tested at run-time. Return TRUE if DDR was successfully inserted.
Return false if versioning is not supported. */
static opt_result
vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
if ((unsigned) param_vect_max_version_for_alias_checks == 0)
return opt_result::failure_at (vect_location,
"will not create alias checks, as"
" --param vect-max-version-for-alias-checks"
" == 0\n");
opt_result res
= runtime_alias_check_p (ddr, loop,
optimize_loop_nest_for_speed_p (loop));
if (!res)
return res;
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
return opt_result::success ();
}
/* Record that loop LOOP_VINFO needs to check that VALUE is nonzero. */
static void
vect_check_nonzero_value (loop_vec_info loop_vinfo, tree value)
{
const vec<tree> &checks = LOOP_VINFO_CHECK_NONZERO (loop_vinfo);
for (unsigned int i = 0; i < checks.length(); ++i)
if (checks[i] == value)
return;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"need run-time check that %T is nonzero\n",
value);
LOOP_VINFO_CHECK_NONZERO (loop_vinfo).safe_push (value);
}
/* Return true if we know that the order of vectorized DR_INFO_A and
vectorized DR_INFO_B will be the same as the order of DR_INFO_A and
DR_INFO_B. At least one of the accesses is a write. */
static bool
vect_preserves_scalar_order_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b)
{
stmt_vec_info stmtinfo_a = dr_info_a->stmt;
stmt_vec_info stmtinfo_b = dr_info_b->stmt;
/* Single statements are always kept in their original order. */
if (!STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
&& !STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
return true;
/* STMT_A and STMT_B belong to overlapping groups. All loads are
emitted at the position of the first scalar load.
Stores in a group are emitted at the position of the last scalar store.
Compute that position and check whether the resulting order matches
the current one. */
stmt_vec_info il_a = DR_GROUP_FIRST_ELEMENT (stmtinfo_a);
if (il_a)
{
if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_a)))
for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s;
s = DR_GROUP_NEXT_ELEMENT (s))
il_a = get_later_stmt (il_a, s);
else /* DR_IS_READ */
for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s;
s = DR_GROUP_NEXT_ELEMENT (s))
if (get_later_stmt (il_a, s) == il_a)
il_a = s;
}
else
il_a = stmtinfo_a;
stmt_vec_info il_b = DR_GROUP_FIRST_ELEMENT (stmtinfo_b);
if (il_b)
{
if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_b)))
for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s;
s = DR_GROUP_NEXT_ELEMENT (s))
il_b = get_later_stmt (il_b, s);
else /* DR_IS_READ */
for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s;
s = DR_GROUP_NEXT_ELEMENT (s))
if (get_later_stmt (il_b, s) == il_b)
il_b = s;
}
else
il_b = stmtinfo_b;
bool a_after_b = (get_later_stmt (stmtinfo_a, stmtinfo_b) == stmtinfo_a);
return (get_later_stmt (il_a, il_b) == il_a) == a_after_b;
}
/* A subroutine of vect_analyze_data_ref_dependence. Handle
DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
distances. These distances are conservatively correct but they don't
reflect a guaranteed dependence.
Return true if this function does all the work necessary to avoid
an alias or false if the caller should use the dependence distances
to limit the vectorization factor in the usual way. LOOP_DEPTH is
the depth of the loop described by LOOP_VINFO and the other arguments
are as for vect_analyze_data_ref_dependence. */
static bool
vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
loop_vec_info loop_vinfo,
int loop_depth, unsigned int *max_vf)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
for (lambda_vector &dist_v : DDR_DIST_VECTS (ddr))
{
int dist = dist_v[loop_depth];
if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
{
/* If the user asserted safelen >= DIST consecutive iterations
can be executed concurrently, assume independence.
??? An alternative would be to add the alias check even
in this case, and vectorize the fallback loop with the
maximum VF set to safelen. However, if the user has
explicitly given a length, it's less likely that that
would be a win. */
if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
{
if ((unsigned int) loop->safelen < *max_vf)
*max_vf = loop->safelen;
LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
continue;
}
/* For dependence distances of 2 or more, we have the option
of limiting VF or checking for an alias at runtime.
Prefer to check at runtime if we can, to avoid limiting
the VF unnecessarily when the bases are in fact independent.
Note that the alias checks will be removed if the VF ends up
being small enough. */
dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr));
dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr));
return (!STMT_VINFO_GATHER_SCATTER_P (dr_info_a->stmt)
&& !STMT_VINFO_GATHER_SCATTER_P (dr_info_b->stmt)
&& vect_mark_for_runtime_alias_test (ddr, loop_vinfo));
}
}
return true;
}
/* Function vect_analyze_data_ref_dependence.
FIXME: I needed to change the sense of the returned flag.
Return FALSE if there (might) exist a dependence between a memory-reference
DRA and a memory-reference DRB. When versioning for alias may check a
dependence at run-time, return TRUE. Adjust *MAX_VF according to
the data dependence. */
static opt_result
vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
loop_vec_info loop_vinfo,
unsigned int *max_vf)
{
unsigned int i;
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
struct data_reference *dra = DDR_A (ddr);
struct data_reference *drb = DDR_B (ddr);
dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (dra);
dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (drb);
stmt_vec_info stmtinfo_a = dr_info_a->stmt;
stmt_vec_info stmtinfo_b = dr_info_b->stmt;
lambda_vector dist_v;
unsigned int loop_depth;
/* If user asserted safelen consecutive iterations can be
executed concurrently, assume independence. */
auto apply_safelen = [&]()
{
if (loop->safelen >= 2)
{
if ((unsigned int) loop->safelen < *max_vf)
*max_vf = loop->safelen;
LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
return true;
}
return false;
};
/* In loop analysis all data references should be vectorizable. */
if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
|| !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
gcc_unreachable ();
/* Independent data accesses. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
return opt_result::success ();
if (dra == drb
|| (DR_IS_READ (dra) && DR_IS_READ (drb)))
return opt_result::success ();
/* We do not have to consider dependences between accesses that belong
to the same group, unless the stride could be smaller than the
group size. */
if (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
&& (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
== DR_GROUP_FIRST_ELEMENT (stmtinfo_b))
&& !STMT_VINFO_STRIDED_P (stmtinfo_a))
return opt_result::success ();
/* Even if we have an anti-dependence then, as the vectorized loop covers at
least two scalar iterations, there is always also a true dependence.
As the vectorizer does not re-order loads and stores we can ignore
the anti-dependence if TBAA can disambiguate both DRs similar to the
case with known negative distance anti-dependences (positive
distance anti-dependences would violate TBAA constraints). */
if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
|| (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
&& !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
get_alias_set (DR_REF (drb))))
return opt_result::success ();
if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
|| STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
{
if (apply_safelen ())
return opt_result::success ();
return opt_result::failure_at
(stmtinfo_a->stmt,
"possible alias involving gather/scatter between %T and %T\n",
DR_REF (dra), DR_REF (drb));
}
/* Unknown data dependence. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
{
if (apply_safelen ())
return opt_result::success ();
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt,
"versioning for alias required: "
"can't determine dependence between %T and %T\n",
DR_REF (dra), DR_REF (drb));
/* Add to list of ddrs that need to be tested at run-time. */
return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
}
/* Known data dependence. */
if (DDR_NUM_DIST_VECTS (ddr) == 0)
{
if (apply_safelen ())
return opt_result::success ();
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt,
"versioning for alias required: "
"bad dist vector for %T and %T\n",
DR_REF (dra), DR_REF (drb));
/* Add to list of ddrs that need to be tested at run-time. */
return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
}
loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
if (DDR_COULD_BE_INDEPENDENT_P (ddr)
&& vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
loop_depth, max_vf))
return opt_result::success ();
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
{
int dist = dist_v[loop_depth];
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"dependence distance = %d.\n", dist);
if (dist == 0)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"dependence distance == 0 between %T and %T\n",
DR_REF (dra), DR_REF (drb));
/* When we perform grouped accesses and perform implicit CSE
by detecting equal accesses and doing disambiguation with
runtime alias tests like for
.. = a[i];
.. = a[i+1];
a[i] = ..;
a[i+1] = ..;
*p = ..;
.. = a[i];
.. = a[i+1];
where we will end up loading { a[i], a[i+1] } once, make
sure that inserting group loads before the first load and
stores after the last store will do the right thing.
Similar for groups like
a[i] = ...;
... = a[i];
a[i+1] = ...;
where loads from the group interleave with the store. */
if (!vect_preserves_scalar_order_p (dr_info_a, dr_info_b))
return opt_result::failure_at (stmtinfo_a->stmt,
"READ_WRITE dependence"
" in interleaving.\n");
if (loop->safelen < 2)
{
tree indicator = dr_zero_step_indicator (dra);
if (!indicator || integer_zerop (indicator))
return opt_result::failure_at (stmtinfo_a->stmt,
"access also has a zero step\n");
else if (TREE_CODE (indicator) != INTEGER_CST)
vect_check_nonzero_value (loop_vinfo, indicator);
}
continue;
}
if (dist > 0 && DDR_REVERSED_P (ddr))
{
/* If DDR_REVERSED_P the order of the data-refs in DDR was
reversed (to make distance vector positive), and the actual
distance is negative. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"dependence distance negative.\n");
/* When doing outer loop vectorization, we need to check if there is
a backward dependence at the inner loop level if the dependence
at the outer loop is reversed. See PR81740. */
if (nested_in_vect_loop_p (loop, stmtinfo_a)
|| nested_in_vect_loop_p (loop, stmtinfo_b))
{
unsigned inner_depth = index_in_loop_nest (loop->inner->num,
DDR_LOOP_NEST (ddr));
if (dist_v[inner_depth] < 0)
return opt_result::failure_at (stmtinfo_a->stmt,
"not vectorized, dependence "
"between data-refs %T and %T\n",
DR_REF (dra), DR_REF (drb));
}
/* Record a negative dependence distance to later limit the
amount of stmt copying / unrolling we can perform.
Only need to handle read-after-write dependence. */
if (DR_IS_READ (drb)
&& (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
|| STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
continue;
}
unsigned int abs_dist = abs (dist);
if (abs_dist >= 2 && abs_dist < *max_vf)
{
/* The dependence distance requires reduction of the maximal
vectorization factor. */
*max_vf = abs_dist;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"adjusting maximal vectorization factor to %i\n",
*max_vf);
}
if (abs_dist >= *max_vf)
{
/* Dependence distance does not create dependence, as far as
vectorization is concerned, in this case. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"dependence distance >= VF.\n");
continue;
}
return opt_result::failure_at (stmtinfo_a->stmt,
"not vectorized, possible dependence "
"between data-refs %T and %T\n",
DR_REF (dra), DR_REF (drb));
}
return opt_result::success ();
}
/* Function vect_analyze_data_ref_dependences.
Examine all the data references in the loop, and make sure there do not
exist any data dependences between them. Set *MAX_VF according to
the maximum vectorization factor the data dependences allow. */
opt_result
vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
unsigned int *max_vf)
{
unsigned int i;
struct data_dependence_relation *ddr;
DUMP_VECT_SCOPE ("vect_analyze_data_ref_dependences");
if (!LOOP_VINFO_DDRS (loop_vinfo).exists ())
{
LOOP_VINFO_DDRS (loop_vinfo)
.create (LOOP_VINFO_DATAREFS (loop_vinfo).length ()
* LOOP_VINFO_DATAREFS (loop_vinfo).length ());
/* We do not need read-read dependences. */
bool res = compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
&LOOP_VINFO_DDRS (loop_vinfo),
LOOP_VINFO_LOOP_NEST (loop_vinfo),
false);
gcc_assert (res);
}
LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
/* For epilogues we either have no aliases or alias versioning
was applied to original loop. Therefore we may just get max_vf
using VF of original loop. */
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
*max_vf = LOOP_VINFO_ORIG_MAX_VECT_FACTOR (loop_vinfo);
else
FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
{
opt_result res
= vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf);
if (!res)
return res;
}
return opt_result::success ();
}
/* Function vect_slp_analyze_data_ref_dependence.
Return TRUE if there (might) exist a dependence between a memory-reference
DRA and a memory-reference DRB for VINFO. When versioning for alias
may check a dependence at run-time, return FALSE. Adjust *MAX_VF
according to the data dependence. */
static bool
vect_slp_analyze_data_ref_dependence (vec_info *vinfo,
struct data_dependence_relation *ddr)
{
struct data_reference *dra = DDR_A (ddr);
struct data_reference *drb = DDR_B (ddr);
dr_vec_info *dr_info_a = vinfo->lookup_dr (dra);
dr_vec_info *dr_info_b = vinfo->lookup_dr (drb);
/* We need to check dependences of statements marked as unvectorizable
as well, they still can prohibit vectorization. */
/* Independent data accesses. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
return false;
if (dra == drb)
return false;
/* Read-read is OK. */
if (DR_IS_READ (dra) && DR_IS_READ (drb))
return false;
/* If dra and drb are part of the same interleaving chain consider
them independent. */
if (STMT_VINFO_GROUPED_ACCESS (dr_info_a->stmt)
&& (DR_GROUP_FIRST_ELEMENT (dr_info_a->stmt)
== DR_GROUP_FIRST_ELEMENT (dr_info_b->stmt)))
return false;
/* Unknown data dependence. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't determine dependence between %T and %T\n",
DR_REF (dra), DR_REF (drb));
}
else if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"determined dependence between %T and %T\n",
DR_REF (dra), DR_REF (drb));
return true;
}
/* Analyze dependences involved in the transform of SLP NODE. STORES
contain the vector of scalar stores of this instance if we are
disambiguating the loads. */
static bool
vect_slp_analyze_node_dependences (vec_info *vinfo, slp_tree node,
vec<stmt_vec_info> stores,
stmt_vec_info last_store_info)
{
/* This walks over all stmts involved in the SLP load/store done
in NODE verifying we can sink them up to the last stmt in the
group. */
if (DR_IS_WRITE (STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (node))))
{
stmt_vec_info last_access_info = vect_find_last_scalar_stmt_in_slp (node);
for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k)
{
stmt_vec_info access_info
= vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]);
if (access_info == last_access_info)
continue;
data_reference *dr_a = STMT_VINFO_DATA_REF (access_info);
ao_ref ref;
bool ref_initialized_p = false;
for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt);
gsi_stmt (gsi) != last_access_info->stmt; gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (! gimple_vuse (stmt))
continue;
/* If we couldn't record a (single) data reference for this
stmt we have to resort to the alias oracle. */
stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt);
data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info);
if (!dr_b)
{
/* We are moving a store - this means
we cannot use TBAA for disambiguation. */
if (!ref_initialized_p)
ao_ref_init (&ref, DR_REF (dr_a));
if (stmt_may_clobber_ref_p_1 (stmt, &ref, false)
|| ref_maybe_used_by_stmt_p (stmt, &ref, false))
return false;
continue;
}
bool dependent = false;
/* If we run into a store of this same instance (we've just
marked those) then delay dependence checking until we run
into the last store because this is where it will have
been sunk to (and we verify if we can do that as well). */
if (gimple_visited_p (stmt))
{
if (stmt_info != last_store_info)
continue;
for (stmt_vec_info &store_info : stores)
{
data_reference *store_dr
= STMT_VINFO_DATA_REF (store_info);
ddr_p ddr = initialize_data_dependence_relation
(dr_a, store_dr, vNULL);
dependent
= vect_slp_analyze_data_ref_dependence (vinfo, ddr);
free_dependence_relation (ddr);
if (dependent)
break;
}
}
else
{
ddr_p ddr = initialize_data_dependence_relation (dr_a,
dr_b, vNULL);
dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
free_dependence_relation (ddr);
}
if (dependent)
return false;
}
}
}
else /* DR_IS_READ */
{
stmt_vec_info first_access_info
= vect_find_first_scalar_stmt_in_slp (node);
for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k)
{
stmt_vec_info access_info
= vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]);
if (access_info == first_access_info)
continue;
data_reference *dr_a = STMT_VINFO_DATA_REF (access_info);
ao_ref ref;
bool ref_initialized_p = false;
for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt);
gsi_stmt (gsi) != first_access_info->stmt; gsi_prev (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (! gimple_vdef (stmt))
continue;
/* If we couldn't record a (single) data reference for this
stmt we have to resort to the alias oracle. */
stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt);
data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info);
/* We are hoisting a load - this means we can use
TBAA for disambiguation. */
if (!ref_initialized_p)
ao_ref_init (&ref, DR_REF (dr_a));
if (stmt_may_clobber_ref_p_1 (stmt, &ref, true))
{
if (!dr_b)
return false;
/* Resort to dependence checking below. */
}
else
/* No dependence. */
continue;
bool dependent = false;
/* If we run into a store of this same instance (we've just
marked those) then delay dependence checking until we run
into the last store because this is where it will have
been sunk to (and we verify if we can do that as well). */
if (gimple_visited_p (stmt))
{
if (stmt_info != last_store_info)
continue;
for (stmt_vec_info &store_info : stores)
{
data_reference *store_dr
= STMT_VINFO_DATA_REF (store_info);
ddr_p ddr = initialize_data_dependence_relation
(dr_a, store_dr, vNULL);
dependent
= vect_slp_analyze_data_ref_dependence (vinfo, ddr);
free_dependence_relation (ddr);
if (dependent)
break;
}
}
else
{
ddr_p ddr = initialize_data_dependence_relation (dr_a,
dr_b, vNULL);
dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
free_dependence_relation (ddr);
}
if (dependent)
return false;
}
}
}
return true;
}
/* Function vect_analyze_data_ref_dependences.
Examine all the data references in the basic-block, and make sure there
do not exist any data dependences between them. Set *MAX_VF according to
the maximum vectorization factor the data dependences allow. */
bool
vect_slp_analyze_instance_dependence (vec_info *vinfo, slp_instance instance)
{
DUMP_VECT_SCOPE ("vect_slp_analyze_instance_dependence");
/* The stores of this instance are at the root of the SLP tree. */
slp_tree store = NULL;
if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store)
store = SLP_INSTANCE_TREE (instance);
/* Verify we can sink stores to the vectorized stmt insert location. */
stmt_vec_info last_store_info = NULL;
if (store)
{
if (! vect_slp_analyze_node_dependences (vinfo, store, vNULL, NULL))
return false;
/* Mark stores in this instance and remember the last one. */
last_store_info = vect_find_last_scalar_stmt_in_slp (store);
for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k)
gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, true);
}
bool res = true;
/* Verify we can sink loads to the vectorized stmt insert location,
special-casing stores of this instance. */
for (slp_tree &load : SLP_INSTANCE_LOADS (instance))
if (! vect_slp_analyze_node_dependences (vinfo, load,
store
? SLP_TREE_SCALAR_STMTS (store)
: vNULL, last_store_info))
{
res = false;
break;
}
/* Unset the visited flag. */
if (store)
for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k)
gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, false);
return res;
}
/* Return the misalignment of DR_INFO accessed in VECTYPE with OFFSET
applied. */
int
dr_misalignment (dr_vec_info *dr_info, tree vectype, poly_int64 offset)
{
HOST_WIDE_INT diff = 0;
/* Alignment is only analyzed for the first element of a DR group,
use that but adjust misalignment by the offset of the access. */
if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
{
dr_vec_info *first_dr
= STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
/* vect_analyze_data_ref_accesses guarantees that DR_INIT are
INTEGER_CSTs and the first element in the group has the lowest
address. */
diff = (TREE_INT_CST_LOW (DR_INIT (dr_info->dr))
- TREE_INT_CST_LOW (DR_INIT (first_dr->dr)));
gcc_assert (diff >= 0);
dr_info = first_dr;
}
int misalign = dr_info->misalignment;
gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
if (misalign == DR_MISALIGNMENT_UNKNOWN)
return misalign;
/* If the access is only aligned for a vector type with smaller alignment
requirement the access has unknown misalignment. */
if (maybe_lt (dr_info->target_alignment * BITS_PER_UNIT,
targetm.vectorize.preferred_vector_alignment (vectype)))
return DR_MISALIGNMENT_UNKNOWN;
/* Apply the offset from the DR group start and the externally supplied
offset which can for example result from a negative stride access. */
poly_int64 misalignment = misalign + diff + offset;
/* vect_compute_data_ref_alignment will have ensured that target_alignment
is constant and otherwise set misalign to DR_MISALIGNMENT_UNKNOWN. */
unsigned HOST_WIDE_INT target_alignment_c
= dr_info->target_alignment.to_constant ();
if (!known_misalignment (misalignment, target_alignment_c, &misalign))
return DR_MISALIGNMENT_UNKNOWN;
return misalign;
}
/* Record the base alignment guarantee given by DRB, which occurs
in STMT_INFO. */
static void
vect_record_base_alignment (vec_info *vinfo, stmt_vec_info stmt_info,
innermost_loop_behavior *drb)
{
bool existed;
std::pair<stmt_vec_info, innermost_loop_behavior *> &entry
= vinfo->base_alignments.get_or_insert (drb->base_address, &existed);
if (!existed || entry.second->base_alignment < drb->base_alignment)
{
entry = std::make_pair (stmt_info, drb);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"recording new base alignment for %T\n"
" alignment: %d\n"
" misalignment: %d\n"
" based on: %G",
drb->base_address,
drb->base_alignment,
drb->base_misalignment,
stmt_info->stmt);
}
}
/* If the region we're going to vectorize is reached, all unconditional
data references occur at least once. We can therefore pool the base
alignment guarantees from each unconditional reference. Do this by
going through all the data references in VINFO and checking whether
the containing statement makes the reference unconditionally. If so,
record the alignment of the base address in VINFO so that it can be
used for all other references with the same base. */
void
vect_record_base_alignments (vec_info *vinfo)
{
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
class loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
for (data_reference *dr : vinfo->shared->datarefs)
{
dr_vec_info *dr_info = vinfo->lookup_dr (dr);
stmt_vec_info stmt_info = dr_info->stmt;
if (!DR_IS_CONDITIONAL_IN_STMT (dr)
&& STMT_VINFO_VECTORIZABLE (stmt_info)
&& !STMT_VINFO_GATHER_SCATTER_P (stmt_info))
{
vect_record_base_alignment (vinfo, stmt_info, &DR_INNERMOST (dr));
/* If DR is nested in the loop that is being vectorized, we can also
record the alignment of the base wrt the outer loop. */
if (loop && nested_in_vect_loop_p (loop, stmt_info))
vect_record_base_alignment
(vinfo, stmt_info, &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info));
}
}
}
/* Function vect_compute_data_ref_alignment
Compute the misalignment of the data reference DR_INFO when vectorizing
with VECTYPE.
