1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345
|
/* Loop Vectorization
Copyright (C) 2003-2022 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com> and
Ira Rosen <irar@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define INCLUDE_ALGORITHM
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "cfganal.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "gimple-fold.h"
#include "cgraph.h"
#include "tree-cfg.h"
#include "tree-if-conv.h"
#include "internal-fn.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "tree-eh.h"
#include "case-cfn-macros.h"
/* Loop Vectorization Pass.
This pass tries to vectorize loops.
For example, the vectorizer transforms the following simple loop:
short a[N]; short b[N]; short c[N]; int i;
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
as if it was manually vectorized by rewriting the source code into:
typedef int __attribute__((mode(V8HI))) v8hi;
short a[N]; short b[N]; short c[N]; int i;
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
v8hi va, vb, vc;
for (i=0; i<N/8; i++){
vb = pb[i];
vc = pc[i];
va = vb + vc;
pa[i] = va;
}
The main entry to this pass is vectorize_loops(), in which
the vectorizer applies a set of analyses on a given set of loops,
followed by the actual vectorization transformation for the loops that
had successfully passed the analysis phase.
Throughout this pass we make a distinction between two types of
data: scalars (which are represented by SSA_NAMES), and memory references
("data-refs"). These two types of data require different handling both
during analysis and transformation. The types of data-refs that the
vectorizer currently supports are ARRAY_REFS which base is an array DECL
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
accesses are required to have a simple (consecutive) access pattern.
Analysis phase:
===============
The driver for the analysis phase is vect_analyze_loop().
It applies a set of analyses, some of which rely on the scalar evolution
analyzer (scev) developed by Sebastian Pop.
During the analysis phase the vectorizer records some information
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
loop, as well as general information about the loop as a whole, which is
recorded in a "loop_vec_info" struct attached to each loop.
Transformation phase:
=====================
The loop transformation phase scans all the stmts in the loop, and
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
the loop that needs to be vectorized. It inserts the vector code sequence
just before the scalar stmt S, and records a pointer to the vector code
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
attached to S). This pointer will be used for the vectorization of following
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
otherwise, we rely on dead code elimination for removing it.
For example, say stmt S1 was vectorized into stmt VS1:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
S2: a = b;
To vectorize stmt S2, the vectorizer first finds the stmt that defines
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
resulting sequence would be:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
VS2: va = vb;
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
Operands that are not SSA_NAMEs, are data-refs that appear in
load/store operations (like 'x[i]' in S1), and are handled differently.
Target modeling:
=================
Currently the only target specific information that is used is the
size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
Targets that can support different sizes of vectors, for now will need
to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
flexibility will be added in the future.
Since we only vectorize operations which vector form can be
expressed using existing tree codes, to verify that an operation is
supported, the vectorizer checks the relevant optab at the relevant
machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
the value found is CODE_FOR_nothing, then there's no target support, and
we can't vectorize the stmt.
For additional information on this project see:
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/
static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *,
unsigned *);
static stmt_vec_info vect_is_simple_reduction (loop_vec_info, stmt_vec_info,
bool *, bool *);
/* Subroutine of vect_determine_vf_for_stmt that handles only one
statement. VECTYPE_MAYBE_SET_P is true if STMT_VINFO_VECTYPE
may already be set for general statements (not just data refs). */
static opt_result
vect_determine_vf_for_stmt_1 (vec_info *vinfo, stmt_vec_info stmt_info,
bool vectype_maybe_set_p,
poly_uint64 *vf)
{
gimple *stmt = stmt_info->stmt;
if ((!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
|| gimple_clobber_p (stmt))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
return opt_result::success ();
}
tree stmt_vectype, nunits_vectype;
opt_result res = vect_get_vector_types_for_stmt (vinfo, stmt_info,
&stmt_vectype,
&nunits_vectype);
if (!res)
return res;
if (stmt_vectype)
{
if (STMT_VINFO_VECTYPE (stmt_info))
/* The only case when a vectype had been already set is for stmts
that contain a data ref, or for "pattern-stmts" (stmts generated
by the vectorizer to represent/replace a certain idiom). */
gcc_assert ((STMT_VINFO_DATA_REF (stmt_info)
|| vectype_maybe_set_p)
&& STMT_VINFO_VECTYPE (stmt_info) == stmt_vectype);
else
STMT_VINFO_VECTYPE (stmt_info) = stmt_vectype;
}
if (nunits_vectype)
vect_update_max_nunits (vf, nunits_vectype);
return opt_result::success ();
}
/* Subroutine of vect_determine_vectorization_factor. Set the vector