Output:
1. initialized misalignment info for DR_INFO
FOR NOW: No analysis is actually performed. Misalignment is calculated
only for trivial cases. TODO. */
static void
vect_compute_data_ref_alignment (vec_info *vinfo, dr_vec_info *dr_info,
tree vectype)
{
stmt_vec_info stmt_info = dr_info->stmt;
vec_base_alignments *base_alignments = &vinfo->base_alignments;
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
class loop *loop = NULL;
tree ref = DR_REF (dr_info->dr);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"vect_compute_data_ref_alignment:\n");
if (loop_vinfo)
loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Initialize misalignment to unknown. */
SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN);
if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
return;
innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info);
bool step_preserves_misalignment_p;
poly_uint64 vector_alignment
= exact_div (targetm.vectorize.preferred_vector_alignment (vectype),
BITS_PER_UNIT);
SET_DR_TARGET_ALIGNMENT (dr_info, vector_alignment);
/* If the main loop has peeled for alignment we have no way of knowing
whether the data accesses in the epilogues are aligned. We can't at
compile time answer the question whether we have entered the main loop or
not. Fixes PR 92351. */
if (loop_vinfo)
{
loop_vec_info orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
if (orig_loop_vinfo
&& LOOP_VINFO_PEELING_FOR_ALIGNMENT (orig_loop_vinfo) != 0)
return;
}
unsigned HOST_WIDE_INT vect_align_c;
if (!vector_alignment.is_constant (&vect_align_c))
return;
/* No step for BB vectorization. */
if (!loop)
{
gcc_assert (integer_zerop (drb->step));
step_preserves_misalignment_p = true;
}
/* In case the dataref is in an inner-loop of the loop that is being
vectorized (LOOP), we use the base and misalignment information
relative to the outer-loop (LOOP). This is ok only if the misalignment
stays the same throughout the execution of the inner-loop, which is why
we have to check that the stride of the dataref in the inner-loop evenly
divides by the vector alignment. */
else if (nested_in_vect_loop_p (loop, stmt_info))
{
step_preserves_misalignment_p
= (DR_STEP_ALIGNMENT (dr_info->dr) % vect_align_c) == 0;
if (dump_enabled_p ())
{
if (step_preserves_misalignment_p)
dump_printf_loc (MSG_NOTE, vect_location,
"inner step divides the vector alignment.\n");
else
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"inner step doesn't divide the vector"
" alignment.\n");
}
}
/* Similarly we can only use base and misalignment information relative to
an innermost loop if the misalignment stays the same throughout the
execution of the loop. As above, this is the case if the stride of
the dataref evenly divides by the alignment. */
else
{
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
step_preserves_misalignment_p
= multiple_p (DR_STEP_ALIGNMENT (dr_info->dr) * vf, vect_align_c);
if (!step_preserves_misalignment_p && dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"step doesn't divide the vector alignment.\n");
}
unsigned int base_alignment = drb->base_alignment;
unsigned int base_misalignment = drb->base_misalignment;
/* Calculate the maximum of the pooled base address alignment and the
alignment that we can compute for DR itself. */
std::pair<stmt_vec_info, innermost_loop_behavior *> *entry
= base_alignments->get (drb->base_address);
if (entry
&& base_alignment < (*entry).second->base_alignment
&& (loop_vinfo
|| (dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt_info->stmt),
gimple_bb (entry->first->stmt))
&& (gimple_bb (stmt_info->stmt) != gimple_bb (entry->first->stmt)
|| (entry->first->dr_aux.group <= dr_info->group)))))
{
base_alignment = entry->second->base_alignment;
base_misalignment = entry->second->base_misalignment;
}
if (drb->offset_alignment < vect_align_c
|| !step_preserves_misalignment_p
/* We need to know whether the step wrt the vectorized loop is
negative when computing the starting misalignment below. */
|| TREE_CODE (drb->step) != INTEGER_CST)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Unknown alignment for access: %T\n", ref);
return;
}
if (base_alignment < vect_align_c)
{
unsigned int max_alignment;
tree base = get_base_for_alignment (drb->base_address, &max_alignment);
if (max_alignment < vect_align_c
|| !vect_can_force_dr_alignment_p (base,
vect_align_c * BITS_PER_UNIT))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"can't force alignment of ref: %T\n", ref);
return;
}
/* Force the alignment of the decl.
NOTE: This is the only change to the code we make during
the analysis phase, before deciding to vectorize the loop. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"force alignment of %T\n", ref);
dr_info->base_decl = base;
dr_info->base_misaligned = true;
base_misalignment = 0;
}
poly_int64 misalignment
= base_misalignment + wi::to_poly_offset (drb->init).force_shwi ();
unsigned int const_misalignment;
if (!known_misalignment (misalignment, vect_align_c, &const_misalignment))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Non-constant misalignment for access: %T\n", ref);
return;
}
SET_DR_MISALIGNMENT (dr_info, const_misalignment);
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"misalign = %d bytes of ref %T\n",
const_misalignment, ref);
return;
}
/* Return whether DR_INFO, which is related to DR_PEEL_INFO in
that it only differs in DR_INIT, is aligned if DR_PEEL_INFO
is made aligned via peeling. */
static bool
vect_dr_aligned_if_related_peeled_dr_is (dr_vec_info *dr_info,
dr_vec_info *dr_peel_info)
{
if (multiple_p (DR_TARGET_ALIGNMENT (dr_peel_info),
DR_TARGET_ALIGNMENT (dr_info)))
{
poly_offset_int diff
= (wi::to_poly_offset (DR_INIT (dr_peel_info->dr))
- wi::to_poly_offset (DR_INIT (dr_info->dr)));
if (known_eq (diff, 0)
|| multiple_p (diff, DR_TARGET_ALIGNMENT (dr_info)))
return true;
}
return false;
}
/* Return whether DR_INFO is aligned if DR_PEEL_INFO is made
aligned via peeling. */
static bool
vect_dr_aligned_if_peeled_dr_is (dr_vec_info *dr_info,
dr_vec_info *dr_peel_info)
{
if (!operand_equal_p (DR_BASE_ADDRESS (dr_info->dr),
DR_BASE_ADDRESS (dr_peel_info->dr), 0)
|| !operand_equal_p (DR_OFFSET (dr_info->dr),
DR_OFFSET (dr_peel_info->dr), 0)
|| !operand_equal_p (DR_STEP (dr_info->dr),
DR_STEP (dr_peel_info->dr), 0))
return false;
return vect_dr_aligned_if_related_peeled_dr_is (dr_info, dr_peel_info);
}
/* Compute the value for dr_info->misalign so that the access appears
aligned. This is used by peeling to compensate for dr_misalignment
applying the offset for negative step. */
int
vect_dr_misalign_for_aligned_access (dr_vec_info *dr_info)
{
if (tree_int_cst_sgn (DR_STEP (dr_info->dr)) >= 0)
return 0;
tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
poly_int64 misalignment
= ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
* TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
unsigned HOST_WIDE_INT target_alignment_c;
int misalign;
if (!dr_info->target_alignment.is_constant (&target_alignment_c)
|| !known_misalignment (misalignment, target_alignment_c, &misalign))
return DR_MISALIGNMENT_UNKNOWN;
return misalign;
}
/* Function vect_update_misalignment_for_peel.
Sets DR_INFO's misalignment
- to 0 if it has the same alignment as DR_PEEL_INFO,
- to the misalignment computed using NPEEL if DR_INFO's salignment is known,
- to -1 (unknown) otherwise.
DR_INFO - the data reference whose misalignment is to be adjusted.
DR_PEEL_INFO - the data reference whose misalignment is being made
zero in the vector loop by the peel.
NPEEL - the number of iterations in the peel loop if the misalignment
of DR_PEEL_INFO is known at compile time. */
static void
vect_update_misalignment_for_peel (dr_vec_info *dr_info,
dr_vec_info *dr_peel_info, int npeel)
{
/* If dr_info is aligned of dr_peel_info is, then mark it so. */
if (vect_dr_aligned_if_peeled_dr_is (dr_info, dr_peel_info))
{
SET_DR_MISALIGNMENT (dr_info,
vect_dr_misalign_for_aligned_access (dr_peel_info));
return;
}
unsigned HOST_WIDE_INT alignment;
if (DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment)
&& known_alignment_for_access_p (dr_info,
STMT_VINFO_VECTYPE (dr_info->stmt))
&& known_alignment_for_access_p (dr_peel_info,
STMT_VINFO_VECTYPE (dr_peel_info->stmt)))
{
int misal = dr_info->misalignment;
misal += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
misal &= alignment - 1;
set_dr_misalignment (dr_info, misal);
return;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment " \
"to unknown (-1).\n");
SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN);
}
/* Return true if alignment is relevant for DR_INFO. */
static bool
vect_relevant_for_alignment_p (dr_vec_info *dr_info)
{
stmt_vec_info stmt_info = dr_info->stmt;
if (!STMT_VINFO_RELEVANT_P (stmt_info))
return false;
/* For interleaving, only the alignment of the first access matters. */
if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
&& DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt_info)
return false;
/* Scatter-gather and invariant accesses continue to address individual
scalars, so vector-level alignment is irrelevant. */
if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)
|| integer_zerop (DR_STEP (dr_info->dr)))
return false;
/* Strided accesses perform only component accesses, alignment is
irrelevant for them. */
if (STMT_VINFO_STRIDED_P (stmt_info)
&& !STMT_VINFO_GROUPED_ACCESS (stmt_info))
return false;
return true;
}
/* Given an memory reference EXP return whether its alignment is less
than its size. */
static bool
not_size_aligned (tree exp)
{
if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
return true;
return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
> get_object_alignment (exp));
}
/* Function vector_alignment_reachable_p
Return true if vector alignment for DR_INFO is reachable by peeling
a few loop iterations. Return false otherwise. */
static bool
vector_alignment_reachable_p (dr_vec_info *dr_info)
{
stmt_vec_info stmt_info = dr_info->stmt;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
{
/* For interleaved access we peel only if number of iterations in
the prolog loop ({VF - misalignment}), is a multiple of the
number of the interleaved accesses. */
int elem_size, mis_in_elements;
/* FORNOW: handle only known alignment. */
if (!known_alignment_for_access_p (dr_info, vectype))
return false;
poly_uint64 nelements = TYPE_VECTOR_SUBPARTS (vectype);
poly_uint64 vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
elem_size = vector_element_size (vector_size, nelements);
mis_in_elements = dr_misalignment (dr_info, vectype) / elem_size;
if (!multiple_p (nelements - mis_in_elements, DR_GROUP_SIZE (stmt_info)))
return false;
}
/* If misalignment is known at the compile time then allow peeling
only if natural alignment is reachable through peeling. */
if (known_alignment_for_access_p (dr_info, vectype)
&& !aligned_access_p (dr_info, vectype))
{
HOST_WIDE_INT elmsize =
int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"data size = %wd. misalignment = %d.\n", elmsize,
dr_misalignment (dr_info, vectype));
}
if (dr_misalignment (dr_info, vectype) % elmsize)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"data size does not divide the misalignment.\n");
return false;
}
}
if (!known_alignment_for_access_p (dr_info, vectype))
{
tree type = TREE_TYPE (DR_REF (dr_info->dr));
bool is_packed = not_size_aligned (DR_REF (dr_info->dr));
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Unknown misalignment, %snaturally aligned\n",
is_packed ? "not " : "");
return targetm.vectorize.vector_alignment_reachable (type, is_packed);
}
return true;
}
/* Calculate the cost of the memory access represented by DR_INFO. */
static void
vect_get_data_access_cost (vec_info *vinfo, dr_vec_info *dr_info,
dr_alignment_support alignment_support_scheme,
int misalignment,
unsigned int *inside_cost,
unsigned int *outside_cost,
stmt_vector_for_cost *body_cost_vec,
stmt_vector_for_cost *prologue_cost_vec)
{
stmt_vec_info stmt_info = dr_info->stmt;
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
int ncopies;
if (PURE_SLP_STMT (stmt_info))
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, STMT_VINFO_VECTYPE (stmt_info));
if (DR_IS_READ (dr_info->dr))
vect_get_load_cost (vinfo, stmt_info, ncopies, alignment_support_scheme,
misalignment, true, inside_cost,
outside_cost, prologue_cost_vec, body_cost_vec, false);
else
vect_get_store_cost (vinfo,stmt_info, ncopies, alignment_support_scheme,
misalignment, inside_cost, body_cost_vec);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"vect_get_data_access_cost: inside_cost = %d, "
"outside_cost = %d.\n", *inside_cost, *outside_cost);
}
typedef struct _vect_peel_info
{
dr_vec_info *dr_info;
int npeel;
unsigned int count;
} *vect_peel_info;
typedef struct _vect_peel_extended_info
{
vec_info *vinfo;
struct _vect_peel_info peel_info;
unsigned int inside_cost;
unsigned int outside_cost;
} *vect_peel_extended_info;
/* Peeling hashtable helpers. */
struct peel_info_hasher : free_ptr_hash <_vect_peel_info>
{
static inline hashval_t hash (const _vect_peel_info *);
static inline bool equal (const _vect_peel_info *, const _vect_peel_info *);
};
inline hashval_t
peel_info_hasher::hash (const _vect_peel_info *peel_info)
{
return (hashval_t) peel_info->npeel;
}
inline bool
peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b)
{
return (a->npeel == b->npeel);
}
/* Insert DR_INFO into peeling hash table with NPEEL as key. */
static void
vect_peeling_hash_insert (hash_table<peel_info_hasher> *peeling_htab,
loop_vec_info loop_vinfo, dr_vec_info *dr_info,
int npeel, bool supportable_if_not_aligned)
{
struct _vect_peel_info elem, *slot;
_vect_peel_info **new_slot;
elem.npeel = npeel;
slot = peeling_htab->find (&elem);
if (slot)
slot->count++;
else
{
slot = XNEW (struct _vect_peel_info);
slot->npeel = npeel;
slot->dr_info = dr_info;
slot->count = 1;
new_slot = peeling_htab->find_slot (slot, INSERT);
*new_slot = slot;
}
/* If this DR is not supported with unknown misalignment then bias
this slot when the cost model is disabled. */
if (!supportable_if_not_aligned
&& unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
slot->count += VECT_MAX_COST;
}
/* Traverse peeling hash table to find peeling option that aligns maximum
number of data accesses. */
int
vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
_vect_peel_extended_info *max)
{
vect_peel_info elem = *slot;
if (elem->count > max->peel_info.count
|| (elem->count == max->peel_info.count
&& max->peel_info.npeel > elem->npeel))
{
max->peel_info.npeel = elem->npeel;
max->peel_info.count = elem->count;
max->peel_info.dr_info = elem->dr_info;
}
return 1;
}
/* Get the costs of peeling NPEEL iterations for LOOP_VINFO, checking
data access costs for all data refs. If UNKNOWN_MISALIGNMENT is true,
npeel is computed at runtime but DR0_INFO's misalignment will be zero
after peeling. */
static void
vect_get_peeling_costs_all_drs (loop_vec_info loop_vinfo,
dr_vec_info *dr0_info,
unsigned int *inside_cost,
unsigned int *outside_cost,
stmt_vector_for_cost *body_cost_vec,
stmt_vector_for_cost *prologue_cost_vec,
unsigned int npeel)
{
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
bool dr0_alignment_known_p
= (dr0_info
&& known_alignment_for_access_p (dr0_info,
STMT_VINFO_VECTYPE (dr0_info->stmt)));
for (data_reference *dr : datarefs)
{
dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
if (!vect_relevant_for_alignment_p (dr_info))
continue;
tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
dr_alignment_support alignment_support_scheme;
int misalignment;
unsigned HOST_WIDE_INT alignment;
bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
size_zero_node) < 0;
poly_int64 off = 0;
if (negative)
off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
* -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
if (npeel == 0)
misalignment = dr_misalignment (dr_info, vectype, off);
else if (dr_info == dr0_info
|| vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info))
misalignment = 0;
else if (!dr0_alignment_known_p
|| !known_alignment_for_access_p (dr_info, vectype)
|| !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment))
misalignment = DR_MISALIGNMENT_UNKNOWN;
else
{
misalignment = dr_misalignment (dr_info, vectype, off);
misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
misalignment &= alignment - 1;
}
alignment_support_scheme
= vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
misalignment);
vect_get_data_access_cost (loop_vinfo, dr_info,
alignment_support_scheme, misalignment,
inside_cost, outside_cost,
body_cost_vec, prologue_cost_vec);
}
}
/* Traverse peeling hash table and calculate cost for each peeling option.
Find the one with the lowest cost. */
int
vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
_vect_peel_extended_info *min)
{
vect_peel_info elem = *slot;
int dummy;
unsigned int inside_cost = 0, outside_cost = 0;
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (min->vinfo);
stmt_vector_for_cost prologue_cost_vec, body_cost_vec,
epilogue_cost_vec;
prologue_cost_vec.create (2);
body_cost_vec.create (2);
epilogue_cost_vec.create (2);
vect_get_peeling_costs_all_drs (loop_vinfo, elem->dr_info, &inside_cost,
&outside_cost, &body_cost_vec,
&prologue_cost_vec, elem->npeel);
body_cost_vec.release ();
outside_cost += vect_get_known_peeling_cost
(loop_vinfo, elem->npeel, &dummy,
&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
&prologue_cost_vec, &epilogue_cost_vec);
/* Prologue and epilogue costs are added to the target model later.
These costs depend only on the scalar iteration cost, the
number of peeling iterations finally chosen, and the number of
misaligned statements. So discard the information found here. */
prologue_cost_vec.release ();
epilogue_cost_vec.release ();
if (inside_cost < min->inside_cost
|| (inside_cost == min->inside_cost
&& outside_cost < min->outside_cost))
{
min->inside_cost = inside_cost;
min->outside_cost = outside_cost;
min->peel_info.dr_info = elem->dr_info;
min->peel_info.npeel = elem->npeel;
min->peel_info.count = elem->count;
}
return 1;
}
/* Choose best peeling option by traversing peeling hash table and either
choosing an option with the lowest cost (if cost model is enabled) or the
option that aligns as many accesses as possible. */
static struct _vect_peel_extended_info
vect_peeling_hash_choose_best_peeling (hash_table<peel_info_hasher> *peeling_htab,
loop_vec_info loop_vinfo)
{
struct _vect_peel_extended_info res;
res.peel_info.dr_info = NULL;
res.vinfo = loop_vinfo;
if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
{
res.inside_cost = INT_MAX;
res.outside_cost = INT_MAX;
peeling_htab->traverse <_vect_peel_extended_info *,
vect_peeling_hash_get_lowest_cost> (&res);
}
else
{
res.peel_info.count = 0;
peeling_htab->traverse <_vect_peel_extended_info *,
vect_peeling_hash_get_most_frequent> (&res);
res.inside_cost = 0;
res.outside_cost = 0;
}
return res;
}
/* Return true if the new peeling NPEEL is supported. */
static bool
vect_peeling_supportable (loop_vec_info loop_vinfo, dr_vec_info *dr0_info,
unsigned npeel)
{
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
enum dr_alignment_support supportable_dr_alignment;
bool dr0_alignment_known_p
= known_alignment_for_access_p (dr0_info,
STMT_VINFO_VECTYPE (dr0_info->stmt));
/* Ensure that all data refs can be vectorized after the peel. */
for (data_reference *dr : datarefs)
{
if (dr == dr0_info->dr)
continue;
dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
if (!vect_relevant_for_alignment_p (dr_info)
|| vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info))
continue;
tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
int misalignment;
unsigned HOST_WIDE_INT alignment;
if (!dr0_alignment_known_p
|| !known_alignment_for_access_p (dr_info, vectype)
|| !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment))
misalignment = DR_MISALIGNMENT_UNKNOWN;
else
{
misalignment = dr_misalignment (dr_info, vectype);
misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
misalignment &= alignment - 1;
}
supportable_dr_alignment
= vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
misalignment);
if (supportable_dr_alignment == dr_unaligned_unsupported)
return false;
}
return true;
}
/* Compare two data-references DRA and DRB to group them into chunks
with related alignment. */
static int
dr_align_group_sort_cmp (const void *dra_, const void *drb_)
{
data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
int cmp;
/* Stabilize sort. */
if (dra == drb)
return 0;
/* Ordering of DRs according to base. */
cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
DR_BASE_ADDRESS (drb));
if (cmp != 0)
return cmp;
/* And according to DR_OFFSET. */
cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
if (cmp != 0)
return cmp;
/* And after step. */
cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
if (cmp != 0)
return cmp;
/* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
if (cmp == 0)
return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
return cmp;
}
/* Function vect_enhance_data_refs_alignment
This pass will use loop versioning and loop peeling in order to enhance
the alignment of data references in the loop.
FOR NOW: we assume that whatever versioning/peeling takes place, only the
original loop is to be vectorized. Any other loops that are created by
the transformations performed in this pass - are not supposed to be
vectorized. This restriction will be relaxed.
This pass will require a cost model to guide it whether to apply peeling
or versioning or a combination of the two. For example, the scheme that
intel uses when given a loop with several memory accesses, is as follows:
choose one memory access ('p') which alignment you want to force by doing
peeling. Then, either (1) generate a loop in which 'p' is aligned and all
other accesses are not necessarily aligned, or (2) use loop versioning to
generate one loop in which all accesses are aligned, and another loop in
which only 'p' is necessarily aligned.
("Automatic Intra-Register Vectorization for the Intel Architecture",
Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
Devising a cost model is the most critical aspect of this work. It will
guide us on which access to peel for, whether to use loop versioning, how
many versions to create, etc. The cost model will probably consist of
generic considerations as well as target specific considerations (on
powerpc for example, misaligned stores are more painful than misaligned
loads).
Here are the general steps involved in alignment enhancements:
-- original loop, before alignment analysis:
for (i=0; i<N; i++){
x = q[i]; # DR_MISALIGNMENT(q) = unknown
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- After vect_compute_data_refs_alignment:
for (i=0; i<N; i++){
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- Possibility 1: we do loop versioning:
if (p is aligned) {
for (i=0; i<N; i++){ # loop 1A
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = 0
}
}
else {
for (i=0; i<N; i++){ # loop 1B
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
}
}
-- Possibility 2: we do loop peeling:
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
x = q[i];
p[i] = y;
}
for (i = 3; i < N; i++){ # loop 2A
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- Possibility 3: combination of loop peeling and versioning:
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
x = q[i];
p[i] = y;
}
if (p is aligned) {
for (i = 3; i<N; i++){ # loop 3A
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = 0
}
}
else {
for (i = 3; i<N; i++){ # loop 3B
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
}
}
These loops are later passed to loop_transform to be vectorized. The
vectorizer will use the alignment information to guide the transformation
(whether to generate regular loads/stores, or with special handling for
misalignment). */
opt_result
vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
dr_vec_info *first_store = NULL;
dr_vec_info *dr0_info = NULL;
struct data_reference *dr;
unsigned int i;
bool do_peeling = false;
bool do_versioning = false;
unsigned int npeel = 0;
bool one_misalignment_known = false;
bool one_misalignment_unknown = false;
bool one_dr_unsupportable = false;
dr_vec_info *unsupportable_dr_info = NULL;
unsigned int dr0_same_align_drs = 0, first_store_same_align_drs = 0;
hash_table<peel_info_hasher> peeling_htab (1);
DUMP_VECT_SCOPE ("vect_enhance_data_refs_alignment");
/* Reset data so we can safely be called multiple times. */
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0;
if (LOOP_VINFO_DATAREFS (loop_vinfo).is_empty ())
return opt_result::success ();
/* Sort the vector of datarefs so DRs that have the same or dependent
alignment are next to each other. */
auto_vec<data_reference_p> datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo).copy ();
datarefs.qsort (dr_align_group_sort_cmp);
/* Compute the number of DRs that become aligned when we peel
a dataref so it becomes aligned. */
auto_vec<unsigned> n_same_align_refs (datarefs.length ());
n_same_align_refs.quick_grow_cleared (datarefs.length ());
unsigned i0;
for (i0 = 0; i0 < datarefs.length (); ++i0)
if (DR_BASE_ADDRESS (datarefs[i0]))
break;
for (i = i0 + 1; i <= datarefs.length (); ++i)
{
if (i == datarefs.length ()
|| !operand_equal_p (DR_BASE_ADDRESS (datarefs[i0]),
DR_BASE_ADDRESS (datarefs[i]), 0)
|| !operand_equal_p (DR_OFFSET (datarefs[i0]),
DR_OFFSET (datarefs[i]), 0)
|| !operand_equal_p (DR_STEP (datarefs[i0]),
DR_STEP (datarefs[i]), 0))
{
/* The subgroup [i0, i-1] now only differs in DR_INIT and
possibly DR_TARGET_ALIGNMENT. Still the whole subgroup
will get known misalignment if we align one of the refs
with the largest DR_TARGET_ALIGNMENT. */
for (unsigned j = i0; j < i; ++j)
{
dr_vec_info *dr_infoj = loop_vinfo->lookup_dr (datarefs[j]);
for (unsigned k = i0; k < i; ++k)
{
if (k == j)
continue;
dr_vec_info *dr_infok = loop_vinfo->lookup_dr (datarefs[k]);
if (vect_dr_aligned_if_related_peeled_dr_is (dr_infok,
dr_infoj))
n_same_align_refs[j]++;
}
}
i0 = i;
}
}
/* While cost model enhancements are expected in the future, the high level
view of the code at this time is as follows:
A) If there is a misaligned access then see if peeling to align
this access can make all data references satisfy
vect_supportable_dr_alignment. If so, update data structures
as needed and return true.