types of STMT_INFO and all attached pattern statements and update
the vectorization factor VF accordingly. Return true on success
or false if something prevented vectorization. */
static opt_result
vect_determine_vf_for_stmt (vec_info *vinfo,
stmt_vec_info stmt_info, poly_uint64 *vf)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: %G",
stmt_info->stmt);
opt_result res = vect_determine_vf_for_stmt_1 (vinfo, stmt_info, false, vf);
if (!res)
return res;
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
&& STMT_VINFO_RELATED_STMT (stmt_info))
{
gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
/* If a pattern statement has def stmts, analyze them too. */
for (gimple_stmt_iterator si = gsi_start (pattern_def_seq);
!gsi_end_p (si); gsi_next (&si))
{
stmt_vec_info def_stmt_info = vinfo->lookup_stmt (gsi_stmt (si));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"==> examining pattern def stmt: %G",
def_stmt_info->stmt);
res = vect_determine_vf_for_stmt_1 (vinfo, def_stmt_info, true, vf);
if (!res)
return res;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"==> examining pattern statement: %G",
stmt_info->stmt);
res = vect_determine_vf_for_stmt_1 (vinfo, stmt_info, true, vf);
if (!res)
return res;
}
return opt_result::success ();
}
/* Function vect_determine_vectorization_factor
Determine the vectorization factor (VF). VF is the number of data elements
that are operated upon in parallel in a single iteration of the vectorized
loop. For example, when vectorizing a loop that operates on 4byte elements,
on a target with vector size (VS) 16byte, the VF is set to 4, since 4
elements can fit in a single vector register.
We currently support vectorization of loops in which all types operated upon
are of the same size. Therefore this function currently sets VF according to
the size of the types operated upon, and fails if there are multiple sizes
in the loop.
VF is also the factor by which the loop iterations are strip-mined, e.g.:
original loop:
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
vectorized loop:
for (i=0; i<N; i+=VF){
a[i:VF] = b[i:VF] + c[i:VF];
}
*/
static opt_result
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
unsigned nbbs = loop->num_nodes;
poly_uint64 vectorization_factor = 1;
tree scalar_type = NULL_TREE;
gphi *phi;
tree vectype;
stmt_vec_info stmt_info;
unsigned i;
DUMP_VECT_SCOPE ("vect_determine_vectorization_factor");
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
phi = si.phi ();
stmt_info = loop_vinfo->lookup_stmt (phi);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: %G",
phi);
gcc_assert (stmt_info);
if (STMT_VINFO_RELEVANT_P (stmt_info)
|| STMT_VINFO_LIVE_P (stmt_info))
{
gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
scalar_type = TREE_TYPE (PHI_RESULT (phi));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"get vectype for scalar type: %T\n",
scalar_type);
vectype = get_vectype_for_scalar_type (loop_vinfo, scalar_type);
if (!vectype)
return opt_result::failure_at (phi,
"not vectorized: unsupported "
"data-type %T\n",
scalar_type);
STMT_VINFO_VECTYPE (stmt_info) = vectype;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "vectype: %T\n",
vectype);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "nunits = ");
dump_dec (MSG_NOTE, TYPE_VECTOR_SUBPARTS (vectype));
dump_printf (MSG_NOTE, "\n");
}
vect_update_max_nunits (&vectorization_factor, vectype);
}
}
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
gsi_next (&si))
{
if (is_gimple_debug (gsi_stmt (si)))
continue;
stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
opt_result res
= vect_determine_vf_for_stmt (loop_vinfo,
stmt_info, &vectorization_factor);
if (!res)
return res;
}
}
/* TODO: Analyze cost. Decide if worth while to vectorize. */
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = ");
dump_dec (MSG_NOTE, vectorization_factor);
dump_printf (MSG_NOTE, "\n");
}
if (known_le (vectorization_factor, 1U))
return opt_result::failure_at (vect_location,
"not vectorized: unsupported data-type\n");
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
return opt_result::success ();
}
/* Function vect_is_simple_iv_evolution.
FORNOW: A simple evolution of an induction variables in the loop is
considered a polynomial evolution. */
static bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
tree * step)
{
tree init_expr;
tree step_expr;
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
basic_block bb;
/* When there is no evolution in this loop, the evolution function
is not "simple". */
if (evolution_part == NULL_TREE)
return false;
/* When the evolution is a polynomial of degree >= 2
the evolution function is not "simple". */
if (tree_is_chrec (evolution_part))
return false;
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "step: %T, init: %T\n",
step_expr, init_expr);
*init = init_expr;
*step = step_expr;
if (TREE_CODE (step_expr) != INTEGER_CST
&& (TREE_CODE (step_expr) != SSA_NAME
|| ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
&& flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
|| (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
&& (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
|| !flag_associative_math)))
&& (TREE_CODE (step_expr) != REAL_CST
|| !flag_associative_math))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"step unknown.\n");
return false;
}
return true;
}
/* Return true if PHI, described by STMT_INFO, is the inner PHI in
what we are assuming is a double reduction. For example, given
a structure like this:
outer1:
x_1 = PHI <x_4(outer2), ...>;
...