B) If peeling wasn't possible and there is a data reference with an
unknown misalignment that does not satisfy vect_supportable_dr_alignment
then see if loop versioning checks can be used to make all data
references satisfy vect_supportable_dr_alignment. If so, update
data structures as needed and return true.
C) If neither peeling nor versioning were successful then return false if
any data reference does not satisfy vect_supportable_dr_alignment.
D) Return true (all data references satisfy vect_supportable_dr_alignment).
Note, Possibility 3 above (which is peeling and versioning together) is not
being done at this time. */
/* (1) Peeling to force alignment. */
/* (1.1) Decide whether to perform peeling, and how many iterations to peel:
Considerations:
+ How many accesses will become aligned due to the peeling
- How many accesses will become unaligned due to the peeling,
and the cost of misaligned accesses.
- The cost of peeling (the extra runtime checks, the increase
in code size). */
FOR_EACH_VEC_ELT (datarefs, i, dr)
{
dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
if (!vect_relevant_for_alignment_p (dr_info))
continue;
stmt_vec_info stmt_info = dr_info->stmt;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
do_peeling = vector_alignment_reachable_p (dr_info);
if (do_peeling)
{
if (known_alignment_for_access_p (dr_info, vectype))
{
unsigned int npeel_tmp = 0;
bool negative = tree_int_cst_compare (DR_STEP (dr),
size_zero_node) < 0;
/* If known_alignment_for_access_p then we have set
DR_MISALIGNMENT which is only done if we know it at compiler
time, so it is safe to assume target alignment is constant.
*/
unsigned int target_align =
DR_TARGET_ALIGNMENT (dr_info).to_constant ();
unsigned HOST_WIDE_INT dr_size = vect_get_scalar_dr_size (dr_info);
poly_int64 off = 0;
if (negative)
off = (TYPE_VECTOR_SUBPARTS (vectype) - 1) * -dr_size;
unsigned int mis = dr_misalignment (dr_info, vectype, off);
mis = negative ? mis : -mis;
if (mis != 0)
npeel_tmp = (mis & (target_align - 1)) / dr_size;
/* For multiple types, it is possible that the bigger type access
will have more than one peeling option. E.g., a loop with two
types: one of size (vector size / 4), and the other one of
size (vector size / 8). Vectorization factor will 8. If both
accesses are misaligned by 3, the first one needs one scalar
iteration to be aligned, and the second one needs 5. But the
first one will be aligned also by peeling 5 scalar
iterations, and in that case both accesses will be aligned.
Hence, except for the immediate peeling amount, we also want
to try to add full vector size, while we don't exceed
vectorization factor.
We do this automatically for cost model, since we calculate
cost for every peeling option. */
poly_uint64 nscalars = npeel_tmp;
if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
{
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
nscalars = (STMT_SLP_TYPE (stmt_info)
? vf * DR_GROUP_SIZE (stmt_info) : vf);
}
/* Save info about DR in the hash table. Also include peeling
amounts according to the explanation above. Indicate
the alignment status when the ref is not aligned.
??? Rather than using unknown alignment here we should
prune all entries from the peeling hashtable which cause
DRs to be not supported. */
bool supportable_if_not_aligned
= vect_supportable_dr_alignment
(loop_vinfo, dr_info, vectype, DR_MISALIGNMENT_UNKNOWN);
while (known_le (npeel_tmp, nscalars))
{
vect_peeling_hash_insert (&peeling_htab, loop_vinfo,
dr_info, npeel_tmp,
supportable_if_not_aligned);
npeel_tmp += MAX (1, target_align / dr_size);
}
one_misalignment_known = true;
}
else
{
/* If we don't know any misalignment values, we prefer
peeling for data-ref that has the maximum number of data-refs
with the same alignment, unless the target prefers to align
stores over load. */
unsigned same_align_drs = n_same_align_refs[i];
if (!dr0_info
|| dr0_same_align_drs < same_align_drs)
{
dr0_same_align_drs = same_align_drs;
dr0_info = dr_info;
}
/* For data-refs with the same number of related
accesses prefer the one where the misalign
computation will be invariant in the outermost loop. */
else if (dr0_same_align_drs == same_align_drs)
{
class loop *ivloop0, *ivloop;
ivloop0 = outermost_invariant_loop_for_expr
(loop, DR_BASE_ADDRESS (dr0_info->dr));
ivloop = outermost_invariant_loop_for_expr
(loop, DR_BASE_ADDRESS (dr));
if ((ivloop && !ivloop0)
|| (ivloop && ivloop0
&& flow_loop_nested_p (ivloop, ivloop0)))
dr0_info = dr_info;
}
one_misalignment_unknown = true;
/* Check for data refs with unsupportable alignment that
can be peeled. */
enum dr_alignment_support supportable_dr_alignment
= vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
DR_MISALIGNMENT_UNKNOWN);
if (supportable_dr_alignment == dr_unaligned_unsupported)
{
one_dr_unsupportable = true;
unsupportable_dr_info = dr_info;
}
if (!first_store && DR_IS_WRITE (dr))
{
first_store = dr_info;
first_store_same_align_drs = same_align_drs;
}
}
}
else
{
if (!aligned_access_p (dr_info, vectype))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"vector alignment may not be reachable\n");
break;
}
}
}
/* Check if we can possibly peel the loop. */
if (!vect_can_advance_ivs_p (loop_vinfo)
|| !slpeel_can_duplicate_loop_p (loop, single_exit (loop))
|| loop->inner)
do_peeling = false;
struct _vect_peel_extended_info peel_for_known_alignment;
struct _vect_peel_extended_info peel_for_unknown_alignment;
struct _vect_peel_extended_info best_peel;
peel_for_unknown_alignment.inside_cost = INT_MAX;
peel_for_unknown_alignment.outside_cost = INT_MAX;
peel_for_unknown_alignment.peel_info.count = 0;
if (do_peeling
&& one_misalignment_unknown)
{
/* Check if the target requires to prefer stores over loads, i.e., if
misaligned stores are more expensive than misaligned loads (taking
drs with same alignment into account). */
unsigned int load_inside_cost = 0;
unsigned int load_outside_cost = 0;
unsigned int store_inside_cost = 0;
unsigned int store_outside_cost = 0;
unsigned int estimated_npeels = vect_vf_for_cost (loop_vinfo) / 2;
stmt_vector_for_cost dummy;
dummy.create (2);
vect_get_peeling_costs_all_drs (loop_vinfo, dr0_info,
&load_inside_cost,
&load_outside_cost,
&dummy, &dummy, estimated_npeels);
dummy.release ();
if (first_store)
{
dummy.create (2);
vect_get_peeling_costs_all_drs (loop_vinfo, first_store,
&store_inside_cost,
&store_outside_cost,
&dummy, &dummy,
estimated_npeels);
dummy.release ();
}
else
{
store_inside_cost = INT_MAX;
store_outside_cost = INT_MAX;
}
if (load_inside_cost > store_inside_cost
|| (load_inside_cost == store_inside_cost
&& load_outside_cost > store_outside_cost))
{
dr0_info = first_store;
dr0_same_align_drs = first_store_same_align_drs;
peel_for_unknown_alignment.inside_cost = store_inside_cost;
peel_for_unknown_alignment.outside_cost = store_outside_cost;
}
else
{
peel_for_unknown_alignment.inside_cost = load_inside_cost;
peel_for_unknown_alignment.outside_cost = load_outside_cost;
}
stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
prologue_cost_vec.create (2);
epilogue_cost_vec.create (2);
int dummy2;
peel_for_unknown_alignment.outside_cost += vect_get_known_peeling_cost
(loop_vinfo, estimated_npeels, &dummy2,
&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
&prologue_cost_vec, &epilogue_cost_vec);
prologue_cost_vec.release ();
epilogue_cost_vec.release ();
peel_for_unknown_alignment.peel_info.count = dr0_same_align_drs + 1;
}
peel_for_unknown_alignment.peel_info.npeel = 0;
peel_for_unknown_alignment.peel_info.dr_info = dr0_info;
best_peel = peel_for_unknown_alignment;
peel_for_known_alignment.inside_cost = INT_MAX;
peel_for_known_alignment.outside_cost = INT_MAX;
peel_for_known_alignment.peel_info.count = 0;
peel_for_known_alignment.peel_info.dr_info = NULL;
if (do_peeling && one_misalignment_known)
{
/* Peeling is possible, but there is no data access that is not supported
unless aligned. So we try to choose the best possible peeling from
the hash table. */
peel_for_known_alignment = vect_peeling_hash_choose_best_peeling
(&peeling_htab, loop_vinfo);
}
/* Compare costs of peeling for known and unknown alignment. */
if (peel_for_known_alignment.peel_info.dr_info != NULL
&& peel_for_unknown_alignment.inside_cost
>= peel_for_known_alignment.inside_cost)
{
best_peel = peel_for_known_alignment;
/* If the best peeling for known alignment has NPEEL == 0, perform no
peeling at all except if there is an unsupportable dr that we can
align. */
if (best_peel.peel_info.npeel == 0 && !one_dr_unsupportable)
do_peeling = false;
}
/* If there is an unsupportable data ref, prefer this over all choices so far
since we'd have to discard a chosen peeling except when it accidentally
aligned the unsupportable data ref. */
if (one_dr_unsupportable)
dr0_info = unsupportable_dr_info;
else if (do_peeling)
{
/* Calculate the penalty for no peeling, i.e. leaving everything as-is.
TODO: Use nopeel_outside_cost or get rid of it? */
unsigned nopeel_inside_cost = 0;
unsigned nopeel_outside_cost = 0;
stmt_vector_for_cost dummy;
dummy.create (2);
vect_get_peeling_costs_all_drs (loop_vinfo, NULL, &nopeel_inside_cost,
&nopeel_outside_cost, &dummy, &dummy, 0);
dummy.release ();
/* Add epilogue costs. As we do not peel for alignment here, no prologue
costs will be recorded. */
stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
prologue_cost_vec.create (2);
epilogue_cost_vec.create (2);
int dummy2;
nopeel_outside_cost += vect_get_known_peeling_cost
(loop_vinfo, 0, &dummy2,
&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
&prologue_cost_vec, &epilogue_cost_vec);
prologue_cost_vec.release ();
epilogue_cost_vec.release ();
npeel = best_peel.peel_info.npeel;
dr0_info = best_peel.peel_info.dr_info;
/* If no peeling is not more expensive than the best peeling we
have so far, don't perform any peeling. */
if (nopeel_inside_cost <= best_peel.inside_cost)
do_peeling = false;
}
if (do_peeling)
{
stmt_vec_info stmt_info = dr0_info->stmt;
if (known_alignment_for_access_p (dr0_info,
STMT_VINFO_VECTYPE (stmt_info)))
{
bool negative = tree_int_cst_compare (DR_STEP (dr0_info->dr),
size_zero_node) < 0;
if (!npeel)
{
/* Since it's known at compile time, compute the number of
iterations in the peeled loop (the peeling factor) for use in
updating DR_MISALIGNMENT values. The peeling factor is the
vectorization factor minus the misalignment as an element
count. */
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
poly_int64 off = 0;
if (negative)
off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
* -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
unsigned int mis
= dr_misalignment (dr0_info, vectype, off);
mis = negative ? mis : -mis;
/* If known_alignment_for_access_p then we have set
DR_MISALIGNMENT which is only done if we know it at compiler
time, so it is safe to assume target alignment is constant.
*/
unsigned int target_align =
DR_TARGET_ALIGNMENT (dr0_info).to_constant ();
npeel = ((mis & (target_align - 1))
/ vect_get_scalar_dr_size (dr0_info));
}
/* For interleaved data access every iteration accesses all the
members of the group, therefore we divide the number of iterations
by the group size. */
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
npeel /= DR_GROUP_SIZE (stmt_info);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Try peeling by %d\n", npeel);
}
/* Ensure that all datarefs can be vectorized after the peel. */
if (!vect_peeling_supportable (loop_vinfo, dr0_info, npeel))
do_peeling = false;
/* Check if all datarefs are supportable and log. */
if (do_peeling
&& npeel == 0
&& known_alignment_for_access_p (dr0_info,
STMT_VINFO_VECTYPE (stmt_info)))
return opt_result::success ();
/* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
if (do_peeling)
{
unsigned max_allowed_peel
= param_vect_max_peeling_for_alignment;
if (loop_cost_model (loop) <= VECT_COST_MODEL_CHEAP)
max_allowed_peel = 0;
if (max_allowed_peel != (unsigned)-1)
{
unsigned max_peel = npeel;
if (max_peel == 0)
{
poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr0_info);
unsigned HOST_WIDE_INT target_align_c;
if (target_align.is_constant (&target_align_c))
max_peel =
target_align_c / vect_get_scalar_dr_size (dr0_info) - 1;
else
{
do_peeling = false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Disable peeling, max peels set and vector"
" alignment unknown\n");
}
}
if (max_peel > max_allowed_peel)
{
do_peeling = false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Disable peeling, max peels reached: %d\n", max_peel);
}
}
}
/* Cost model #2 - if peeling may result in a remaining loop not
iterating enough to be vectorized then do not peel. Since this
is a cost heuristic rather than a correctness decision, use the
most likely runtime value for variable vectorization factors. */
if (do_peeling
&& LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
unsigned int max_peel = npeel == 0 ? assumed_vf - 1 : npeel;
if ((unsigned HOST_WIDE_INT) LOOP_VINFO_INT_NITERS (loop_vinfo)
< assumed_vf + max_peel)
do_peeling = false;
}
if (do_peeling)
{
/* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
If the misalignment of DR_i is identical to that of dr0 then set
DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
by the peeling factor times the element size of DR_i (MOD the
vectorization factor times the size). Otherwise, the
misalignment of DR_i must be set to unknown. */
FOR_EACH_VEC_ELT (datarefs, i, dr)
if (dr != dr0_info->dr)
{
dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
if (!vect_relevant_for_alignment_p (dr_info))
continue;
vect_update_misalignment_for_peel (dr_info, dr0_info, npeel);
}
LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0_info;
if (npeel)
LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
else
LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = -1;
SET_DR_MISALIGNMENT (dr0_info,
vect_dr_misalign_for_aligned_access (dr0_info));
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Alignment of access forced using peeling.\n");
dump_printf_loc (MSG_NOTE, vect_location,
"Peeling for alignment will be applied.\n");
}
/* The inside-loop cost will be accounted for in vectorizable_load
and vectorizable_store correctly with adjusted alignments.
Drop the body_cst_vec on the floor here. */
return opt_result::success ();
}
}
/* (2) Versioning to force alignment. */
/* Try versioning if:
1) optimize loop for speed and the cost-model is not cheap
2) there is at least one unsupported misaligned data ref with an unknown
misalignment, and
3) all misaligned data refs with a known misalignment are supported, and
4) the number of runtime alignment checks is within reason. */
do_versioning
= (optimize_loop_nest_for_speed_p (loop)
&& !loop->inner /* FORNOW */
&& loop_cost_model (loop) > VECT_COST_MODEL_CHEAP);
if (do_versioning)
{
FOR_EACH_VEC_ELT (datarefs, i, dr)
{
dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
if (!vect_relevant_for_alignment_p (dr_info))
continue;
stmt_vec_info stmt_info = dr_info->stmt;
if (STMT_VINFO_STRIDED_P (stmt_info))
{
do_versioning = false;
break;
}
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
bool negative = tree_int_cst_compare (DR_STEP (dr),
size_zero_node) < 0;
poly_int64 off = 0;
if (negative)
off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
* -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
int misalignment;
if ((misalignment = dr_misalignment (dr_info, vectype, off)) == 0)
continue;
enum dr_alignment_support supportable_dr_alignment
= vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
misalignment);
if (supportable_dr_alignment == dr_unaligned_unsupported)
{
if (misalignment != DR_MISALIGNMENT_UNKNOWN
|| (LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
>= (unsigned) param_vect_max_version_for_alignment_checks))
{
do_versioning = false;
break;
}
/* At present we don't support versioning for alignment
with variable VF, since there's no guarantee that the
VF is a power of two. We could relax this if we added
a way of enforcing a power-of-two size. */
unsigned HOST_WIDE_INT size;
if (!GET_MODE_SIZE (TYPE_MODE (vectype)).is_constant (&size))
{
do_versioning = false;
break;
}
/* Forcing alignment in the first iteration is no good if
we don't keep it across iterations. For now, just disable
versioning in this case.
?? We could actually unroll the loop to achieve the required
overall step alignment, and forcing the alignment could be
done by doing some iterations of the non-vectorized loop. */
if (!multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
* DR_STEP_ALIGNMENT (dr),
DR_TARGET_ALIGNMENT (dr_info)))
{
do_versioning = false;
break;
}
/* The rightmost bits of an aligned address must be zeros.
Construct the mask needed for this test. For example,
GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
mask must be 15 = 0xf. */
int mask = size - 1;
/* FORNOW: use the same mask to test all potentially unaligned
references in the loop. */
if (LOOP_VINFO_PTR_MASK (loop_vinfo)
&& LOOP_VINFO_PTR_MASK (loop_vinfo) != mask)
{
do_versioning = false;
break;
}
LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (stmt_info);
}
}
/* Versioning requires at least one misaligned data reference. */
if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
do_versioning = false;
else if (!do_versioning)
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
}
if (do_versioning)
{
const vec<stmt_vec_info> &may_misalign_stmts
= LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
stmt_vec_info stmt_info;
/* It can now be assumed that the data references in the statements
in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
of the loop being vectorized. */
FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
{
dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
SET_DR_MISALIGNMENT (dr_info,
vect_dr_misalign_for_aligned_access (dr_info));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Alignment of access forced using versioning.\n");
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Versioning for alignment will be applied.\n");
/* Peeling and versioning can't be done together at this time. */
gcc_assert (! (do_peeling && do_versioning));
return opt_result::success ();
}
/* This point is reached if neither peeling nor versioning is being done. */
gcc_assert (! (do_peeling || do_versioning));
return opt_result::success ();
}
/* Function vect_analyze_data_refs_alignment
Analyze the alignment of the data-references in the loop.
Return FALSE if a data reference is found that cannot be vectorized. */
opt_result
vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
{
DUMP_VECT_SCOPE ("vect_analyze_data_refs_alignment");
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
struct data_reference *dr;
unsigned int i;
vect_record_base_alignments (loop_vinfo);
FOR_EACH_VEC_ELT (datarefs, i, dr)
{
dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
if (STMT_VINFO_VECTORIZABLE (dr_info->stmt))
{
if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt)
&& DR_GROUP_FIRST_ELEMENT (dr_info->stmt) != dr_info->stmt)
continue;
vect_compute_data_ref_alignment (loop_vinfo, dr_info,
STMT_VINFO_VECTYPE (dr_info->stmt));
}
}
return opt_result::success ();
}
/* Analyze alignment of DRs of stmts in NODE. */
static bool
vect_slp_analyze_node_alignment (vec_info *vinfo, slp_tree node)
{
/* Alignment is maintained in the first element of the group. */
stmt_vec_info first_stmt_info = SLP_TREE_SCALAR_STMTS (node)[0];
first_stmt_info = DR_GROUP_FIRST_ELEMENT (first_stmt_info);
dr_vec_info *dr_info = STMT_VINFO_DR_INFO (first_stmt_info);
tree vectype = SLP_TREE_VECTYPE (node);
poly_uint64 vector_alignment
= exact_div (targetm.vectorize.preferred_vector_alignment (vectype),
BITS_PER_UNIT);
if (dr_info->misalignment == DR_MISALIGNMENT_UNINITIALIZED)
vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node));
/* Re-analyze alignment when we're facing a vectorization with a bigger
alignment requirement. */
else if (known_lt (dr_info->target_alignment, vector_alignment))
{
poly_uint64 old_target_alignment = dr_info->target_alignment;
int old_misalignment = dr_info->misalignment;
vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node));
/* But keep knowledge about a smaller alignment. */
if (old_misalignment != DR_MISALIGNMENT_UNKNOWN
&& dr_info->misalignment == DR_MISALIGNMENT_UNKNOWN)
{
dr_info->target_alignment = old_target_alignment;
dr_info->misalignment = old_misalignment;
}
}
/* When we ever face unordered target alignments the first one wins in terms
of analyzing and the other will become unknown in dr_misalignment. */
return true;
}
/* Function vect_slp_analyze_instance_alignment
Analyze the alignment of the data-references in the SLP instance.
Return FALSE if a data reference is found that cannot be vectorized. */
bool
vect_slp_analyze_instance_alignment (vec_info *vinfo,
slp_instance instance)
{
DUMP_VECT_SCOPE ("vect_slp_analyze_instance_alignment");
slp_tree node;
unsigned i;
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node)
if (! vect_slp_analyze_node_alignment (vinfo, node))
return false;
if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store
&& ! vect_slp_analyze_node_alignment
(vinfo, SLP_INSTANCE_TREE (instance)))
return false;
return true;
}
/* Analyze groups of accesses: check that DR_INFO belongs to a group of
accesses of legal size, step, etc. Detect gaps, single element
interleaving, and other special cases. Set grouped access info.
Collect groups of strided stores for further use in SLP analysis.
Worker for vect_analyze_group_access. */
static bool
vect_analyze_group_access_1 (vec_info *vinfo, dr_vec_info *dr_info)
{
data_reference *dr = dr_info->dr;
tree step = DR_STEP (dr);
tree scalar_type = TREE_TYPE (DR_REF (dr));
HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
stmt_vec_info stmt_info = dr_info->stmt;
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo);
HOST_WIDE_INT dr_step = -1;
HOST_WIDE_INT groupsize, last_accessed_element = 1;
bool slp_impossible = false;
/* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
size of the interleaving group (including gaps). */
if (tree_fits_shwi_p (step))
{
dr_step = tree_to_shwi (step);
/* Check that STEP is a multiple of type size. Otherwise there is
a non-element-sized gap at the end of the group which we
cannot represent in DR_GROUP_GAP or DR_GROUP_SIZE.
??? As we can handle non-constant step fine here we should
simply remove uses of DR_GROUP_GAP between the last and first
element and instead rely on DR_STEP. DR_GROUP_SIZE then would
simply not include that gap. */
if ((dr_step % type_size) != 0)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Step %T is not a multiple of the element size"
" for %T\n",
step, DR_REF (dr));
return false;
}
groupsize = absu_hwi (dr_step) / type_size;
}
else
groupsize = 0;
/* Not consecutive access is possible only if it is a part of interleaving. */
if (!DR_GROUP_FIRST_ELEMENT (stmt_info))
{
/* Check if it this DR is a part of interleaving, and is a single
element of the group that is accessed in the loop. */
/* Gaps are supported only for loads. STEP must be a multiple of the type
size. */
if (DR_IS_READ (dr)
&& (dr_step % type_size) == 0
&& groupsize > 0
/* This could be UINT_MAX but as we are generating code in a very
inefficient way we have to cap earlier.
See PR91403 for example. */
&& groupsize <= 4096)
{
DR_GROUP_FIRST_ELEMENT (stmt_info) = stmt_info;
DR_GROUP_SIZE (stmt_info) = groupsize;
DR_GROUP_GAP (stmt_info) = groupsize - 1;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected single element interleaving %T"
" step %T\n",
DR_REF (dr), step);
return true;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not consecutive access %G", stmt_info->stmt);
if (bb_vinfo)
{
/* Mark the statement as unvectorizable. */
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
return true;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n");
STMT_VINFO_STRIDED_P (stmt_info) = true;
return true;
}
if (DR_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info)
{
/* First stmt in the interleaving chain. Check the chain. */
stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info);
struct data_reference *data_ref = dr;
unsigned int count = 1;
tree prev_init = DR_INIT (data_ref);
HOST_WIDE_INT diff, gaps = 0;
/* By construction, all group members have INTEGER_CST DR_INITs. */
while (next)
{
/* We never have the same DR multiple times. */
gcc_assert (tree_int_cst_compare (DR_INIT (data_ref),
DR_INIT (STMT_VINFO_DATA_REF (next))) != 0);
data_ref = STMT_VINFO_DATA_REF (next);
/* All group members have the same STEP by construction. */
gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
/* Check that the distance between two accesses is equal to the type
size. Otherwise, we have gaps. */
diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
- TREE_INT_CST_LOW (prev_init)) / type_size;
if (diff < 1 || diff > UINT_MAX)
{
/* For artificial testcases with array accesses with large
constant indices we can run into overflow issues which
can end up fooling the groupsize constraint below so
check the individual gaps (which are represented as
unsigned int) as well. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"interleaved access with gap larger "
"than representable\n");
return false;
}
if (diff != 1)
{
/* FORNOW: SLP of accesses with gaps is not supported. */
slp_impossible = true;
if (DR_IS_WRITE (data_ref))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"interleaved store with gaps\n");
return false;
}
gaps += diff - 1;
}
last_accessed_element += diff;
/* Store the gap from the previous member of the group. If there is no
gap in the access, DR_GROUP_GAP is always 1. */
DR_GROUP_GAP (next) = diff;
prev_init = DR_INIT (data_ref);
next = DR_GROUP_NEXT_ELEMENT (next);
/* Count the number of data-refs in the chain. */
count++;
}
if (groupsize == 0)
groupsize = count + gaps;
/* This could be UINT_MAX but as we are generating code in a very
inefficient way we have to cap earlier. See PR78699 for example. */
if (groupsize > 4096)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"group is too large\n");
return false;
}
/* Check that the size of the interleaving is equal to count for stores,
i.e., that there are no gaps. */
if (groupsize != count
&& !DR_IS_READ (dr))
{
groupsize = count;
STMT_VINFO_STRIDED_P (stmt_info) = true;
}
/* If there is a gap after the last load in the group it is the
difference between the groupsize and the last accessed
element.
When there is no gap, this difference should be 0. */
DR_GROUP_GAP (stmt_info) = groupsize - last_accessed_element;
DR_GROUP_SIZE (stmt_info) = groupsize;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Detected interleaving ");
if (DR_IS_READ (dr))
dump_printf (MSG_NOTE, "load ");
else if (STMT_VINFO_STRIDED_P (stmt_info))
dump_printf (MSG_NOTE, "strided store ");
else
dump_printf (MSG_NOTE, "store ");
dump_printf (MSG_NOTE, "of size %u\n",
(unsigned)groupsize);
dump_printf_loc (MSG_NOTE, vect_location, "\t%G", stmt_info->stmt);
next = DR_GROUP_NEXT_ELEMENT (stmt_info);
while (next)
{
if (DR_GROUP_GAP (next) != 1)
dump_printf_loc (MSG_NOTE, vect_location,
"\t<gap of %d elements>\n",
DR_GROUP_GAP (next) - 1);
dump_printf_loc (MSG_NOTE, vect_location, "\t%G", next->stmt);
next = DR_GROUP_NEXT_ELEMENT (next);
}
if (DR_GROUP_GAP (stmt_info) != 0)
dump_printf_loc (MSG_NOTE, vect_location,
"\t<gap of %d elements>\n",
DR_GROUP_GAP (stmt_info));
}
/* SLP: create an SLP data structure for every interleaving group of
stores for further analysis in vect_analyse_slp. */
if (DR_IS_WRITE (dr) && !slp_impossible)
{
if (loop_vinfo)
LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt_info);
if (bb_vinfo)
BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt_info);
}
}
return true;
}
/* Analyze groups of accesses: check that DR_INFO belongs to a group of
accesses of legal size, step, etc. Detect gaps, single element
interleaving, and other special cases. Set grouped access info.
Collect groups of strided stores for further use in SLP analysis. */
static bool
vect_analyze_group_access (vec_info *vinfo, dr_vec_info *dr_info)
{
if (!vect_analyze_group_access_1 (vinfo, dr_info))
{
/* Dissolve the group if present. */
stmt_vec_info stmt_info = DR_GROUP_FIRST_ELEMENT (dr_info->stmt);
while (stmt_info)
{
stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info);
DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
DR_GROUP_NEXT_ELEMENT (stmt_info) = NULL;
stmt_info = next;
}
return false;
}
return true;
}
/* Analyze the access pattern of the data-reference DR_INFO.
In case of non-consecutive accesses call vect_analyze_group_access() to
analyze groups of accesses. */
static bool
vect_analyze_data_ref_access (vec_info *vinfo, dr_vec_info *dr_info)
{
data_reference *dr = dr_info->dr;
tree step = DR_STEP (dr);
tree scalar_type = TREE_TYPE (DR_REF (dr));
stmt_vec_info stmt_info = dr_info->stmt;
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
class loop *loop = NULL;
if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
return true;
if (loop_vinfo)
loop = LOOP_VINFO_LOOP (loop_vinfo);
if (loop_vinfo && !step)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data-ref access in loop\n");
return false;
}
/* Allow loads with zero step in inner-loop vectorization. */
if (loop_vinfo && integer_zerop (step))
{
DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
if (!nested_in_vect_loop_p (loop, stmt_info))
return DR_IS_READ (dr);
/* Allow references with zero step for outer loops marked
with pragma omp simd only - it guarantees absence of
loop-carried dependencies between inner loop iterations. */
if (loop->safelen < 2)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"zero step in inner loop of nest\n");
return false;
}
}
if (loop && nested_in_vect_loop_p (loop, stmt_info))
{
/* Interleaved accesses are not yet supported within outer-loop
vectorization for references in the inner-loop. */
DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
/* For the rest of the analysis we use the outer-loop step. */
step = STMT_VINFO_DR_STEP (stmt_info);
if (integer_zerop (step))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"zero step in outer loop.\n");
return DR_IS_READ (dr);
}
}
/* Consecutive? */
if (TREE_CODE (step) == INTEGER_CST)
{
HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
|| (dr_step < 0
&& !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
{
/* Mark that it is not interleaving. */
DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
return true;
}
}
if (loop && nested_in_vect_loop_p (loop, stmt_info))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"grouped access in outer loop.\n");
return false;
}
/* Assume this is a DR handled by non-constant strided load case. */
if (TREE_CODE (step) != INTEGER_CST)
return (STMT_VINFO_STRIDED_P (stmt_info)
&& (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
|| vect_analyze_group_access (vinfo, dr_info)));
/* Not consecutive access - check if it's a part of interleaving group. */
return vect_analyze_group_access (vinfo, dr_info);
}
/* Compare two data-references DRA and DRB to group them into chunks
suitable for grouping. */
static int
dr_group_sort_cmp (const void *dra_, const void *drb_)
{
dr_vec_info *dra_info = *(dr_vec_info **)const_cast<void *>(dra_);
dr_vec_info *drb_info = *(dr_vec_info **)const_cast<void *>(drb_);
data_reference_p dra = dra_info->dr;
data_reference_p drb = drb_info->dr;
int cmp;
/* Stabilize sort. */
if (dra == drb)
return 0;
/* Different group IDs lead never belong to the same group. */
if (dra_info->group != drb_info->group)
return dra_info->group < drb_info->group ? -1 : 1;
/* Ordering of DRs according to base. */
cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
DR_BASE_ADDRESS (drb));
if (cmp != 0)
return cmp;
/* And according to DR_OFFSET. */
cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
if (cmp != 0)
return cmp;
/* Put reads before writes. */
if (DR_IS_READ (dra) != DR_IS_READ (drb))
return DR_IS_READ (dra) ? -1 : 1;
/* Then sort after access size. */
cmp = data_ref_compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
if (cmp != 0)
return cmp;
/* And after step. */
cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
if (cmp != 0)
return cmp;
/* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
if (cmp == 0)
return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
return cmp;
}
/* If OP is the result of a conversion, return the unconverted value,
otherwise return null. */
static tree
strip_conversion (tree op)
{
if (TREE_CODE (op) != SSA_NAME)
return NULL_TREE;
gimple *stmt = SSA_NAME_DEF_STMT (op);
if (!is_gimple_assign (stmt)
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)))
return NULL_TREE;
return gimple_assign_rhs1 (stmt);
}
/* Return true if vectorizable_* routines can handle statements STMT1_INFO
and STMT2_INFO being in a single group. When ALLOW_SLP_P, masked loads can
be grouped in SLP mode. */
static bool
can_group_stmts_p (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info,
bool allow_slp_p)
{
if (gimple_assign_single_p (stmt1_info->stmt))
return gimple_assign_single_p (stmt2_info->stmt);
gcall *call1 = dyn_cast <gcall *> (stmt1_info->stmt);
if (call1 && gimple_call_internal_p (call1))
{
/* Check for two masked loads or two masked stores. */
gcall *call2 = dyn_cast <gcall *> (stmt2_info->stmt);
if (!call2 || !gimple_call_internal_p (call2))
return false;
internal_fn ifn = gimple_call_internal_fn (call1);
if (ifn != IFN_MASK_LOAD && ifn != IFN_MASK_STORE)
return false;
if (ifn != gimple_call_internal_fn (call2))
return false;
/* Check that the masks are the same. Cope with casts of masks,
like those created by build_mask_conversion. */
tree mask1 = gimple_call_arg (call1, 2);
tree mask2 = gimple_call_arg (call2, 2);
if (!operand_equal_p (mask1, mask2, 0)
&& (ifn == IFN_MASK_STORE || !allow_slp_p))
{
mask1 = strip_conversion (mask1);
if (!mask1)
return false;
mask2 = strip_conversion (mask2);
if (!mask2)
return false;
if (!operand_equal_p (mask1, mask2, 0))
return false;
}
return true;
}
return false;
}
/* Function vect_analyze_data_ref_accesses.
Analyze the access pattern of all the data references in the loop.
FORNOW: the only access pattern that is considered vectorizable is a
simple step 1 (consecutive) access.
FORNOW: handle only arrays and pointer accesses. */
opt_result
vect_analyze_data_ref_accesses (vec_info *vinfo,
vec<int> *dataref_groups)
{
unsigned int i;
vec<data_reference_p> datarefs = vinfo->shared->datarefs;
DUMP_VECT_SCOPE ("vect_analyze_data_ref_accesses");
if (datarefs.is_empty ())
return opt_result::success ();
/* Sort the array of datarefs to make building the interleaving chains
linear. Don't modify the original vector's order, it is needed for
determining what dependencies are reversed. */
vec<dr_vec_info *> datarefs_copy;
datarefs_copy.create (datarefs.length ());
for (unsigned i = 0; i < datarefs.length (); i++)
{
dr_vec_info *dr_info = vinfo->lookup_dr (datarefs[i]);
/* If the caller computed DR grouping use that, otherwise group by
basic blocks. */
if (dataref_groups)
dr_info->group = (*dataref_groups)[i];
else
dr_info->group = gimple_bb (DR_STMT (datarefs[i]))->index;
datarefs_copy.quick_push (dr_info);
}
datarefs_copy.qsort (dr_group_sort_cmp);
hash_set<stmt_vec_info> to_fixup;
/* Build the interleaving chains. */
for (i = 0; i < datarefs_copy.length () - 1;)
{
dr_vec_info *dr_info_a = datarefs_copy[i];
data_reference_p dra = dr_info_a->dr;
int dra_group_id = dr_info_a->group;
stmt_vec_info stmtinfo_a = dr_info_a->stmt;
stmt_vec_info lastinfo = NULL;
if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
|| STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a))
{
++i;
continue;
}
for (i = i + 1; i < datarefs_copy.length (); ++i)
{
dr_vec_info *dr_info_b = datarefs_copy[i];
data_reference_p drb = dr_info_b->dr;
int drb_group_id = dr_info_b->group;
stmt_vec_info stmtinfo_b = dr_info_b->stmt;
if (!STMT_VINFO_VECTORIZABLE (stmtinfo_b)
|| STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
break;
/* ??? Imperfect sorting (non-compatible types, non-modulo
accesses, same accesses) can lead to a group to be artificially
split here as we don't just skip over those. If it really
matters we can push those to a worklist and re-iterate
over them. The we can just skip ahead to the next DR here. */
/* DRs in a different DR group should not be put into the same
interleaving group. */
if (dra_group_id != drb_group_id)
break;
/* Check that the data-refs have same first location (except init)
and they are both either store or load (not load and store,
not masked loads or stores). */
if (DR_IS_READ (dra) != DR_IS_READ (drb)
|| data_ref_compare_tree (DR_BASE_ADDRESS (dra),
DR_BASE_ADDRESS (drb)) != 0
|| data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)) != 0
|| !can_group_stmts_p (stmtinfo_a, stmtinfo_b, true))
break;
/* Check that the data-refs have the same constant size. */
tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
if (!tree_fits_uhwi_p (sza)
|| !tree_fits_uhwi_p (szb)
|| !tree_int_cst_equal (sza, szb))
break;
/* Check that the data-refs have the same step. */
if (data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)) != 0)
break;
/* Check the types are compatible.
??? We don't distinguish this during sorting. */
if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
TREE_TYPE (DR_REF (drb))))
break;
/* Check that the DR_INITs are compile-time constants. */
if (!tree_fits_shwi_p (DR_INIT (dra))
|| !tree_fits_shwi_p (DR_INIT (drb)))
break;
/* Different .GOMP_SIMD_LANE calls still give the same lane,
just hold extra information. */
if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_a)
&& STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_b)
&& data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb)) == 0)
break;
/* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
HOST_WIDE_INT init_prev
= TREE_INT_CST_LOW (DR_INIT (datarefs_copy[i-1]->dr));
gcc_assert (init_a <= init_b
&& init_a <= init_prev
&& init_prev <= init_b);
/* Do not place the same access in the interleaving chain twice. */
if (init_b == init_prev)
{
gcc_assert (gimple_uid (DR_STMT (datarefs_copy[i-1]->dr))
< gimple_uid (DR_STMT (drb)));
/* Simply link in duplicates and fix up the chain below. */
}
else
{
/* If init_b == init_a + the size of the type * k, we have an
interleaving, and DRA is accessed before DRB. */
unsigned HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
if (type_size_a == 0
|| (((unsigned HOST_WIDE_INT)init_b - init_a)
% type_size_a != 0))
break;
/* If we have a store, the accesses are adjacent. This splits
groups into chunks we support (we don't support vectorization
of stores with gaps). */
if (!DR_IS_READ (dra)
&& (((unsigned HOST_WIDE_INT)init_b - init_prev)
!= type_size_a))
break;
/* If the step (if not zero or non-constant) is smaller than the
difference between data-refs' inits this splits groups into
suitable sizes. */
if (tree_fits_shwi_p (DR_STEP (dra)))
{
unsigned HOST_WIDE_INT step
= absu_hwi (tree_to_shwi (DR_STEP (dra)));
if (step != 0
&& step <= ((unsigned HOST_WIDE_INT)init_b - init_a))
break;
}
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
DR_IS_READ (dra)
? "Detected interleaving load %T and %T\n"
: "Detected interleaving store %T and %T\n",
DR_REF (dra), DR_REF (drb));
/* Link the found element into the group list. */
if (!DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
{
DR_GROUP_FIRST_ELEMENT (stmtinfo_a) = stmtinfo_a;
lastinfo = stmtinfo_a;
}
DR_GROUP_FIRST_ELEMENT (stmtinfo_b) = stmtinfo_a;
DR_GROUP_NEXT_ELEMENT (lastinfo) = stmtinfo_b;
lastinfo = stmtinfo_b;
STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a)
= !can_group_stmts_p (stmtinfo_a, stmtinfo_b, false);
if (dump_enabled_p () && STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a))
dump_printf_loc (MSG_NOTE, vect_location,
"Load suitable for SLP vectorization only.\n");
if (init_b == init_prev
&& !to_fixup.add (DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
&& dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Queuing group with duplicate access for fixup\n");
}
}
/* Fixup groups with duplicate entries by splitting it. */
while (1)
{
hash_set<stmt_vec_info>::iterator it = to_fixup.begin ();
if (!(it != to_fixup.end ()))
break;
stmt_vec_info grp = *it;
to_fixup.remove (grp);
/* Find the earliest duplicate group member. */
unsigned first_duplicate = -1u;
stmt_vec_info next, g = grp;
while ((next = DR_GROUP_NEXT_ELEMENT (g)))
{
if (tree_int_cst_equal (DR_INIT (STMT_VINFO_DR_INFO (next)->dr),
DR_INIT (STMT_VINFO_DR_INFO (g)->dr))
&& gimple_uid (STMT_VINFO_STMT (next)) < first_duplicate)
first_duplicate = gimple_uid (STMT_VINFO_STMT (next));
g = next;
}
if (first_duplicate == -1U)
continue;
/* Then move all stmts after the first duplicate to a new group.
Note this is a heuristic but one with the property that *it
is fixed up completely. */
g = grp;
stmt_vec_info newgroup = NULL, ng = grp;
while ((next = DR_GROUP_NEXT_ELEMENT (g)))
{
if (gimple_uid (STMT_VINFO_STMT (next)) >= first_duplicate)
{
DR_GROUP_NEXT_ELEMENT (g) = DR_GROUP_NEXT_ELEMENT (next);
if (!newgroup)
newgroup = next;
else
DR_GROUP_NEXT_ELEMENT (ng) = next;
ng = next;
DR_GROUP_FIRST_ELEMENT (ng) = newgroup;
}
else
g = DR_GROUP_NEXT_ELEMENT (g);
}
DR_GROUP_NEXT_ELEMENT (ng) = NULL;
/* Fixup the new group which still may contain duplicates. */
to_fixup.add (newgroup);
}
dr_vec_info *dr_info;
FOR_EACH_VEC_ELT (datarefs_copy, i, dr_info)
{
if (STMT_VINFO_VECTORIZABLE (dr_info->stmt)
&& !vect_analyze_data_ref_access (vinfo, dr_info))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: complicated access pattern.\n");
if (is_a <bb_vec_info> (vinfo))
{
/* Mark the statement as not vectorizable. */
STMT_VINFO_VECTORIZABLE (dr_info->stmt) = false;
continue;
}
else
{
datarefs_copy.release ();
return opt_result::failure_at (dr_info->stmt->stmt,
"not vectorized:"
" complicated access pattern.\n");
}
}
}
datarefs_copy.release ();
return opt_result::success ();
}
/* Function vect_vfa_segment_size.
Input:
DR_INFO: The data reference.
LENGTH_FACTOR: segment length to consider.
Return a value suitable for the dr_with_seg_len::seg_len field.
This is the "distance travelled" by the pointer from the first
iteration in the segment to the last. Note that it does not include
the size of the access; in effect it only describes the first byte. */
static tree
vect_vfa_segment_size (dr_vec_info *dr_info, tree length_factor)
{
length_factor = size_binop (MINUS_EXPR,
fold_convert (sizetype, length_factor),
size_one_node);
return size_binop (MULT_EXPR, fold_convert (sizetype, DR_STEP (dr_info->dr)),
length_factor);
}
/* Return a value that, when added to abs (vect_vfa_segment_size (DR_INFO)),
gives the worst-case number of bytes covered by the segment. */
static unsigned HOST_WIDE_INT
vect_vfa_access_size (vec_info *vinfo, dr_vec_info *dr_info)
{
stmt_vec_info stmt_vinfo = dr_info->stmt;
tree ref_type = TREE_TYPE (DR_REF (dr_info->dr));
unsigned HOST_WIDE_INT ref_size = tree_to_uhwi (TYPE_SIZE_UNIT (ref_type));
unsigned HOST_WIDE_INT access_size = ref_size;
if (DR_GROUP_FIRST_ELEMENT (stmt_vinfo))
{
gcc_assert (DR_GROUP_FIRST_ELEMENT (stmt_vinfo) == stmt_vinfo);
access_size *= DR_GROUP_SIZE (stmt_vinfo) - DR_GROUP_GAP (stmt_vinfo);
}
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
int misalignment;
if (STMT_VINFO_VEC_STMTS (stmt_vinfo).exists ()
&& ((misalignment = dr_misalignment (dr_info, vectype)), true)
&& (vect_supportable_dr_alignment (vinfo, dr_info, vectype, misalignment)
== dr_explicit_realign_optimized))
{
/* We might access a full vector's worth. */
access_size += tree_to_uhwi (TYPE_SIZE_UNIT (vectype)) - ref_size;
}
return access_size;
}
/* Get the minimum alignment for all the scalar accesses that DR_INFO
describes. */
static unsigned int
vect_vfa_align (dr_vec_info *dr_info)
{
return dr_alignment (dr_info->dr);
}
/* Function vect_no_alias_p.