inner:
x_2 = PHI <x_1(outer1), ...>;
...
x_3 = ...;
...
outer2:
x_4 = PHI <x_3(inner)>;
...
outer loop analysis would treat x_1 as a double reduction phi and
this function would then return true for x_2. */
static bool
vect_inner_phi_in_double_reduction_p (loop_vec_info loop_vinfo, gphi *phi)
{
use_operand_p use_p;
ssa_op_iter op_iter;
FOR_EACH_PHI_ARG (use_p, phi, op_iter, SSA_OP_USE)
if (stmt_vec_info def_info = loop_vinfo->lookup_def (USE_FROM_PTR (use_p)))
if (STMT_VINFO_DEF_TYPE (def_info) == vect_double_reduction_def)
return true;
return false;
}
/* Function vect_analyze_scalar_cycles_1.
Examine the cross iteration def-use cycles of scalar variables
in LOOP. LOOP_VINFO represents the loop that is now being
considered for vectorization (can be LOOP, or an outer-loop
enclosing LOOP). */
static void
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, class loop *loop)
{
basic_block bb = loop->header;
tree init, step;
auto_vec<stmt_vec_info, 64> worklist;
gphi_iterator gsi;
bool double_reduc, reduc_chain;
DUMP_VECT_SCOPE ("vect_analyze_scalar_cycles");
/* First - identify all inductions. Reduction detection assumes that all the
inductions have been identified, therefore, this order must not be
changed. */
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree access_fn = NULL;
tree def = PHI_RESULT (phi);
stmt_vec_info stmt_vinfo = loop_vinfo->lookup_stmt (phi);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G", phi);
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (virtual_operand_p (def))
continue;
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
/* Analyze the evolution function. */
access_fn = analyze_scalar_evolution (loop, def);
if (access_fn)
{
STRIP_NOPS (access_fn);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Access function of PHI: %T\n", access_fn);
STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
= initial_condition_in_loop_num (access_fn, loop->num);
STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
= evolution_part_in_loop_num (access_fn, loop->num);
}
if (!access_fn
|| vect_inner_phi_in_double_reduction_p (loop_vinfo, phi)
|| !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
|| (LOOP_VINFO_LOOP (loop_vinfo) != loop
&& TREE_CODE (step) != INTEGER_CST))
{
worklist.safe_push (stmt_vinfo);
continue;
}
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
!= NULL_TREE);
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
}
/* Second - identify all reductions and nested cycles. */
while (worklist.length () > 0)
{
stmt_vec_info stmt_vinfo = worklist.pop ();
gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
tree def = PHI_RESULT (phi);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G", phi);
gcc_assert (!virtual_operand_p (def)
&& STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
stmt_vec_info reduc_stmt_info
= vect_is_simple_reduction (loop_vinfo, stmt_vinfo, &double_reduc,
&reduc_chain);
if (reduc_stmt_info)
{
STMT_VINFO_REDUC_DEF (stmt_vinfo) = reduc_stmt_info;
STMT_VINFO_REDUC_DEF (reduc_stmt_info) = stmt_vinfo;
if (double_reduc)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected double reduction.\n");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_double_reduction_def;
}
else
{
if (loop != LOOP_VINFO_LOOP (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected vectorizable nested cycle.\n");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
}
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected reduction.\n");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_reduction_def;
/* Store the reduction cycles for possible vectorization in
loop-aware SLP if it was not detected as reduction
chain. */
if (! reduc_chain)
LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push
(reduc_stmt_info);
}
}
}
else
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Unknown def-use cycle pattern.\n");
}
}
/* Function vect_analyze_scalar_cycles.
Examine the cross iteration def-use cycles of scalar variables, by
analyzing the loop-header PHIs of scalar variables. Classify each
cycle as one of the following: invariant, induction, reduction, unknown.
We do that for the loop represented by LOOP_VINFO, and also to its
inner-loop, if exists.
Examples for scalar cycles:
Example1: reduction:
loop1:
for (i=0; i<N; i++)
sum += a[i];
Example2: induction:
loop2:
for (i=0; i<N; i++)
a[i] = i; */
static void
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
/* When vectorizing an outer-loop, the inner-loop is executed sequentially.
Reductions in such inner-loop therefore have different properties than
the reductions in the nest that gets vectorized:
1. When vectorized, they are executed in the same order as in the original
scalar loop, so we can't change the order of computation when
vectorizing them.