Given data references A and B with equal base and offset, see whether
the alias relation can be decided at compilation time. Return 1 if
it can and the references alias, 0 if it can and the references do
not alias, and -1 if we cannot decide at compile time. SEGMENT_LENGTH_A,
SEGMENT_LENGTH_B, ACCESS_SIZE_A and ACCESS_SIZE_B are the equivalent
of dr_with_seg_len::{seg_len,access_size} for A and B. */
static int
vect_compile_time_alias (dr_vec_info *a, dr_vec_info *b,
tree segment_length_a, tree segment_length_b,
unsigned HOST_WIDE_INT access_size_a,
unsigned HOST_WIDE_INT access_size_b)
{
poly_offset_int offset_a = wi::to_poly_offset (DR_INIT (a->dr));
poly_offset_int offset_b = wi::to_poly_offset (DR_INIT (b->dr));
poly_uint64 const_length_a;
poly_uint64 const_length_b;
/* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
[a, a+12) */
if (tree_int_cst_compare (DR_STEP (a->dr), size_zero_node) < 0)
{
const_length_a = (-wi::to_poly_wide (segment_length_a)).force_uhwi ();
offset_a -= const_length_a;
}
else
const_length_a = tree_to_poly_uint64 (segment_length_a);
if (tree_int_cst_compare (DR_STEP (b->dr), size_zero_node) < 0)
{
const_length_b = (-wi::to_poly_wide (segment_length_b)).force_uhwi ();
offset_b -= const_length_b;
}
else
const_length_b = tree_to_poly_uint64 (segment_length_b);
const_length_a += access_size_a;
const_length_b += access_size_b;
if (ranges_known_overlap_p (offset_a, const_length_a,
offset_b, const_length_b))
return 1;
if (!ranges_maybe_overlap_p (offset_a, const_length_a,
offset_b, const_length_b))
return 0;
return -1;
}
/* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
in DDR is >= VF. */
static bool
dependence_distance_ge_vf (data_dependence_relation *ddr,
unsigned int loop_depth, poly_uint64 vf)
{
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
|| DDR_NUM_DIST_VECTS (ddr) == 0)
return false;
/* If the dependence is exact, we should have limited the VF instead. */
gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
unsigned int i;
lambda_vector dist_v;
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
{
HOST_WIDE_INT dist = dist_v[loop_depth];
if (dist != 0
&& !(dist > 0 && DDR_REVERSED_P (ddr))
&& maybe_lt ((unsigned HOST_WIDE_INT) abs_hwi (dist), vf))
return false;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"dependence distance between %T and %T is >= VF\n",
DR_REF (DDR_A (ddr)), DR_REF (DDR_B (ddr)));
return true;
}
/* Dump LOWER_BOUND using flags DUMP_KIND. Dumps are known to be enabled. */
static void
dump_lower_bound (dump_flags_t dump_kind, const vec_lower_bound &lower_bound)
{
dump_printf (dump_kind, "%s (%T) >= ",
lower_bound.unsigned_p ? "unsigned" : "abs",
lower_bound.expr);
dump_dec (dump_kind, lower_bound.min_value);
}
/* Record that the vectorized loop requires the vec_lower_bound described
by EXPR, UNSIGNED_P and MIN_VALUE. */
static void
vect_check_lower_bound (loop_vec_info loop_vinfo, tree expr, bool unsigned_p,
poly_uint64 min_value)
{
vec<vec_lower_bound> &lower_bounds
= LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
for (unsigned int i = 0; i < lower_bounds.length (); ++i)
if (operand_equal_p (lower_bounds[i].expr, expr, 0))
{
unsigned_p &= lower_bounds[i].unsigned_p;
min_value = upper_bound (lower_bounds[i].min_value, min_value);
if (lower_bounds[i].unsigned_p != unsigned_p
|| maybe_lt (lower_bounds[i].min_value, min_value))
{
lower_bounds[i].unsigned_p = unsigned_p;
lower_bounds[i].min_value = min_value;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"updating run-time check to ");
dump_lower_bound (MSG_NOTE, lower_bounds[i]);
dump_printf (MSG_NOTE, "\n");
}
}
return;
}
vec_lower_bound lower_bound (expr, unsigned_p, min_value);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "need a run-time check that ");
dump_lower_bound (MSG_NOTE, lower_bound);
dump_printf (MSG_NOTE, "\n");
}
LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).safe_push (lower_bound);
}
/* Return true if it's unlikely that the step of the vectorized form of DR_INFO
will span fewer than GAP bytes. */
static bool
vect_small_gap_p (loop_vec_info loop_vinfo, dr_vec_info *dr_info,
poly_int64 gap)
{
stmt_vec_info stmt_info = dr_info->stmt;
HOST_WIDE_INT count
= estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
if (DR_GROUP_FIRST_ELEMENT (stmt_info))
count *= DR_GROUP_SIZE (DR_GROUP_FIRST_ELEMENT (stmt_info));
return (estimated_poly_value (gap)
<= count * vect_get_scalar_dr_size (dr_info));
}
/* Return true if we know that there is no alias between DR_INFO_A and
DR_INFO_B when abs (DR_STEP (DR_INFO_A->dr)) >= N for some N.
When returning true, set *LOWER_BOUND_OUT to this N. */
static bool
vectorizable_with_step_bound_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b,
poly_uint64 *lower_bound_out)
{
/* Check that there is a constant gap of known sign between DR_A
and DR_B. */
data_reference *dr_a = dr_info_a->dr;
data_reference *dr_b = dr_info_b->dr;
poly_int64 init_a, init_b;
if (!operand_equal_p (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b), 0)
|| !operand_equal_p (DR_OFFSET (dr_a), DR_OFFSET (dr_b), 0)
|| !operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0)
|| !poly_int_tree_p (DR_INIT (dr_a), &init_a)
|| !poly_int_tree_p (DR_INIT (dr_b), &init_b)
|| !ordered_p (init_a, init_b))
return false;
/* Sort DR_A and DR_B by the address they access. */
if (maybe_lt (init_b, init_a))
{
std::swap (init_a, init_b);
std::swap (dr_info_a, dr_info_b);
std::swap (dr_a, dr_b);
}
/* If the two accesses could be dependent within a scalar iteration,
make sure that we'd retain their order. */
if (maybe_gt (init_a + vect_get_scalar_dr_size (dr_info_a), init_b)
&& !vect_preserves_scalar_order_p (dr_info_a, dr_info_b))
return false;
/* There is no alias if abs (DR_STEP) is greater than or equal to
the bytes spanned by the combination of the two accesses. */
*lower_bound_out = init_b + vect_get_scalar_dr_size (dr_info_b) - init_a;
return true;
}
/* Function vect_prune_runtime_alias_test_list.
Prune a list of ddrs to be tested at run-time by versioning for alias.
Merge several alias checks into one if possible.
Return FALSE if resulting list of ddrs is longer then allowed by
PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
opt_result
vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
{
typedef pair_hash <tree_operand_hash, tree_operand_hash> tree_pair_hash;
hash_set <tree_pair_hash> compared_objects;
const vec<ddr_p> &may_alias_ddrs = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
vec<dr_with_seg_len_pair_t> &comp_alias_ddrs
= LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
const vec<vec_object_pair> &check_unequal_addrs
= LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
poly_uint64 vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
ddr_p ddr;
unsigned int i;
tree length_factor;
DUMP_VECT_SCOPE ("vect_prune_runtime_alias_test_list");
/* Step values are irrelevant for aliasing if the number of vector
iterations is equal to the number of scalar iterations (which can
happen for fully-SLP loops). */
bool vf_one_p = known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1U);
if (!vf_one_p)
{
/* Convert the checks for nonzero steps into bound tests. */
tree value;
FOR_EACH_VEC_ELT (LOOP_VINFO_CHECK_NONZERO (loop_vinfo), i, value)
vect_check_lower_bound (loop_vinfo, value, true, 1);
}
if (may_alias_ddrs.is_empty ())
return opt_result::success ();
comp_alias_ddrs.create (may_alias_ddrs.length ());
unsigned int loop_depth
= index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
LOOP_VINFO_LOOP_NEST (loop_vinfo));
/* First, we collect all data ref pairs for aliasing checks. */
FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
{
poly_uint64 lower_bound;
tree segment_length_a, segment_length_b;
unsigned HOST_WIDE_INT access_size_a, access_size_b;
unsigned int align_a, align_b;
/* Ignore the alias if the VF we chose ended up being no greater
than the dependence distance. */
if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
continue;
if (DDR_OBJECT_A (ddr))
{
vec_object_pair new_pair (DDR_OBJECT_A (ddr), DDR_OBJECT_B (ddr));
if (!compared_objects.add (new_pair))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"checking that %T and %T"
" have different addresses\n",
new_pair.first, new_pair.second);
LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).safe_push (new_pair);
}
continue;
}
dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr));
stmt_vec_info stmt_info_a = dr_info_a->stmt;
dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr));
stmt_vec_info stmt_info_b = dr_info_b->stmt;
bool preserves_scalar_order_p
= vect_preserves_scalar_order_p (dr_info_a, dr_info_b);
bool ignore_step_p
= (vf_one_p
&& (preserves_scalar_order_p
|| operand_equal_p (DR_STEP (dr_info_a->dr),
DR_STEP (dr_info_b->dr))));
/* Skip the pair if inter-iteration dependencies are irrelevant
and intra-iteration dependencies are guaranteed to be honored. */
if (ignore_step_p
&& (preserves_scalar_order_p
|| vectorizable_with_step_bound_p (dr_info_a, dr_info_b,
&lower_bound)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"no need for alias check between "
"%T and %T when VF is 1\n",
DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr));
continue;
}
/* See whether we can handle the alias using a bounds check on
the step, and whether that's likely to be the best approach.
(It might not be, for example, if the minimum step is much larger
than the number of bytes handled by one vector iteration.) */
if (!ignore_step_p
&& TREE_CODE (DR_STEP (dr_info_a->dr)) != INTEGER_CST
&& vectorizable_with_step_bound_p (dr_info_a, dr_info_b,
&lower_bound)
&& (vect_small_gap_p (loop_vinfo, dr_info_a, lower_bound)
|| vect_small_gap_p (loop_vinfo, dr_info_b, lower_bound)))
{
bool unsigned_p = dr_known_forward_stride_p (dr_info_a->dr);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "no alias between "
"%T and %T when the step %T is outside ",
DR_REF (dr_info_a->dr),
DR_REF (dr_info_b->dr),
DR_STEP (dr_info_a->dr));
if (unsigned_p)
dump_printf (MSG_NOTE, "[0");
else
{
dump_printf (MSG_NOTE, "(");
dump_dec (MSG_NOTE, poly_int64 (-lower_bound));
}
dump_printf (MSG_NOTE, ", ");
dump_dec (MSG_NOTE, lower_bound);
dump_printf (MSG_NOTE, ")\n");
}
vect_check_lower_bound (loop_vinfo, DR_STEP (dr_info_a->dr),
unsigned_p, lower_bound);
continue;
}
stmt_vec_info dr_group_first_a = DR_GROUP_FIRST_ELEMENT (stmt_info_a);
if (dr_group_first_a)
{
stmt_info_a = dr_group_first_a;
dr_info_a = STMT_VINFO_DR_INFO (stmt_info_a);
}
stmt_vec_info dr_group_first_b = DR_GROUP_FIRST_ELEMENT (stmt_info_b);
if (dr_group_first_b)
{
stmt_info_b = dr_group_first_b;
dr_info_b = STMT_VINFO_DR_INFO (stmt_info_b);
}
if (ignore_step_p)
{
segment_length_a = size_zero_node;
segment_length_b = size_zero_node;
}
else
{
if (!operand_equal_p (DR_STEP (dr_info_a->dr),
DR_STEP (dr_info_b->dr), 0))
length_factor = scalar_loop_iters;
else
length_factor = size_int (vect_factor);
segment_length_a = vect_vfa_segment_size (dr_info_a, length_factor);
segment_length_b = vect_vfa_segment_size (dr_info_b, length_factor);
}
access_size_a = vect_vfa_access_size (loop_vinfo, dr_info_a);
access_size_b = vect_vfa_access_size (loop_vinfo, dr_info_b);
align_a = vect_vfa_align (dr_info_a);
align_b = vect_vfa_align (dr_info_b);
/* See whether the alias is known at compilation time. */
if (operand_equal_p (DR_BASE_ADDRESS (dr_info_a->dr),
DR_BASE_ADDRESS (dr_info_b->dr), 0)
&& operand_equal_p (DR_OFFSET (dr_info_a->dr),
DR_OFFSET (dr_info_b->dr), 0)
&& TREE_CODE (DR_STEP (dr_info_a->dr)) == INTEGER_CST
&& TREE_CODE (DR_STEP (dr_info_b->dr)) == INTEGER_CST
&& poly_int_tree_p (segment_length_a)
&& poly_int_tree_p (segment_length_b))
{
int res = vect_compile_time_alias (dr_info_a, dr_info_b,
segment_length_a,
segment_length_b,
access_size_a,
access_size_b);
if (res >= 0 && dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"can tell at compile time that %T and %T",
DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr));
if (res == 0)
dump_printf (MSG_NOTE, " do not alias\n");
else
dump_printf (MSG_NOTE, " alias\n");
}
if (res == 0)
continue;
if (res == 1)
return opt_result::failure_at (stmt_info_b->stmt,
"not vectorized:"
" compilation time alias: %G%G",
stmt_info_a->stmt,
stmt_info_b->stmt);
}
dr_with_seg_len dr_a (dr_info_a->dr, segment_length_a,
access_size_a, align_a);
dr_with_seg_len dr_b (dr_info_b->dr, segment_length_b,
access_size_b, align_b);
/* Canonicalize the order to be the one that's needed for accurate
RAW, WAR and WAW flags, in cases where the data references are
well-ordered. The order doesn't really matter otherwise,
but we might as well be consistent. */
if (get_later_stmt (stmt_info_a, stmt_info_b) == stmt_info_a)
std::swap (dr_a, dr_b);
dr_with_seg_len_pair_t dr_with_seg_len_pair
(dr_a, dr_b, (preserves_scalar_order_p
? dr_with_seg_len_pair_t::WELL_ORDERED
: dr_with_seg_len_pair_t::REORDERED));
comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
}
prune_runtime_alias_test_list (&comp_alias_ddrs, vect_factor);
unsigned int count = (comp_alias_ddrs.length ()
+ check_unequal_addrs.length ());
if (count
&& (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo))
== VECT_COST_MODEL_VERY_CHEAP))
return opt_result::failure_at
(vect_location, "would need a runtime alias check\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"improved number of alias checks from %d to %d\n",
may_alias_ddrs.length (), count);
unsigned limit = param_vect_max_version_for_alias_checks;
if (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo)) == VECT_COST_MODEL_CHEAP)
limit = param_vect_max_version_for_alias_checks * 6 / 10;
if (count > limit)
return opt_result::failure_at
(vect_location,
"number of versioning for alias run-time tests exceeds %d "
"(--param vect-max-version-for-alias-checks)\n", limit);
return opt_result::success ();
}
/* Check whether we can use an internal function for a gather load
or scatter store. READ_P is true for loads and false for stores.
MASKED_P is true if the load or store is conditional. MEMORY_TYPE is
the type of the memory elements being loaded or stored. OFFSET_TYPE
is the type of the offset that is being applied to the invariant
base address. SCALE is the amount by which the offset should
be multiplied *after* it has been converted to address width.
Return true if the function is supported, storing the function id in
*IFN_OUT and the vector type for the offset in *OFFSET_VECTYPE_OUT. */
bool
vect_gather_scatter_fn_p (vec_info *vinfo, bool read_p, bool masked_p,
tree vectype, tree memory_type, tree offset_type,
int scale, internal_fn *ifn_out,
tree *offset_vectype_out)
{
unsigned int memory_bits = tree_to_uhwi (TYPE_SIZE (memory_type));
unsigned int element_bits = vector_element_bits (vectype);
if (element_bits != memory_bits)
/* For now the vector elements must be the same width as the
memory elements. */
return false;
/* Work out which function we need. */
internal_fn ifn, alt_ifn;
if (read_p)
{
ifn = masked_p ? IFN_MASK_GATHER_LOAD : IFN_GATHER_LOAD;
alt_ifn = IFN_MASK_GATHER_LOAD;
}
else
{
ifn = masked_p ? IFN_MASK_SCATTER_STORE : IFN_SCATTER_STORE;
alt_ifn = IFN_MASK_SCATTER_STORE;
}
for (;;)
{
tree offset_vectype = get_vectype_for_scalar_type (vinfo, offset_type);
if (!offset_vectype)
return false;
/* Test whether the target supports this combination. */
if (internal_gather_scatter_fn_supported_p (ifn, vectype, memory_type,
offset_vectype, scale))
{
*ifn_out = ifn;
*offset_vectype_out = offset_vectype;
return true;
}
else if (!masked_p
&& internal_gather_scatter_fn_supported_p (alt_ifn, vectype,
memory_type,
offset_vectype,
scale))
{
*ifn_out = alt_ifn;
*offset_vectype_out = offset_vectype;
return true;
}
if (TYPE_PRECISION (offset_type) >= POINTER_SIZE
&& TYPE_PRECISION (offset_type) >= element_bits)
return false;
offset_type = build_nonstandard_integer_type
(TYPE_PRECISION (offset_type) * 2, TYPE_UNSIGNED (offset_type));
}
}
/* STMT_INFO is a call to an internal gather load or scatter store function.
Describe the operation in INFO. */
static void
vect_describe_gather_scatter_call (stmt_vec_info stmt_info,
gather_scatter_info *info)
{
gcall *call = as_a <gcall *> (stmt_info->stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
info->ifn = gimple_call_internal_fn (call);
info->decl = NULL_TREE;
info->base = gimple_call_arg (call, 0);
info->offset = gimple_call_arg (call, 1);
info->offset_dt = vect_unknown_def_type;
info->offset_vectype = NULL_TREE;
info->scale = TREE_INT_CST_LOW (gimple_call_arg (call, 2));
info->element_type = TREE_TYPE (vectype);
info->memory_type = TREE_TYPE (DR_REF (dr));
}
/* Return true if a non-affine read or write in STMT_INFO is suitable for a
gather load or scatter store. Describe the operation in *INFO if so. */
bool
vect_check_gather_scatter (stmt_vec_info stmt_info, loop_vec_info loop_vinfo,
gather_scatter_info *info)
{
HOST_WIDE_INT scale = 1;
poly_int64 pbitpos, pbitsize;
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree offtype = NULL_TREE;
tree decl = NULL_TREE, base, off;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree memory_type = TREE_TYPE (DR_REF (dr));
machine_mode pmode;
int punsignedp, reversep, pvolatilep = 0;
internal_fn ifn;
tree offset_vectype;
bool masked_p = false;
/* See whether this is already a call to a gather/scatter internal function.
If not, see whether it's a masked load or store. */
gcall *call = dyn_cast <gcall *> (stmt_info->stmt);
if (call && gimple_call_internal_p (call))
{
ifn = gimple_call_internal_fn (call);
if (internal_gather_scatter_fn_p (ifn))
{
vect_describe_gather_scatter_call (stmt_info, info);
return true;
}
masked_p = (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE);
}
/* True if we should aim to use internal functions rather than
built-in functions. */
bool use_ifn_p = (DR_IS_READ (dr)
? supports_vec_gather_load_p (TYPE_MODE (vectype))
: supports_vec_scatter_store_p (TYPE_MODE (vectype)));
base = DR_REF (dr);
/* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
see if we can use the def stmt of the address. */
if (masked_p
&& TREE_CODE (base) == MEM_REF
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
&& integer_zerop (TREE_OPERAND (base, 1))
&& !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
{
gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
if (is_gimple_assign (def_stmt)
&& gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
}
/* The gather and scatter builtins need address of the form
loop_invariant + vector * {1, 2, 4, 8}
or
loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
of loop invariants/SSA_NAMEs defined in the loop, with casts,
multiplications and additions in it. To get a vector, we need
a single SSA_NAME that will be defined in the loop and will
contain everything that is not loop invariant and that can be
vectorized. The following code attempts to find such a preexistng
SSA_NAME OFF and put the loop invariants into a tree BASE
that can be gimplified before the loop. */
base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode,
&punsignedp, &reversep, &pvolatilep);
if (reversep)
return false;
poly_int64 pbytepos = exact_div (pbitpos, BITS_PER_UNIT);
if (TREE_CODE (base) == MEM_REF)
{
if (!integer_zerop (TREE_OPERAND (base, 1)))
{
if (off == NULL_TREE)
off = wide_int_to_tree (sizetype, mem_ref_offset (base));
else
off = size_binop (PLUS_EXPR, off,
fold_convert (sizetype, TREE_OPERAND (base, 1)));
}
base = TREE_OPERAND (base, 0);
}
else
base = build_fold_addr_expr (base);
if (off == NULL_TREE)
off = size_zero_node;
/* If base is not loop invariant, either off is 0, then we start with just
the constant offset in the loop invariant BASE and continue with base
as OFF, otherwise give up.
We could handle that case by gimplifying the addition of base + off
into some SSA_NAME and use that as off, but for now punt. */
if (!expr_invariant_in_loop_p (loop, base))
{
if (!integer_zerop (off))
return false;
off = base;
base = size_int (pbytepos);
}
/* Otherwise put base + constant offset into the loop invariant BASE
and continue with OFF. */
else
{
base = fold_convert (sizetype, base);
base = size_binop (PLUS_EXPR, base, size_int (pbytepos));
}
/* OFF at this point may be either a SSA_NAME or some tree expression
from get_inner_reference. Try to peel off loop invariants from it
into BASE as long as possible. */
STRIP_NOPS (off);
while (offtype == NULL_TREE)
{
enum tree_code code;
tree op0, op1, add = NULL_TREE;
if (TREE_CODE (off) == SSA_NAME)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (off);
if (expr_invariant_in_loop_p (loop, off))
return false;
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
break;
op0 = gimple_assign_rhs1 (def_stmt);
code = gimple_assign_rhs_code (def_stmt);
op1 = gimple_assign_rhs2 (def_stmt);
}
else
{
if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
return false;
code = TREE_CODE (off);
extract_ops_from_tree (off, &code, &op0, &op1);
}
switch (code)
{
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
if (expr_invariant_in_loop_p (loop, op0))
{
add = op0;
off = op1;
do_add:
add = fold_convert (sizetype, add);
if (scale != 1)
add = size_binop (MULT_EXPR, add, size_int (scale));
base = size_binop (PLUS_EXPR, base, add);
continue;
}
if (expr_invariant_in_loop_p (loop, op1))
{
add = op1;
off = op0;
goto do_add;
}
break;
case MINUS_EXPR:
if (expr_invariant_in_loop_p (loop, op1))
{
add = fold_convert (sizetype, op1);
add = size_binop (MINUS_EXPR, size_zero_node, add);
off = op0;
goto do_add;
}
break;
case MULT_EXPR:
if (scale == 1 && tree_fits_shwi_p (op1))
{
int new_scale = tree_to_shwi (op1);
/* Only treat this as a scaling operation if the target
supports it for at least some offset type. */
if (use_ifn_p
&& !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
masked_p, vectype, memory_type,
signed_char_type_node,
new_scale, &ifn,
&offset_vectype)
&& !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
masked_p, vectype, memory_type,
unsigned_char_type_node,
new_scale, &ifn,
&offset_vectype))
break;
scale = new_scale;
off = op0;
continue;
}
break;
case SSA_NAME:
off = op0;
continue;
CASE_CONVERT:
if (!POINTER_TYPE_P (TREE_TYPE (op0))
&& !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
break;
/* Don't include the conversion if the target is happy with
the current offset type. */
if (use_ifn_p
&& !POINTER_TYPE_P (TREE_TYPE (off))
&& vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
masked_p, vectype, memory_type,
TREE_TYPE (off), scale, &ifn,
&offset_vectype))
break;
if (TYPE_PRECISION (TREE_TYPE (op0))
== TYPE_PRECISION (TREE_TYPE (off)))
{
off = op0;
continue;
}
/* Include the conversion if it is widening and we're using
the IFN path or the target can handle the converted from
offset or the current size is not already the same as the
data vector element size. */
if ((TYPE_PRECISION (TREE_TYPE (op0))
< TYPE_PRECISION (TREE_TYPE (off)))
&& (use_ifn_p
|| (DR_IS_READ (dr)
? (targetm.vectorize.builtin_gather
&& targetm.vectorize.builtin_gather (vectype,
TREE_TYPE (op0),
scale))
: (targetm.vectorize.builtin_scatter
&& targetm.vectorize.builtin_scatter (vectype,
TREE_TYPE (op0),
scale)))
|| !operand_equal_p (TYPE_SIZE (TREE_TYPE (off)),
TYPE_SIZE (TREE_TYPE (vectype)), 0)))
{
off = op0;
offtype = TREE_TYPE (off);
STRIP_NOPS (off);
continue;
}
break;
default:
break;
}
break;
}
/* If at the end OFF still isn't a SSA_NAME or isn't
defined in the loop, punt. */
if (TREE_CODE (off) != SSA_NAME
|| expr_invariant_in_loop_p (loop, off))
return false;
if (offtype == NULL_TREE)
offtype = TREE_TYPE (off);
if (use_ifn_p)
{
if (!vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr), masked_p,
vectype, memory_type, offtype, scale,
&ifn, &offset_vectype))
ifn = IFN_LAST;
decl = NULL_TREE;
}
else
{
if (DR_IS_READ (dr))
{
if (targetm.vectorize.builtin_gather)
decl = targetm.vectorize.builtin_gather (vectype, offtype, scale);
}
else
{
if (targetm.vectorize.builtin_scatter)
decl = targetm.vectorize.builtin_scatter (vectype, offtype, scale);
}
ifn = IFN_LAST;
/* The offset vector type will be read from DECL when needed. */
offset_vectype = NULL_TREE;
}
info->ifn = ifn;
info->decl = decl;
info->base = base;
info->offset = off;
info->offset_dt = vect_unknown_def_type;
info->offset_vectype = offset_vectype;
info->scale = scale;
info->element_type = TREE_TYPE (vectype);
info->memory_type = memory_type;
return true;
}
/* Find the data references in STMT, analyze them with respect to LOOP and
append them to DATAREFS. Return false if datarefs in this stmt cannot
be handled. */
opt_result
vect_find_stmt_data_reference (loop_p loop, gimple *stmt,
vec<data_reference_p> *datarefs,
vec<int> *dataref_groups, int group_id)
{
/* We can ignore clobbers for dataref analysis - they are removed during
loop vectorization and BB vectorization checks dependences with a
stmt walk. */
if (gimple_clobber_p (stmt))
return opt_result::success ();
if (gimple_has_volatile_ops (stmt))
return opt_result::failure_at (stmt, "not vectorized: volatile type: %G",
stmt);
if (stmt_can_throw_internal (cfun, stmt))
return opt_result::failure_at (stmt,
"not vectorized:"
" statement can throw an exception: %G",
stmt);
auto_vec<data_reference_p, 2> refs;
opt_result res = find_data_references_in_stmt (loop, stmt, &refs);
if (!res)
return res;
if (refs.is_empty ())
return opt_result::success ();
if (refs.length () > 1)
{
while (!refs.is_empty ())
free_data_ref (refs.pop ());
return opt_result::failure_at (stmt,
"not vectorized: more than one "
"data ref in stmt: %G", stmt);
}
data_reference_p dr = refs.pop ();
if (gcall *call = dyn_cast <gcall *> (stmt))
if (!gimple_call_internal_p (call)
|| (gimple_call_internal_fn (call) != IFN_MASK_LOAD
&& gimple_call_internal_fn (call) != IFN_MASK_STORE))
{
free_data_ref (dr);
return opt_result::failure_at (stmt,
"not vectorized: dr in a call %G", stmt);
}
if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
{
free_data_ref (dr);
return opt_result::failure_at (stmt,
"not vectorized:"
" statement is bitfield access %G", stmt);
}
if (DR_BASE_ADDRESS (dr)
&& TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
{
free_data_ref (dr);
return opt_result::failure_at (stmt,
"not vectorized:"
" base addr of dr is a constant\n");
}
/* Check whether this may be a SIMD lane access and adjust the
DR to make it easier for us to handle it. */
if (loop
&& loop->simduid
&& (!DR_BASE_ADDRESS (dr)
|| !DR_OFFSET (dr)
|| !DR_INIT (dr)
|| !DR_STEP (dr)))
{
struct data_reference *newdr
= create_data_ref (NULL, loop_containing_stmt (stmt), DR_REF (dr), stmt,
DR_IS_READ (dr), DR_IS_CONDITIONAL_IN_STMT (dr));
if (DR_BASE_ADDRESS (newdr)
&& DR_OFFSET (newdr)
&& DR_INIT (newdr)
&& DR_STEP (newdr)
&& TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
&& integer_zerop (DR_STEP (newdr)))
{
tree base_address = DR_BASE_ADDRESS (newdr);
tree off = DR_OFFSET (newdr);
tree step = ssize_int (1);
if (integer_zerop (off)
&& TREE_CODE (base_address) == POINTER_PLUS_EXPR)
{
off = TREE_OPERAND (base_address, 1);
base_address = TREE_OPERAND (base_address, 0);
}
STRIP_NOPS (off);
if (TREE_CODE (off) == MULT_EXPR
&& tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
{
step = TREE_OPERAND (off, 1);
off = TREE_OPERAND (off, 0);
STRIP_NOPS (off);
}
if (CONVERT_EXPR_P (off)
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off, 0)))
< TYPE_PRECISION (TREE_TYPE (off))))
off = TREE_OPERAND (off, 0);
if (TREE_CODE (off) == SSA_NAME)
{
gimple *def = SSA_NAME_DEF_STMT (off);
/* Look through widening conversion. */
if (is_gimple_assign (def)
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
{
tree rhs1 = gimple_assign_rhs1 (def);
if (TREE_CODE (rhs1) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
&& (TYPE_PRECISION (TREE_TYPE (off))
> TYPE_PRECISION (TREE_TYPE (rhs1))))
def = SSA_NAME_DEF_STMT (rhs1);
}
if (is_gimple_call (def)
&& gimple_call_internal_p (def)
&& (gimple_call_internal_fn (def) == IFN_GOMP_SIMD_LANE))
{
tree arg = gimple_call_arg (def, 0);
tree reft = TREE_TYPE (DR_REF (newdr));
gcc_assert (TREE_CODE (arg) == SSA_NAME);
arg = SSA_NAME_VAR (arg);
if (arg == loop->simduid
/* For now. */
&& tree_int_cst_equal (TYPE_SIZE_UNIT (reft), step))
{
DR_BASE_ADDRESS (newdr) = base_address;
DR_OFFSET (newdr) = ssize_int (0);
DR_STEP (newdr) = step;
DR_OFFSET_ALIGNMENT (newdr) = BIGGEST_ALIGNMENT;
DR_STEP_ALIGNMENT (newdr) = highest_pow2_factor (step);
/* Mark as simd-lane access. */
tree arg2 = gimple_call_arg (def, 1);
newdr->aux = (void *) (-1 - tree_to_uhwi (arg2));
free_data_ref (dr);
datarefs->safe_push (newdr);
if (dataref_groups)
dataref_groups->safe_push (group_id);
return opt_result::success ();
}
}
}
}
free_data_ref (newdr);
}
datarefs->safe_push (dr);
if (dataref_groups)
dataref_groups->safe_push (group_id);
return opt_result::success ();
}
/* Function vect_analyze_data_refs.
Find all the data references in the loop or basic block.
The general structure of the analysis of data refs in the vectorizer is as
follows:
1- vect_analyze_data_refs(loop/bb): call
compute_data_dependences_for_loop/bb to find and analyze all data-refs
in the loop/bb and their dependences.
2- vect_analyze_dependences(): apply dependence testing using ddrs.
3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
*/
opt_result
vect_analyze_data_refs (vec_info *vinfo, poly_uint64 *min_vf, bool *fatal)
{
class loop *loop = NULL;
unsigned int i;
struct data_reference *dr;
tree scalar_type;
DUMP_VECT_SCOPE ("vect_analyze_data_refs");
if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Go through the data-refs, check that the analysis succeeded. Update
pointer from stmt_vec_info struct to DR and vectype. */
vec<data_reference_p> datarefs = vinfo->shared->datarefs;
FOR_EACH_VEC_ELT (datarefs, i, dr)
{
enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE;
poly_uint64 vf;
gcc_assert (DR_REF (dr));
stmt_vec_info stmt_info = vinfo->lookup_stmt (DR_STMT (dr));
gcc_assert (!stmt_info->dr_aux.dr);
stmt_info->dr_aux.dr = dr;
stmt_info->dr_aux.stmt = stmt_info;
/* Check that analysis of the data-ref succeeded. */
if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
|| !DR_STEP (dr))
{
bool maybe_gather
= DR_IS_READ (dr)
&& !TREE_THIS_VOLATILE (DR_REF (dr));
bool maybe_scatter
= DR_IS_WRITE (dr)
&& !TREE_THIS_VOLATILE (DR_REF (dr))
&& (targetm.vectorize.builtin_scatter != NULL
|| supports_vec_scatter_store_p ());
/* If target supports vector gather loads or scatter stores,
see if they can't be used. */
if (is_a <loop_vec_info> (vinfo)
&& !nested_in_vect_loop_p (loop, stmt_info))
{
if (maybe_gather || maybe_scatter)
{
if (maybe_gather)
gatherscatter = GATHER;
else
gatherscatter = SCATTER;
}
}
if (gatherscatter == SG_NONE)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: data ref analysis "
"failed %G", stmt_info->stmt);
if (is_a <bb_vec_info> (vinfo))
{
/* In BB vectorization the ref can still participate
in dependence analysis, we just can't vectorize it. */
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
continue;
}
return opt_result::failure_at (stmt_info->stmt,
"not vectorized:"
" data ref analysis failed: %G",
stmt_info->stmt);
}
}
/* See if this was detected as SIMD lane access. */
if (dr->aux == (void *)-1
|| dr->aux == (void *)-2
|| dr->aux == (void *)-3
|| dr->aux == (void *)-4)
{
if (nested_in_vect_loop_p (loop, stmt_info))
return opt_result::failure_at (stmt_info->stmt,
"not vectorized:"
" data ref analysis failed: %G",
stmt_info->stmt);
STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info)
= -(uintptr_t) dr->aux;
}
tree base = get_base_address (DR_REF (dr));
if (base && VAR_P (base) && DECL_NONALIASED (base))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: base object not addressable "
"for stmt: %G", stmt_info->stmt);
if (is_a <bb_vec_info> (vinfo))
{
/* In BB vectorization the ref can still participate
in dependence analysis, we just can't vectorize it. */
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
continue;
}
return opt_result::failure_at (stmt_info->stmt,
"not vectorized: base object not"
" addressable for stmt: %G",
stmt_info->stmt);
}
if (is_a <loop_vec_info> (vinfo)
&& DR_STEP (dr)
&& TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
{
if (nested_in_vect_loop_p (loop, stmt_info))
return opt_result::failure_at (stmt_info->stmt,
"not vectorized: "
"not suitable for strided load %G",
stmt_info->stmt);
STMT_VINFO_STRIDED_P (stmt_info) = true;
}
/* Update DR field in stmt_vec_info struct. */
/* If the dataref is in an inner-loop of the loop that is considered for
for vectorization, we also want to analyze the access relative to
the outer-loop (DR contains information only relative to the
inner-most enclosing loop). We do that by building a reference to the
first location accessed by the inner-loop, and analyze it relative to
the outer-loop. */
if (loop && nested_in_vect_loop_p (loop, stmt_info))
{
/* Build a reference to the first location accessed by the
inner loop: *(BASE + INIT + OFFSET). By construction,
this address must be invariant in the inner loop, so we
can consider it as being used in the outer loop. */
tree base = unshare_expr (DR_BASE_ADDRESS (dr));
tree offset = unshare_expr (DR_OFFSET (dr));
tree init = unshare_expr (DR_INIT (dr));
tree init_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset),
init, offset);
tree init_addr = fold_build_pointer_plus (base, init_offset);
tree init_ref = build_fold_indirect_ref (init_addr);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"analyze in outer loop: %T\n", init_ref);
opt_result res
= dr_analyze_innermost (&STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info),
init_ref, loop, stmt_info->stmt);
if (!res)
/* dr_analyze_innermost already explained the failure. */
return res;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"\touter base_address: %T\n"
"\touter offset from base address: %T\n"
"\touter constant offset from base address: %T\n"
"\touter step: %T\n"
"\touter base alignment: %d\n\n"
"\touter base misalignment: %d\n"
"\touter offset alignment: %d\n"
"\touter step alignment: %d\n",
STMT_VINFO_DR_BASE_ADDRESS (stmt_info),
STMT_VINFO_DR_OFFSET (stmt_info),
STMT_VINFO_DR_INIT (stmt_info),
STMT_VINFO_DR_STEP (stmt_info),
STMT_VINFO_DR_BASE_ALIGNMENT (stmt_info),
STMT_VINFO_DR_BASE_MISALIGNMENT (stmt_info),
STMT_VINFO_DR_OFFSET_ALIGNMENT (stmt_info),
STMT_VINFO_DR_STEP_ALIGNMENT (stmt_info));
}
/* Set vectype for STMT. */
scalar_type = TREE_TYPE (DR_REF (dr));
tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type);
if (!vectype)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: no vectype for stmt: %G",
stmt_info->stmt);
dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
scalar_type);
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
}
if (is_a <bb_vec_info> (vinfo))
{
/* No vector type is fine, the ref can still participate
in dependence analysis, we just can't vectorize it. */
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
continue;
}
if (fatal)
*fatal = false;
return opt_result::failure_at (stmt_info->stmt,
"not vectorized:"
" no vectype for stmt: %G"
" scalar_type: %T\n",
stmt_info->stmt, scalar_type);
}
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"got vectype for stmt: %G%T\n",
stmt_info->stmt, vectype);
}
/* Adjust the minimal vectorization factor according to the
vector type. */
vf = TYPE_VECTOR_SUBPARTS (vectype);
*min_vf = upper_bound (*min_vf, vf);
/* Leave the BB vectorizer to pick the vector type later, based on
the final dataref group size and SLP node size. */
if (is_a <loop_vec_info> (vinfo))
STMT_VINFO_VECTYPE (stmt_info) = vectype;
if (gatherscatter != SG_NONE)
{
gather_scatter_info gs_info;
if (!vect_check_gather_scatter (stmt_info,
as_a <loop_vec_info> (vinfo),
&gs_info)
|| !get_vectype_for_scalar_type (vinfo,
TREE_TYPE (gs_info.offset)))
{
if (fatal)
*fatal = false;
return opt_result::failure_at
(stmt_info->stmt,
(gatherscatter == GATHER)
? "not vectorized: not suitable for gather load %G"
: "not vectorized: not suitable for scatter store %G",
stmt_info->stmt);
}
STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter;
}
}
/* We used to stop processing and prune the list here. Verify we no
longer need to. */
gcc_assert (i == datarefs.length ());
return opt_result::success ();
}
/* Function vect_get_new_vect_var.
Returns a name for a new variable. The current naming scheme appends the
prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
the name of vectorizer generated variables, and appends that to NAME if
provided. */
tree
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
{
const char *prefix;
tree new_vect_var;
switch (var_kind)
{
case vect_simple_var:
prefix = "vect";
break;
case vect_scalar_var:
prefix = "stmp";
break;
case vect_mask_var:
prefix = "mask";
break;
case vect_pointer_var:
prefix = "vectp";
break;
default:
gcc_unreachable ();
}
if (name)
{
char* tmp = concat (prefix, "_", name, NULL);
new_vect_var = create_tmp_reg (type, tmp);
free (tmp);
}
else
new_vect_var = create_tmp_reg (type, prefix);
return new_vect_var;
}
/* Like vect_get_new_vect_var but return an SSA name. */
tree
vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name)
{
const char *prefix;
tree new_vect_var;
switch (var_kind)
{
case vect_simple_var:
prefix = "vect";
break;
case vect_scalar_var:
prefix = "stmp";
break;
case vect_pointer_var:
prefix = "vectp";
break;
default:
gcc_unreachable ();
}
if (name)
{
char* tmp = concat (prefix, "_", name, NULL);
new_vect_var = make_temp_ssa_name (type, NULL, tmp);
free (tmp);
}
else
new_vect_var = make_temp_ssa_name (type, NULL, prefix);
return new_vect_var;
}
/* Duplicate points-to info on NAME from DR_INFO. */
static void
vect_duplicate_ssa_name_ptr_info (tree name, dr_vec_info *dr_info)
{
duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr_info->dr));
/* DR_PTR_INFO is for a base SSA name, not including constant or
variable offsets in the ref so its alignment info does not apply. */
mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
}
/* Function vect_create_addr_base_for_vector_ref.
Create an expression that computes the address of the first memory location
that will be accessed for a data reference.
Input:
STMT_INFO: The statement containing the data reference.
NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
OFFSET: Optional. If supplied, it is be added to the initial address.
LOOP: Specify relative to which loop-nest should the address be computed.
For example, when the dataref is in an inner-loop nested in an
outer-loop that is now being vectorized, LOOP can be either the
outer-loop, or the inner-loop. The first memory location accessed
by the following dataref ('in' points to short):
for (i=0; i<N; i++)
for (j=0; j<M; j++)
s += in[i+j]
is as follows:
if LOOP=i_loop: &in (relative to i_loop)
if LOOP=j_loop: &in+i*2B (relative to j_loop)
Output:
1. Return an SSA_NAME whose value is the address of the memory location of
the first vector of the data reference.
2. If new_stmt_list is not NULL_TREE after return then the caller must insert
these statement(s) which define the returned SSA_NAME.
FORNOW: We are only handling array accesses with step 1. */
tree
vect_create_addr_base_for_vector_ref (vec_info *vinfo, stmt_vec_info stmt_info,
gimple_seq *new_stmt_list,
tree offset)
{
dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
struct data_reference *dr = dr_info->dr;
const char *base_name;
tree addr_base;
tree dest;
gimple_seq seq = NULL;
tree vect_ptr_type;
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info);
tree data_ref_base = unshare_expr (drb->base_address);
tree base_offset = unshare_expr (get_dr_vinfo_offset (vinfo, dr_info, true));
tree init = unshare_expr (drb->init);
if (loop_vinfo)
base_name = get_name (data_ref_base);
else
{
base_offset = ssize_int (0);
init = ssize_int (0);
base_name = get_name (DR_REF (dr));
}
/* Create base_offset */
base_offset = size_binop (PLUS_EXPR,
fold_convert (sizetype, base_offset),
fold_convert (sizetype, init));
if (offset)
{
offset = fold_convert (sizetype, offset);
base_offset = fold_build2 (PLUS_EXPR, sizetype,
base_offset, offset);
}
/* base + base_offset */
if (loop_vinfo)
addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
else
{
addr_base = build1 (ADDR_EXPR,
build_pointer_type (TREE_TYPE (DR_REF (dr))),
unshare_expr (DR_REF (dr)));
}
vect_ptr_type = build_pointer_type (TREE_TYPE (DR_REF (dr)));
dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
addr_base = force_gimple_operand (addr_base, &seq, true, dest);
gimple_seq_add_seq (new_stmt_list, seq);
if (DR_PTR_INFO (dr)
&& TREE_CODE (addr_base) == SSA_NAME
/* We should only duplicate pointer info to newly created SSA names. */
&& SSA_NAME_VAR (addr_base) == dest)
{
gcc_assert (!SSA_NAME_PTR_INFO (addr_base));
vect_duplicate_ssa_name_ptr_info (addr_base, dr_info);
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "created %T\n", addr_base);
return addr_base;
}
/* Function vect_create_data_ref_ptr.
Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
location accessed in the loop by STMT_INFO, along with the def-use update
chain to appropriately advance the pointer through the loop iterations.
Also set aliasing information for the pointer. This pointer is used by
the callers to this function to create a memory reference expression for
vector load/store access.
Input:
1. STMT_INFO: a stmt that references memory. Expected to be of the form
GIMPLE_ASSIGN <name, data-ref> or
GIMPLE_ASSIGN <data-ref, name>.
2. AGGR_TYPE: the type of the reference, which should be either a vector
or an array.
3. AT_LOOP: the loop where the vector memref is to be created.
4. OFFSET (optional): a byte offset to be added to the initial address
accessed by the data-ref in STMT_INFO.
5. BSI: location where the new stmts are to be placed if there is no loop
6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
pointing to the initial address.
8. IV_STEP (optional, defaults to NULL): the amount that should be added
to the IV during each iteration of the loop. NULL says to move
by one copy of AGGR_TYPE up or down, depending on the step of the
data reference.
Output:
1. Declare a new ptr to vector_type, and have it point to the base of the
data reference (initial addressed accessed by the data reference).
For example, for vector of type V8HI, the following code is generated:
v8hi *ap;
ap = (v8hi *)initial_address;
if OFFSET is not supplied:
initial_address = &a[init];
if OFFSET is supplied:
initial_address = &a[init] + OFFSET;
if BYTE_OFFSET is supplied:
initial_address = &a[init] + BYTE_OFFSET;
Return the initial_address in INITIAL_ADDRESS.
2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
update the pointer in each iteration of the loop.
Return the increment stmt that updates the pointer in PTR_INCR.
3. Return the pointer. */
tree
vect_create_data_ref_ptr (vec_info *vinfo, stmt_vec_info stmt_info,
tree aggr_type, class loop *at_loop, tree offset,
tree *initial_address, gimple_stmt_iterator *gsi,
gimple **ptr_incr, bool only_init,
tree iv_step)
{
const char *base_name;
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
class loop *loop = NULL;
bool nested_in_vect_loop = false;
class loop *containing_loop = NULL;
tree aggr_ptr_type;
tree aggr_ptr;
tree new_temp;
gimple_seq new_stmt_list = NULL;
edge pe = NULL;
basic_block new_bb;
tree aggr_ptr_init;
dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
struct data_reference *dr = dr_info->dr;
tree aptr;
gimple_stmt_iterator incr_gsi;
bool insert_after;
tree indx_before_incr, indx_after_incr;
gimple *incr;
bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo);
gcc_assert (iv_step != NULL_TREE
|| TREE_CODE (aggr_type) == ARRAY_TYPE
|| TREE_CODE (aggr_type) == VECTOR_TYPE);
if (loop_vinfo)
{
loop = LOOP_VINFO_LOOP (loop_vinfo);
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info);
containing_loop = (gimple_bb (stmt_info->stmt))->loop_father;
pe = loop_preheader_edge (loop);
}
else
{
gcc_assert (bb_vinfo);
only_init = true;
*ptr_incr = NULL;
}
/* Create an expression for the first address accessed by this load
in LOOP. */
base_name = get_name (DR_BASE_ADDRESS (dr));
if (dump_enabled_p ())
{
tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
dump_printf_loc (MSG_NOTE, vect_location,
"create %s-pointer variable to type: %T",
get_tree_code_name (TREE_CODE (aggr_type)),
aggr_type);
if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
dump_printf (MSG_NOTE, " vectorizing an array ref: ");
else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
else
dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
dump_printf (MSG_NOTE, "%T\n", DR_BASE_OBJECT (dr));
}
/* (1) Create the new aggregate-pointer variable.
Vector and array types inherit the alias set of their component
type by default so we need to use a ref-all pointer if the data
reference does not conflict with the created aggregated data
reference because it is not addressable. */
bool need_ref_all = false;
if (!alias_sets_conflict_p (get_alias_set (aggr_type),
get_alias_set (DR_REF (dr))))
need_ref_all = true;
/* Likewise for any of the data references in the stmt group. */
else if (DR_GROUP_SIZE (stmt_info) > 1)
{
stmt_vec_info sinfo = DR_GROUP_FIRST_ELEMENT (stmt_info);
do
{
struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
if (!alias_sets_conflict_p (get_alias_set (aggr_type),
get_alias_set (DR_REF (sdr))))
{
need_ref_all = true;
break;
}
sinfo = DR_GROUP_NEXT_ELEMENT (sinfo);
}
while (sinfo);
}
aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
need_ref_all);
aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
/* Note: If the dataref is in an inner-loop nested in LOOP, and we are
vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
def-use update cycles for the pointer: one relative to the outer-loop
(LOOP), which is what steps (3) and (4) below do. The other is relative
to the inner-loop (which is the inner-most loop containing the dataref),
and this is done be step (5) below.
When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
inner-most loop, and so steps (3),(4) work the same, and step (5) is
redundant. Steps (3),(4) create the following:
vp0 = &base_addr;
LOOP: vp1 = phi(vp0,vp2)
...
...
vp2 = vp1 + step
goto LOOP
If there is an inner-loop nested in loop, then step (5) will also be
applied, and an additional update in the inner-loop will be created:
vp0 = &base_addr;
LOOP: vp1 = phi(vp0,vp2)
...
inner: vp3 = phi(vp1,vp4)
vp4 = vp3 + inner_step
if () goto inner
...
vp2 = vp1 + step
if () goto LOOP */
/* (2) Calculate the initial address of the aggregate-pointer, and set
the aggregate-pointer to point to it before the loop. */
/* Create: (&(base[init_val]+offset) in the loop preheader. */
new_temp = vect_create_addr_base_for_vector_ref (vinfo,
stmt_info, &new_stmt_list,
offset);
if (new_stmt_list)
{
if (pe)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
gcc_assert (!new_bb);
}
else
gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
}
*initial_address = new_temp;
aggr_ptr_init = new_temp;
/* (3) Handle the updating of the aggregate-pointer inside the loop.
This is needed when ONLY_INIT is false, and also when AT_LOOP is the
inner-loop nested in LOOP (during outer-loop vectorization). */
/* No update in loop is required. */
if (only_init && (!loop_vinfo || at_loop == loop))
aptr = aggr_ptr_init;
else
{
/* Accesses to invariant addresses should be handled specially
by the caller. */
tree step = vect_dr_behavior (vinfo, dr_info)->step;
gcc_assert (!integer_zerop (step));
if (iv_step == NULL_TREE)
{
/* The step of the aggregate pointer is the type size,
negated for downward accesses. */
iv_step = TYPE_SIZE_UNIT (aggr_type);
if (tree_int_cst_sgn (step) == -1)
iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
}
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
create_iv (aggr_ptr_init,
fold_convert (aggr_ptr_type, iv_step),
aggr_ptr, loop, &incr_gsi, insert_after,
&indx_before_incr, &indx_after_incr);
incr = gsi_stmt (incr_gsi);
/* Copy the points-to information if it exists. */
if (DR_PTR_INFO (dr))
{
vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info);
vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info);
}
if (ptr_incr)
*ptr_incr = incr;
aptr = indx_before_incr;
}
if (!nested_in_vect_loop || only_init)
return aptr;
/* (4) Handle the updating of the aggregate-pointer inside the inner-loop
nested in LOOP, if exists. */
gcc_assert (nested_in_vect_loop);
if (!only_init)
{
standard_iv_increment_position (containing_loop, &incr_gsi,
&insert_after);
create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
containing_loop, &incr_gsi, insert_after, &indx_before_incr,
&indx_after_incr);
incr = gsi_stmt (incr_gsi);
/* Copy the points-to information if it exists. */
if (DR_PTR_INFO (dr))
{
vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info);
vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info);
}
if (ptr_incr)
*ptr_incr = incr;
return indx_before_incr;
}
else
gcc_unreachable ();
}
/* Function bump_vector_ptr
Increment a pointer (to a vector type) by vector-size. If requested,
i.e. if PTR-INCR is given, then also connect the new increment stmt
to the existing def-use update-chain of the pointer, by modifying
the PTR_INCR as illustrated below:
The pointer def-use update-chain before this function:
DATAREF_PTR = phi (p_0, p_2)
....
PTR_INCR: p_2 = DATAREF_PTR + step
The pointer def-use update-chain after this function:
DATAREF_PTR = phi (p_0, p_2)
....
NEW_DATAREF_PTR = DATAREF_PTR + BUMP
....
PTR_INCR: p_2 = NEW_DATAREF_PTR + step
Input:
DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
in the loop.
PTR_INCR - optional. The stmt that updates the pointer in each iteration of
the loop. The increment amount across iterations is expected
to be vector_size.
BSI - location where the new update stmt is to be placed.
STMT_INFO - the original scalar memory-access stmt that is being vectorized.
BUMP - optional. The offset by which to bump the pointer. If not given,
the offset is assumed to be vector_size.
Output: Return NEW_DATAREF_PTR as illustrated above.
*/
tree
bump_vector_ptr (vec_info *vinfo,
tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi,
stmt_vec_info stmt_info, tree bump)
{
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree update = TYPE_SIZE_UNIT (vectype);
gimple *incr_stmt;
ssa_op_iter iter;
use_operand_p use_p;
tree new_dataref_ptr;
if (bump)
update = bump;
if (TREE_CODE (dataref_ptr) == SSA_NAME)
new_dataref_ptr = copy_ssa_name (dataref_ptr);
else
new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
dataref_ptr, update);
vect_finish_stmt_generation (vinfo, stmt_info, incr_stmt, gsi);
/* Fold the increment, avoiding excessive chains use-def chains of
those, leading to compile-time issues for passes until the next
forwprop pass which would do this as well. */
gimple_stmt_iterator fold_gsi = gsi_for_stmt (incr_stmt);
if (fold_stmt (&fold_gsi, follow_all_ssa_edges))
{
incr_stmt = gsi_stmt (fold_gsi);
update_stmt (incr_stmt);
}
/* Copy the points-to information if it exists. */
if (DR_PTR_INFO (dr))
{
duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
}
if (!ptr_incr)
return new_dataref_ptr;
/* Update the vector-pointer's cross-iteration increment. */
FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
{
tree use = USE_FROM_PTR (use_p);
if (use == dataref_ptr)
SET_USE (use_p, new_dataref_ptr);
else
gcc_assert (operand_equal_p (use, update, 0));
}
return new_dataref_ptr;
}
/* Copy memory reference info such as base/clique from the SRC reference
to the DEST MEM_REF. */
void
vect_copy_ref_info (tree dest, tree src)
{
if (TREE_CODE (dest) != MEM_REF)
return;
tree src_base = src;
while (handled_component_p (src_base))
src_base = TREE_OPERAND (src_base, 0);
if (TREE_CODE (src_base) != MEM_REF
&& TREE_CODE (src_base) != TARGET_MEM_REF)
return;
MR_DEPENDENCE_CLIQUE (dest) = MR_DEPENDENCE_CLIQUE (src_base);
MR_DEPENDENCE_BASE (dest) = MR_DEPENDENCE_BASE (src_base);
}
/* Function vect_create_destination_var.
Create a new temporary of type VECTYPE. */
tree
vect_create_destination_var (tree scalar_dest, tree vectype)
{
tree vec_dest;
const char *name;
char *new_name;
tree type;
enum vect_var_kind kind;
kind = vectype
? VECTOR_BOOLEAN_TYPE_P (vectype)
? vect_mask_var
: vect_simple_var
: vect_scalar_var;
type = vectype ? vectype : TREE_TYPE (scalar_dest);
gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
name = get_name (scalar_dest);
if (name)
new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
else
new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
vec_dest = vect_get_new_vect_var (type, kind, new_name);
free (new_name);
return vec_dest;
}
/* Function vect_grouped_store_supported.
Returns TRUE if interleave high and interleave low permutations
are supported, and FALSE otherwise. */
bool
vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
{
machine_mode mode = TYPE_MODE (vectype);
/* vect_permute_store_chain requires the group size to be equal to 3 or
be a power of two. */
if (count != 3 && exact_log2 (count) == -1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"the size of the group of accesses"
" is not a power of 2 or not eqaul to 3\n");
return false;
}
/* Check that the permutation is supported. */
if (VECTOR_MODE_P (mode))
{
unsigned int i;
if (count == 3)
{
unsigned int j0 = 0, j1 = 0, j2 = 0;
unsigned int i, j;
unsigned int nelt;
if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"cannot handle groups of 3 stores for"
" variable-length vectors\n");
return false;
}
vec_perm_builder sel (nelt, nelt, 1);
sel.quick_grow (nelt);
vec_perm_indices indices;
for (j = 0; j < 3; j++)
{
int nelt0 = ((3 - j) * nelt) % 3;
int nelt1 = ((3 - j) * nelt + 1) % 3;
int nelt2 = ((3 - j) * nelt + 2) % 3;
for (i = 0; i < nelt; i++)
{
if (3 * i + nelt0 < nelt)
sel[3 * i + nelt0] = j0++;
if (3 * i + nelt1 < nelt)
sel[3 * i + nelt1] = nelt + j1++;
if (3 * i + nelt2 < nelt)
sel[3 * i + nelt2] = 0;
}
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (mode, indices))
{
if (dump_enabled_p ())
dump_printf (MSG_MISSED_OPTIMIZATION,
"permutation op not supported by target.\n");
return false;
}
for (i = 0; i < nelt; i++)
{
if (3 * i + nelt0 < nelt)
sel[3 * i + nelt0] = 3 * i + nelt0;
if (3 * i + nelt1 < nelt)
sel[3 * i + nelt1] = 3 * i + nelt1;
if (3 * i + nelt2 < nelt)
sel[3 * i + nelt2] = nelt + j2++;
}
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (mode, indices))
{
if (dump_enabled_p ())
dump_printf (MSG_MISSED_OPTIMIZATION,
"permutation op not supported by target.\n");
return false;
}
}
return true;
}
else
{
/* If length is not equal to 3 then only power of 2 is supported. */
gcc_assert (pow2p_hwi (count));
poly_uint64 nelt = GET_MODE_NUNITS (mode);
/* The encoding has 2 interleaved stepped patterns. */
vec_perm_builder sel (nelt, 2, 3);
sel.quick_grow (6);
for (i = 0; i < 3; i++)
{
sel[i * 2] = i;
sel[i * 2 + 1] = i + nelt;
}
vec_perm_indices indices (sel, 2, nelt);
if (can_vec_perm_const_p (mode, indices))
{
for (i = 0; i < 6; i++)
sel[i] += exact_div (nelt, 2);
indices.new_vector (sel, 2, nelt);
if (can_vec_perm_const_p (mode, indices))
return true;
}
}
}
if (dump_enabled_p ())
dump_printf (MSG_MISSED_OPTIMIZATION,
"permutation op not supported by target.\n");
return false;
}
/* Return TRUE if vec_{mask_}store_lanes is available for COUNT vectors of
type VECTYPE. MASKED_P says whether the masked form is needed. */
bool
vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
bool masked_p)
{
if (masked_p)
return vect_lanes_optab_supported_p ("vec_mask_store_lanes",
vec_mask_store_lanes_optab,
vectype, count);
else
return vect_lanes_optab_supported_p ("vec_store_lanes",
vec_store_lanes_optab,
vectype, count);
}
/* Function vect_permute_store_chain.
Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
the data correctly for the stores. Return the final references for stores
in RESULT_CHAIN.
E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
The input is 4 vectors each containing 8 elements. We assign a number to
each element, the input sequence is:
1st vec: 0 1 2 3 4 5 6 7
2nd vec: 8 9 10 11 12 13 14 15
3rd vec: 16 17 18 19 20 21 22 23
4th vec: 24 25 26 27 28 29 30 31
The output sequence should be:
1st vec: 0 8 16 24 1 9 17 25
2nd vec: 2 10 18 26 3 11 19 27
3rd vec: 4 12 20 28 5 13 21 30
4th vec: 6 14 22 30 7 15 23 31
i.e., we interleave the contents of the four vectors in their order.
We use interleave_high/low instructions to create such output. The input of
each interleave_high/low operation is two vectors:
1st vec 2nd vec
0 1 2 3 4 5 6 7
the even elements of the result vector are obtained left-to-right from the
high/low elements of the first vector. The odd elements of the result are
obtained left-to-right from the high/low elements of the second vector.
The output of interleave_high will be: 0 4 1 5
and of interleave_low: 2 6 3 7
The permutation is done in log LENGTH stages. In each stage interleave_high
and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
where the first argument is taken from the first half of DR_CHAIN and the
second argument from it's second half.
In our example,
I1: interleave_high (1st vec, 3rd vec)
I2: interleave_low (1st vec, 3rd vec)
I3: interleave_high (2nd vec, 4th vec)
I4: interleave_low (2nd vec, 4th vec)
The output for the first stage is:
I1: 0 16 1 17 2 18 3 19
I2: 4 20 5 21 6 22 7 23
I3: 8 24 9 25 10 26 11 27
I4: 12 28 13 29 14 30 15 31
The output of the second stage, i.e. the final result is:
I1: 0 8 16 24 1 9 17 25
I2: 2 10 18 26 3 11 19 27
I3: 4 12 20 28 5 13 21 30
I4: 6 14 22 30 7 15 23 31. */
void
vect_permute_store_chain (vec_info *vinfo, vec<tree> &dr_chain,
unsigned int length,
stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi,
vec<tree> *result_chain)
{
tree vect1, vect2, high, low;
gimple *perm_stmt;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree perm_mask_low, perm_mask_high;
tree data_ref;
tree perm3_mask_low, perm3_mask_high;
unsigned int i, j, n, log_length = exact_log2 (length);
result_chain->quick_grow (length);
memcpy (result_chain->address (), dr_chain.address (),
length * sizeof (tree));
if (length == 3)
{
/* vect_grouped_store_supported ensures that this is constant. */
unsigned int nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
unsigned int j0 = 0, j1 = 0, j2 = 0;
vec_perm_builder sel (nelt, nelt, 1);
sel.quick_grow (nelt);
vec_perm_indices indices;
for (j = 0; j < 3; j++)
{
int nelt0 = ((3 - j) * nelt) % 3;
int nelt1 = ((3 - j) * nelt + 1) % 3;
int nelt2 = ((3 - j) * nelt + 2) % 3;
for (i = 0; i < nelt; i++)
{
if (3 * i + nelt0 < nelt)
sel[3 * i + nelt0] = j0++;
if (3 * i + nelt1 < nelt)
sel[3 * i + nelt1] = nelt + j1++;
if (3 * i + nelt2 < nelt)
sel[3 * i + nelt2] = 0;
}
indices.new_vector (sel, 2, nelt);
perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
for (i = 0; i < nelt; i++)
{
if (3 * i + nelt0 < nelt)
sel[3 * i + nelt0] = 3 * i + nelt0;
if (3 * i + nelt1 < nelt)
sel[3 * i + nelt1] = 3 * i + nelt1;
if (3 * i + nelt2 < nelt)
sel[3 * i + nelt2] = nelt + j2++;
}
indices.new_vector (sel, 2, nelt);
perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
vect1 = dr_chain[0];
vect2 = dr_chain[1];
/* Create interleaving stmt:
low = VEC_PERM_EXPR <vect1, vect2,
{j, nelt, *, j + 1, nelt + j + 1, *,
j + 2, nelt + j + 2, *, ...}> */
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
vect2, perm3_mask_low);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
vect1 = data_ref;
vect2 = dr_chain[2];
/* Create interleaving stmt:
low = VEC_PERM_EXPR <vect1, vect2,
{0, 1, nelt + j, 3, 4, nelt + j + 1,
6, 7, nelt + j + 2, ...}> */
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
vect2, perm3_mask_high);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[j] = data_ref;
}
}
else
{
/* If length is not equal to 3 then only power of 2 is supported. */
gcc_assert (pow2p_hwi (length));
/* The encoding has 2 interleaved stepped patterns. */
poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
vec_perm_builder sel (nelt, 2, 3);
sel.quick_grow (6);
for (i = 0; i < 3; i++)
{
sel[i * 2] = i;
sel[i * 2 + 1] = i + nelt;
}
vec_perm_indices indices (sel, 2, nelt);
perm_mask_high = vect_gen_perm_mask_checked (vectype, indices);
for (i = 0; i < 6; i++)
sel[i] += exact_div (nelt, 2);
indices.new_vector (sel, 2, nelt);
perm_mask_low = vect_gen_perm_mask_checked (vectype, indices);
for (i = 0, n = log_length; i < n; i++)
{
for (j = 0; j < length/2; j++)
{
vect1 = dr_chain[j];
vect2 = dr_chain[j+length/2];
/* Create interleaving stmt:
high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
...}> */
high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
vect2, perm_mask_high);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[2*j] = high;
/* Create interleaving stmt:
low = VEC_PERM_EXPR <vect1, vect2,
{nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
...}> */
low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
vect2, perm_mask_low);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[2*j+1] = low;
}
memcpy (dr_chain.address (), result_chain->address (),
length * sizeof (tree));
}
}
}
/* Function vect_setup_realignment
This function is called when vectorizing an unaligned load using
the dr_explicit_realign[_optimized] scheme.
This function generates the following code at the loop prolog:
p = initial_addr;
x msq_init = *(floor(p)); # prolog load
realignment_token = call target_builtin;
loop:
x msq = phi (msq_init, ---)
The stmts marked with x are generated only for the case of
dr_explicit_realign_optimized.
The code above sets up a new (vector) pointer, pointing to the first
location accessed by STMT_INFO, and a "floor-aligned" load using that
pointer. It also generates code to compute the "realignment-token"
(if the relevant target hook was defined), and creates a phi-node at the
loop-header bb whose arguments are the result of the prolog-load (created
by this function) and the result of a load that takes place in the loop
(to be created by the caller to this function).
For the case of dr_explicit_realign_optimized:
The caller to this function uses the phi-result (msq) to create the
realignment code inside the loop, and sets up the missing phi argument,
as follows:
loop:
msq = phi (msq_init, lsq)
lsq = *(floor(p')); # load in loop
result = realign_load (msq, lsq, realignment_token);
For the case of dr_explicit_realign:
loop:
msq = *(floor(p)); # load in loop
p' = p + (VS-1);
lsq = *(floor(p')); # load in loop
result = realign_load (msq, lsq, realignment_token);
Input:
STMT_INFO - (scalar) load stmt to be vectorized. This load accesses
a memory location that may be unaligned.
BSI - place where new code is to be inserted.
ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
is used.
Output:
REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
target hook, if defined.
Return value - the result of the loop-header phi node. */
tree
vect_setup_realignment (vec_info *vinfo, stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi, tree *realignment_token,
enum dr_alignment_support alignment_support_scheme,
tree init_addr,
class loop **at_loop)
{
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
struct data_reference *dr = dr_info->dr;
class loop *loop = NULL;
edge pe = NULL;
tree scalar_dest = gimple_assign_lhs (stmt_info->stmt);
tree vec_dest;
gimple *inc;
tree ptr;
tree data_ref;
basic_block new_bb;
tree msq_init = NULL_TREE;
tree new_temp;
gphi *phi_stmt;
tree msq = NULL_TREE;
gimple_seq stmts = NULL;
bool compute_in_loop = false;
bool nested_in_vect_loop = false;
class loop *containing_loop = (gimple_bb (stmt_info->stmt))->loop_father;
class loop *loop_for_initial_load = NULL;
if (loop_vinfo)
{
loop = LOOP_VINFO_LOOP (loop_vinfo);
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info);
}
gcc_assert (alignment_support_scheme == dr_explicit_realign
|| alignment_support_scheme == dr_explicit_realign_optimized);
/* We need to generate three things:
1. the misalignment computation
2. the extra vector load (for the optimized realignment scheme).
3. the phi node for the two vectors from which the realignment is
done (for the optimized realignment scheme). */
/* 1. Determine where to generate the misalignment computation.
If INIT_ADDR is NULL_TREE, this indicates that the misalignment
calculation will be generated by this function, outside the loop (in the
preheader). Otherwise, INIT_ADDR had already been computed for us by the
caller, inside the loop.
Background: If the misalignment remains fixed throughout the iterations of
the loop, then both realignment schemes are applicable, and also the
misalignment computation can be done outside LOOP. This is because we are
vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
are a multiple of VS (the Vector Size), and therefore the misalignment in
different vectorized LOOP iterations is always the same.
The problem arises only if the memory access is in an inner-loop nested
inside LOOP, which is now being vectorized using outer-loop vectorization.
This is the only case when the misalignment of the memory access may not
remain fixed throughout the iterations of the inner-loop (as explained in
detail in vect_supportable_dr_alignment). In this case, not only is the
optimized realignment scheme not applicable, but also the misalignment
computation (and generation of the realignment token that is passed to
REALIGN_LOAD) have to be done inside the loop.
In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
or not, which in turn determines if the misalignment is computed inside
the inner-loop, or outside LOOP. */
if (init_addr != NULL_TREE || !loop_vinfo)
{
compute_in_loop = true;
gcc_assert (alignment_support_scheme == dr_explicit_realign);
}
/* 2. Determine where to generate the extra vector load.
For the optimized realignment scheme, instead of generating two vector
loads in each iteration, we generate a single extra vector load in the
preheader of the loop, and in each iteration reuse the result of the
vector load from the previous iteration. In case the memory access is in
an inner-loop nested inside LOOP, which is now being vectorized using
outer-loop vectorization, we need to determine whether this initial vector
load should be generated at the preheader of the inner-loop, or can be
generated at the preheader of LOOP. If the memory access has no evolution
in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
to be generated inside LOOP (in the preheader of the inner-loop). */
if (nested_in_vect_loop)
{
tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
bool invariant_in_outerloop =
(tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
}
else
loop_for_initial_load = loop;
if (at_loop)
*at_loop = loop_for_initial_load;
if (loop_for_initial_load)
pe = loop_preheader_edge (loop_for_initial_load);
/* 3. For the case of the optimized realignment, create the first vector
load at the loop preheader. */
if (alignment_support_scheme == dr_explicit_realign_optimized)
{
/* Create msq_init = *(floor(p1)) in the loop preheader */
gassign *new_stmt;
gcc_assert (!compute_in_loop);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
ptr = vect_create_data_ref_ptr (vinfo, stmt_info, vectype,
loop_for_initial_load, NULL_TREE,
&init_addr, NULL, &inc, true);
if (TREE_CODE (ptr) == SSA_NAME)
new_temp = copy_ssa_name (ptr);
else
new_temp = make_ssa_name (TREE_TYPE (ptr));
poly_uint64 align = DR_TARGET_ALIGNMENT (dr_info);
tree type = TREE_TYPE (ptr);
new_stmt = gimple_build_assign
(new_temp, BIT_AND_EXPR, ptr,
fold_build2 (MINUS_EXPR, type,
build_int_cst (type, 0),
build_int_cst (type, align)));
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
gcc_assert (!new_bb);
data_ref
= build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
vect_copy_ref_info (data_ref, DR_REF (dr));
new_stmt = gimple_build_assign (vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, new_temp);
if (pe)
{
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
gcc_assert (!new_bb);
}
else
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
msq_init = gimple_assign_lhs (new_stmt);
}
/* 4. Create realignment token using a target builtin, if available.
It is done either inside the containing loop, or before LOOP (as
determined above). */
if (targetm.vectorize.builtin_mask_for_load)
{
gcall *new_stmt;
tree builtin_decl;
/* Compute INIT_ADDR - the initial addressed accessed by this memref. */
if (!init_addr)
{
/* Generate the INIT_ADDR computation outside LOOP. */
init_addr = vect_create_addr_base_for_vector_ref (vinfo,
stmt_info, &stmts,
NULL_TREE);
if (loop)
{
pe = loop_preheader_edge (loop);
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
else
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
}
builtin_decl = targetm.vectorize.builtin_mask_for_load ();
new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
vec_dest =
vect_create_destination_var (scalar_dest,
gimple_call_return_type (new_stmt));
new_temp = make_ssa_name (vec_dest, new_stmt);
gimple_call_set_lhs (new_stmt, new_temp);
if (compute_in_loop)
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
else
{
/* Generate the misalignment computation outside LOOP. */
pe = loop_preheader_edge (loop);
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
gcc_assert (!new_bb);
}
*realignment_token = gimple_call_lhs (new_stmt);
/* The result of the CALL_EXPR to this builtin is determined from
the value of the parameter and no global variables are touched
which makes the builtin a "const" function. Requiring the
builtin to have the "const" attribute makes it unnecessary
to call mark_call_clobbered. */
gcc_assert (TREE_READONLY (builtin_decl));
}
if (alignment_support_scheme == dr_explicit_realign)
return msq;
gcc_assert (!compute_in_loop);
gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
/* 5. Create msq = phi <msq_init, lsq> in loop */
pe = loop_preheader_edge (containing_loop);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
msq = make_ssa_name (vec_dest);
phi_stmt = create_phi_node (msq, containing_loop->header);
add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
return msq;
}
/* Function vect_grouped_load_supported.
COUNT is the size of the load group (the number of statements plus the
number of gaps). SINGLE_ELEMENT_P is true if there is actually
only one statement, with a gap of COUNT - 1.
Returns true if a suitable permute exists. */
bool
vect_grouped_load_supported (tree vectype, bool single_element_p,
unsigned HOST_WIDE_INT count)
{
machine_mode mode = TYPE_MODE (vectype);
/* If this is single-element interleaving with an element distance
that leaves unused vector loads around punt - we at least create
very sub-optimal code in that case (and blow up memory,
see PR65518). */
if (single_element_p && maybe_gt (count, TYPE_VECTOR_SUBPARTS (vectype)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"single-element interleaving not supported "
"for not adjacent vector loads\n");
return false;
}
/* vect_permute_load_chain requires the group size to be equal to 3 or
be a power of two. */
if (count != 3 && exact_log2 (count) == -1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"the size of the group of accesses"
" is not a power of 2 or not equal to 3\n");
return false;
}
/* Check that the permutation is supported. */
if (VECTOR_MODE_P (mode))
{
unsigned int i, j;
if (count == 3)
{
unsigned int nelt;
if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"cannot handle groups of 3 loads for"
" variable-length vectors\n");
return false;
}
vec_perm_builder sel (nelt, nelt, 1);
sel.quick_grow (nelt);
vec_perm_indices indices;
unsigned int k;
for (k = 0; k < 3; k++)
{
for (i = 0; i < nelt; i++)
if (3 * i + k < 2 * nelt)
sel[i] = 3 * i + k;
else
sel[i] = 0;
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (mode, indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shuffle of 3 loads is not supported by"
" target\n");
return false;
}
for (i = 0, j = 0; i < nelt; i++)
if (3 * i + k < 2 * nelt)
sel[i] = i;
else
sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (mode, indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shuffle of 3 loads is not supported by"
" target\n");
return false;
}
}
return true;
}
else
{
/* If length is not equal to 3 then only power of 2 is supported. */
gcc_assert (pow2p_hwi (count));
poly_uint64 nelt = GET_MODE_NUNITS (mode);
/* The encoding has a single stepped pattern. */
vec_perm_builder sel (nelt, 1, 3);
sel.quick_grow (3);
for (i = 0; i < 3; i++)
sel[i] = i * 2;
vec_perm_indices indices (sel, 2, nelt);
if (can_vec_perm_const_p (mode, indices))
{
for (i = 0; i < 3; i++)
sel[i] = i * 2 + 1;
indices.new_vector (sel, 2, nelt);
if (can_vec_perm_const_p (mode, indices))
return true;
}
}
}
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"extract even/odd not supported by target\n");
return false;
}
/* Return TRUE if vec_{masked_}load_lanes is available for COUNT vectors of
type VECTYPE. MASKED_P says whether the masked form is needed. */
bool
vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
bool masked_p)
{
if (masked_p)
return vect_lanes_optab_supported_p ("vec_mask_load_lanes",
vec_mask_load_lanes_optab,
vectype, count);
else
return vect_lanes_optab_supported_p ("vec_load_lanes",
vec_load_lanes_optab,
vectype, count);
}
/* Function vect_permute_load_chain.
Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
the input data correctly. Return the final references for loads in
RESULT_CHAIN.
E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
The input is 4 vectors each containing 8 elements. We assign a number to each
element, the input sequence is:
1st vec: 0 1 2 3 4 5 6 7
2nd vec: 8 9 10 11 12 13 14 15
3rd vec: 16 17 18 19 20 21 22 23
4th vec: 24 25 26 27 28 29 30 31
The output sequence should be:
1st vec: 0 4 8 12 16 20 24 28
2nd vec: 1 5 9 13 17 21 25 29
3rd vec: 2 6 10 14 18 22 26 30
4th vec: 3 7 11 15 19 23 27 31
i.e., the first output vector should contain the first elements of each
interleaving group, etc.
We use extract_even/odd instructions to create such output. The input of
each extract_even/odd operation is two vectors
1st vec 2nd vec
0 1 2 3 4 5 6 7
and the output is the vector of extracted even/odd elements. The output of
extract_even will be: 0 2 4 6
and of extract_odd: 1 3 5 7
The permutation is done in log LENGTH stages. In each stage extract_even
and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
their order. In our example,
E1: extract_even (1st vec, 2nd vec)
E2: extract_odd (1st vec, 2nd vec)
E3: extract_even (3rd vec, 4th vec)
E4: extract_odd (3rd vec, 4th vec)
The output for the first stage will be:
E1: 0 2 4 6 8 10 12 14
E2: 1 3 5 7 9 11 13 15
E3: 16 18 20 22 24 26 28 30
E4: 17 19 21 23 25 27 29 31
In order to proceed and create the correct sequence for the next stage (or
for the correct output, if the second stage is the last one, as in our
example), we first put the output of extract_even operation and then the
output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
The input for the second stage is:
1st vec (E1): 0 2 4 6 8 10 12 14
2nd vec (E3): 16 18 20 22 24 26 28 30
3rd vec (E2): 1 3 5 7 9 11 13 15
4th vec (E4): 17 19 21 23 25 27 29 31
The output of the second stage:
E1: 0 4 8 12 16 20 24 28
E2: 2 6 10 14 18 22 26 30
E3: 1 5 9 13 17 21 25 29
E4: 3 7 11 15 19 23 27 31
And RESULT_CHAIN after reordering:
1st vec (E1): 0 4 8 12 16 20 24 28
2nd vec (E3): 1 5 9 13 17 21 25 29
3rd vec (E2): 2 6 10 14 18 22 26 30
4th vec (E4): 3 7 11 15 19 23 27 31. */
static void
vect_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain,
unsigned int length,
stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi,
vec<tree> *result_chain)
{
tree data_ref, first_vect, second_vect;
tree perm_mask_even, perm_mask_odd;
tree perm3_mask_low, perm3_mask_high;
gimple *perm_stmt;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
unsigned int i, j, log_length = exact_log2 (length);
result_chain->quick_grow (length);
memcpy (result_chain->address (), dr_chain.address (),
length * sizeof (tree));
if (length == 3)
{
/* vect_grouped_load_supported ensures that this is constant. */
unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
unsigned int k;
vec_perm_builder sel (nelt, nelt, 1);
sel.quick_grow (nelt);
vec_perm_indices indices;
for (k = 0; k < 3; k++)
{
for (i = 0; i < nelt; i++)
if (3 * i + k < 2 * nelt)
sel[i] = 3 * i + k;
else
sel[i] = 0;
indices.new_vector (sel, 2, nelt);
perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
for (i = 0, j = 0; i < nelt; i++)
if (3 * i + k < 2 * nelt)
sel[i] = i;
else
sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
indices.new_vector (sel, 2, nelt);
perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
first_vect = dr_chain[0];
second_vect = dr_chain[1];
/* Create interleaving stmt (low part of):
low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
...}> */
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
second_vect, perm3_mask_low);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
/* Create interleaving stmt (high part of):
high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
...}> */
first_vect = data_ref;
second_vect = dr_chain[2];
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
second_vect, perm3_mask_high);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[k] = data_ref;
}
}
else
{
/* If length is not equal to 3 then only power of 2 is supported. */
gcc_assert (pow2p_hwi (length));
/* The encoding has a single stepped pattern. */
poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
vec_perm_builder sel (nelt, 1, 3);
sel.quick_grow (3);
for (i = 0; i < 3; ++i)
sel[i] = i * 2;
vec_perm_indices indices (sel, 2, nelt);
perm_mask_even = vect_gen_perm_mask_checked (vectype, indices);
for (i = 0; i < 3; ++i)
sel[i] = i * 2 + 1;
indices.new_vector (sel, 2, nelt);
perm_mask_odd = vect_gen_perm_mask_checked (vectype, indices);
for (i = 0; i < log_length; i++)
{
for (j = 0; j < length; j += 2)
{
first_vect = dr_chain[j];
second_vect = dr_chain[j+1];
/* data_ref = permute_even (first_data_ref, second_data_ref); */
data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
first_vect, second_vect,
perm_mask_even);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[j/2] = data_ref;
/* data_ref = permute_odd (first_data_ref, second_data_ref); */
data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
first_vect, second_vect,
perm_mask_odd);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[j/2+length/2] = data_ref;
}
memcpy (dr_chain.address (), result_chain->address (),
length * sizeof (tree));
}
}
}
/* Function vect_shift_permute_load_chain.
Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
sequence of stmts to reorder the input data accordingly.
Return the final references for loads in RESULT_CHAIN.
Return true if successed, false otherwise.
E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
The input is 3 vectors each containing 8 elements. We assign a
number to each element, the input sequence is:
1st vec: 0 1 2 3 4 5 6 7
2nd vec: 8 9 10 11 12 13 14 15
3rd vec: 16 17 18 19 20 21 22 23
The output sequence should be:
1st vec: 0 3 6 9 12 15 18 21
2nd vec: 1 4 7 10 13 16 19 22
3rd vec: 2 5 8 11 14 17 20 23
We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
First we shuffle all 3 vectors to get correct elements order:
1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
3rd vec: (16 19 22) (17 20 23) (18 21)
Next we unite and shift vector 3 times:
1st step:
shift right by 6 the concatenation of:
"1st vec" and "2nd vec"
( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
"2nd vec" and "3rd vec"
( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
"3rd vec" and "1st vec"
(16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
| New vectors |
So that now new vectors are:
1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
2nd vec: (10 13) (16 19 22) (17 20 23)
3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
2nd step:
shift right by 5 the concatenation of:
"1st vec" and "3rd vec"
( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
"2nd vec" and "1st vec"
(10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
"3rd vec" and "2nd vec"
(18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
| New vectors |
So that now new vectors are:
1st vec: ( 9 12 15) (18 21) ( 0 3 6)
2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
3rd step:
shift right by 5 the concatenation of:
"1st vec" and "1st vec"
( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
shift right by 3 the concatenation of:
"2nd vec" and "2nd vec"
(17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
| New vectors |
So that now all vectors are READY:
1st vec: ( 0 3 6) ( 9 12 15) (18 21)
2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
3rd vec: ( 1 4 7) (10 13) (16 19 22)
This algorithm is faster than one in vect_permute_load_chain if:
1. "shift of a concatination" is faster than general permutation.
This is usually so.
2. The TARGET machine can't execute vector instructions in parallel.
This is because each step of the algorithm depends on previous.
The algorithm in vect_permute_load_chain is much more parallel.
The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
*/
static bool
vect_shift_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain,
unsigned int length,
stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi,
vec<tree> *result_chain)
{
tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
tree perm2_mask1, perm2_mask2, perm3_mask;
tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
gimple *perm_stmt;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
unsigned int i;
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
unsigned HOST_WIDE_INT nelt, vf;
if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nelt)
|| !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
/* Not supported for variable-length vectors. */
return false;
vec_perm_builder sel (nelt, nelt, 1);
sel.quick_grow (nelt);
result_chain->quick_grow (length);
memcpy (result_chain->address (), dr_chain.address (),
length * sizeof (tree));
if (pow2p_hwi (length) && vf > 4)
{
unsigned int j, log_length = exact_log2 (length);
for (i = 0; i < nelt / 2; ++i)
sel[i] = i * 2;
for (i = 0; i < nelt / 2; ++i)
sel[nelt / 2 + i] = i * 2 + 1;
vec_perm_indices indices (sel, 2, nelt);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shuffle of 2 fields structure is not \
supported by target\n");
return false;
}
perm2_mask1 = vect_gen_perm_mask_checked (vectype, indices);
for (i = 0; i < nelt / 2; ++i)
sel[i] = i * 2 + 1;
for (i = 0; i < nelt / 2; ++i)
sel[nelt / 2 + i] = i * 2;
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shuffle of 2 fields structure is not \
supported by target\n");
return false;
}
perm2_mask2 = vect_gen_perm_mask_checked (vectype, indices);
/* Generating permutation constant to shift all elements.
For vector length 8 it is {4 5 6 7 8 9 10 11}. */
for (i = 0; i < nelt; i++)
sel[i] = nelt / 2 + i;
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shift permutation is not supported by target\n");
return false;
}
shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
/* Generating permutation constant to select vector from 2.
For vector length 8 it is {0 1 2 3 12 13 14 15}. */
for (i = 0; i < nelt / 2; i++)
sel[i] = i;
for (i = nelt / 2; i < nelt; i++)
sel[i] = nelt + i;
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"select is not supported by target\n");
return false;
}
select_mask = vect_gen_perm_mask_checked (vectype, indices);
for (i = 0; i < log_length; i++)
{
for (j = 0; j < length; j += 2)
{
first_vect = dr_chain[j];
second_vect = dr_chain[j + 1];
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
first_vect, first_vect,
perm2_mask1);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
vect[0] = data_ref;
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
second_vect, second_vect,
perm2_mask2);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
vect[1] = data_ref;
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
vect[0], vect[1], shift1_mask);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[j/2 + length/2] = data_ref;
data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
vect[0], vect[1], select_mask);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[j/2] = data_ref;
}
memcpy (dr_chain.address (), result_chain->address (),
length * sizeof (tree));
}
return true;
}
if (length == 3 && vf > 2)
{
unsigned int k = 0, l = 0;
/* Generating permutation constant to get all elements in rigth order.
For vector length 8 it is {0 3 6 1 4 7 2 5}. */
for (i = 0; i < nelt; i++)
{
if (3 * k + (l % 3) >= nelt)
{
k = 0;
l += (3 - (nelt % 3));
}
sel[i] = 3 * k + (l % 3);
k++;
}
vec_perm_indices indices (sel, 2, nelt);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shuffle of 3 fields structure is not \
supported by target\n");
return false;
}
perm3_mask = vect_gen_perm_mask_checked (vectype, indices);
/* Generating permutation constant to shift all elements.
For vector length 8 it is {6 7 8 9 10 11 12 13}. */
for (i = 0; i < nelt; i++)
sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shift permutation is not supported by target\n");
return false;
}
shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
/* Generating permutation constant to shift all elements.
For vector length 8 it is {5 6 7 8 9 10 11 12}. */
for (i = 0; i < nelt; i++)
sel[i] = 2 * (nelt / 3) + 1 + i;
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shift permutation is not supported by target\n");
return false;
}
shift2_mask = vect_gen_perm_mask_checked (vectype, indices);
/* Generating permutation constant to shift all elements.
For vector length 8 it is {3 4 5 6 7 8 9 10}. */
for (i = 0; i < nelt; i++)
sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shift permutation is not supported by target\n");
return false;
}
shift3_mask = vect_gen_perm_mask_checked (vectype, indices);
/* Generating permutation constant to shift all elements.
For vector length 8 it is {5 6 7 8 9 10 11 12}. */
for (i = 0; i < nelt; i++)
sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"shift permutation is not supported by target\n");
return false;
}
shift4_mask = vect_gen_perm_mask_checked (vectype, indices);
for (k = 0; k < 3; k++)
{
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
dr_chain[k], dr_chain[k],
perm3_mask);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
vect[k] = data_ref;
}
for (k = 0; k < 3; k++)
{
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
vect[k % 3], vect[(k + 1) % 3],
shift1_mask);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
vect_shift[k] = data_ref;
}
for (k = 0; k < 3; k++)
{
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
vect_shift[(4 - k) % 3],
vect_shift[(3 - k) % 3],
shift2_mask);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
vect[k] = data_ref;
}
(*result_chain)[3 - (nelt % 3)] = vect[2];
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
vect[0], shift3_mask);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[nelt % 3] = data_ref;
data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
vect[1], shift4_mask);
vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
(*result_chain)[0] = data_ref;
return true;
}
return false;
}
/* Function vect_transform_grouped_load.
Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
to perform their permutation and ascribe the result vectorized statements to
the scalar statements.
*/
void
vect_transform_grouped_load (vec_info *vinfo, stmt_vec_info stmt_info,
vec<tree> dr_chain,
int size, gimple_stmt_iterator *gsi)
{
machine_mode mode;
vec<tree> result_chain = vNULL;
/* DR_CHAIN contains input data-refs that are a part of the interleaving.
RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
vectors, that are ready for vector computation. */
result_chain.create (size);
/* If reassociation width for vector type is 2 or greater target machine can
execute 2 or more vector instructions in parallel. Otherwise try to
get chain for loads group using vect_shift_permute_load_chain. */
mode = TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info));
if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
|| pow2p_hwi (size)
|| !vect_shift_permute_load_chain (vinfo, dr_chain, size, stmt_info,
gsi, &result_chain))
vect_permute_load_chain (vinfo, dr_chain,
size, stmt_info, gsi, &result_chain);
vect_record_grouped_load_vectors (vinfo, stmt_info, result_chain);
result_chain.release ();
}
/* RESULT_CHAIN contains the output of a group of grouped loads that were
generated as part of the vectorization of STMT_INFO. Assign the statement
for each vector to the associated scalar statement. */
void
vect_record_grouped_load_vectors (vec_info *, stmt_vec_info stmt_info,
vec<tree> result_chain)
{
stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info);
unsigned int i, gap_count;
tree tmp_data_ref;
/* Put a permuted data-ref in the VECTORIZED_STMT field.
Since we scan the chain starting from it's first node, their order
corresponds the order of data-refs in RESULT_CHAIN. */
stmt_vec_info next_stmt_info = first_stmt_info;
gap_count = 1;
FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
{
if (!next_stmt_info)
break;
/* Skip the gaps. Loads created for the gaps will be removed by dead
code elimination pass later. No need to check for the first stmt in
the group, since it always exists.
DR_GROUP_GAP is the number of steps in elements from the previous
access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
correspond to the gaps. */
if (next_stmt_info != first_stmt_info
&& gap_count < DR_GROUP_GAP (next_stmt_info))
{
gap_count++;
continue;
}
/* ??? The following needs cleanup after the removal of
DR_GROUP_SAME_DR_STMT. */
if (next_stmt_info)
{
gimple *new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
/* We assume that if VEC_STMT is not NULL, this is a case of multiple
copies, and we put the new vector statement last. */
STMT_VINFO_VEC_STMTS (next_stmt_info).safe_push (new_stmt);
next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info);
gap_count = 1;
}
}
}
/* Function vect_force_dr_alignment_p.
Returns whether the alignment of a DECL can be forced to be aligned
on ALIGNMENT bit boundary. */
bool
vect_can_force_dr_alignment_p (const_tree decl, poly_uint64 alignment)
{
if (!VAR_P (decl))
return false;
if (decl_in_symtab_p (decl)
&& !symtab_node::get (decl)->can_increase_alignment_p ())
return false;
if (TREE_STATIC (decl))
return (known_le (alignment,
(unsigned HOST_WIDE_INT) MAX_OFILE_ALIGNMENT));
else
return (known_le (alignment, (unsigned HOST_WIDE_INT) MAX_STACK_ALIGNMENT));
}
/* Return whether the data reference DR_INFO is supported with respect to its
alignment.
If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
it is aligned, i.e., check if it is possible to vectorize it with different
alignment. */
enum dr_alignment_support
vect_supportable_dr_alignment (vec_info *vinfo, dr_vec_info *dr_info,
tree vectype, int misalignment)
{
data_reference *dr = dr_info->dr;
stmt_vec_info stmt_info = dr_info->stmt;
machine_mode mode = TYPE_MODE (vectype);
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
class loop *vect_loop = NULL;
bool nested_in_vect_loop = false;
if (misalignment == 0)
return dr_aligned;
/* For now assume all conditional loads/stores support unaligned
access without any special code. */
if (gcall *stmt = dyn_cast <gcall *> (stmt_info->stmt))
if (gimple_call_internal_p (stmt)
&& (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
|| gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
return dr_unaligned_supported;
if (loop_vinfo)
{
vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt_info);
}
/* Possibly unaligned access. */
/* We can choose between using the implicit realignment scheme (generating
a misaligned_move stmt) and the explicit realignment scheme (generating
aligned loads with a REALIGN_LOAD). There are two variants to the
explicit realignment scheme: optimized, and unoptimized.
We can optimize the realignment only if the step between consecutive
vector loads is equal to the vector size. Since the vector memory
accesses advance in steps of VS (Vector Size) in the vectorized loop, it
is guaranteed that the misalignment amount remains the same throughout the
execution of the vectorized loop. Therefore, we can create the
"realignment token" (the permutation mask that is passed to REALIGN_LOAD)
at the loop preheader.
However, in the case of outer-loop vectorization, when vectorizing a
memory access in the inner-loop nested within the LOOP that is now being
vectorized, while it is guaranteed that the misalignment of the
vectorized memory access will remain the same in different outer-loop
iterations, it is *not* guaranteed that is will remain the same throughout
the execution of the inner-loop. This is because the inner-loop advances
with the original scalar step (and not in steps of VS). If the inner-loop
step happens to be a multiple of VS, then the misalignment remains fixed
and we can use the optimized realignment scheme. For example:
for (i=0; i<N; i++)
for (j=0; j<M; j++)
s += a[i+j];
When vectorizing the i-loop in the above example, the step between
consecutive vector loads is 1, and so the misalignment does not remain
fixed across the execution of the inner-loop, and the realignment cannot
be optimized (as illustrated in the following pseudo vectorized loop):
for (i=0; i<N; i+=4)
for (j=0; j<M; j++){
vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
// when j is {0,1,2,3,4,5,6,7,...} respectively.
// (assuming that we start from an aligned address).
}
We therefore have to use the unoptimized realignment scheme:
for (i=0; i<N; i+=4)
for (j=k; j<M; j+=4)
vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
// that the misalignment of the initial address is
// 0).
The loop can then be vectorized as follows:
for (k=0; k<4; k++){
rt = get_realignment_token (&vp[k]);
for (i=0; i<N; i+=4){
v1 = vp[i+k];
for (j=k; j<M; j+=4){
v2 = vp[i+j+VS-1];
va = REALIGN_LOAD <v1,v2,rt>;
vs += va;
v1 = v2;
}
}
} */
if (DR_IS_READ (dr))
{
if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
&& (!targetm.vectorize.builtin_mask_for_load
|| targetm.vectorize.builtin_mask_for_load ()))
{
/* If we are doing SLP then the accesses need not have the
same alignment, instead it depends on the SLP group size. */
if (loop_vinfo
&& STMT_SLP_TYPE (stmt_info)
&& !multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
* (DR_GROUP_SIZE
(DR_GROUP_FIRST_ELEMENT (stmt_info))),
TYPE_VECTOR_SUBPARTS (vectype)))
;
else if (!loop_vinfo
|| (nested_in_vect_loop
&& maybe_ne (TREE_INT_CST_LOW (DR_STEP (dr)),
GET_MODE_SIZE (TYPE_MODE (vectype)))))
return dr_explicit_realign;
else
return dr_explicit_realign_optimized;
}
}
bool is_packed = false;
tree type = TREE_TYPE (DR_REF (dr));
if (misalignment == DR_MISALIGNMENT_UNKNOWN)
is_packed = not_size_aligned (DR_REF (dr));
if (targetm.vectorize.support_vector_misalignment (mode, type, misalignment,
is_packed))
return dr_unaligned_supported;
/* Unsupported. */
return dr_unaligned_unsupported;
}
|