2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
current checks are too strict. */
if (loop->inner)
vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
}
/* Transfer group and reduction information from STMT_INFO to its
pattern stmt. */
static void
vect_fixup_reduc_chain (stmt_vec_info stmt_info)
{
stmt_vec_info firstp = STMT_VINFO_RELATED_STMT (stmt_info);
stmt_vec_info stmtp;
gcc_assert (!REDUC_GROUP_FIRST_ELEMENT (firstp)
&& REDUC_GROUP_FIRST_ELEMENT (stmt_info));
REDUC_GROUP_SIZE (firstp) = REDUC_GROUP_SIZE (stmt_info);
do
{
stmtp = STMT_VINFO_RELATED_STMT (stmt_info);
gcc_checking_assert (STMT_VINFO_DEF_TYPE (stmtp)
== STMT_VINFO_DEF_TYPE (stmt_info));
REDUC_GROUP_FIRST_ELEMENT (stmtp) = firstp;
stmt_info = REDUC_GROUP_NEXT_ELEMENT (stmt_info);
if (stmt_info)
REDUC_GROUP_NEXT_ELEMENT (stmtp)
= STMT_VINFO_RELATED_STMT (stmt_info);
}
while (stmt_info);
}
/* Fixup scalar cycles that now have their stmts detected as patterns. */
static void
vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
{
stmt_vec_info first;
unsigned i;
FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
{
stmt_vec_info next = REDUC_GROUP_NEXT_ELEMENT (first);
while (next)
{
if ((STMT_VINFO_IN_PATTERN_P (next)
!= STMT_VINFO_IN_PATTERN_P (first))
|| STMT_VINFO_REDUC_IDX (vect_stmt_to_vectorize (next)) == -1)
break;
next = REDUC_GROUP_NEXT_ELEMENT (next);
}
/* If all reduction chain members are well-formed patterns adjust
the group to group the pattern stmts instead. */
if (! next
&& STMT_VINFO_REDUC_IDX (vect_stmt_to_vectorize (first)) != -1)
{
if (STMT_VINFO_IN_PATTERN_P (first))
{
vect_fixup_reduc_chain (first);
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
= STMT_VINFO_RELATED_STMT (first);
}
}
/* If not all stmt in the chain are patterns or if we failed
to update STMT_VINFO_REDUC_IDX dissolve the chain and handle
it as regular reduction instead. */
else
{
stmt_vec_info vinfo = first;
stmt_vec_info last = NULL;
while (vinfo)
{
next = REDUC_GROUP_NEXT_ELEMENT (vinfo);
REDUC_GROUP_FIRST_ELEMENT (vinfo) = NULL;
REDUC_GROUP_NEXT_ELEMENT (vinfo) = NULL;
last = vinfo;
vinfo = next;
}
STMT_VINFO_DEF_TYPE (vect_stmt_to_vectorize (first))
= vect_internal_def;
loop_vinfo->reductions.safe_push (vect_stmt_to_vectorize (last));
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).unordered_remove (i);
--i;
}
}
}
/* Function vect_get_loop_niters.
Determine how many iterations the loop is executed and place it
in NUMBER_OF_ITERATIONS. Place the number of latch iterations
in NUMBER_OF_ITERATIONSM1. Place the condition under which the
niter information holds in ASSUMPTIONS.
Return the loop exit condition. */
static gcond *
vect_get_loop_niters (class loop *loop, tree *assumptions,
tree *number_of_iterations, tree *number_of_iterationsm1)
{
edge exit = single_exit (loop);
class tree_niter_desc niter_desc;
tree niter_assumptions, niter, may_be_zero;
gcond *cond = get_loop_exit_condition (loop);
*assumptions = boolean_true_node;
*number_of_iterationsm1 = chrec_dont_know;
*number_of_iterations = chrec_dont_know;
DUMP_VECT_SCOPE ("get_loop_niters");
if (!exit)
return cond;
may_be_zero = NULL_TREE;
if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
|| chrec_contains_undetermined (niter_desc.niter))
return cond;
niter_assumptions = niter_desc.assumptions;
may_be_zero = niter_desc.may_be_zero;
niter = niter_desc.niter;
if (may_be_zero && integer_zerop (may_be_zero))
may_be_zero = NULL_TREE;
if (may_be_zero)
{
if (COMPARISON_CLASS_P (may_be_zero))
{
/* Try to combine may_be_zero with assumptions, this can simplify
computation of niter expression. */
if (niter_assumptions && !integer_nonzerop (niter_assumptions))
niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter_assumptions,
fold_build1 (TRUTH_NOT_EXPR,
boolean_type_node,
may_be_zero));
else
niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
build_int_cst (TREE_TYPE (niter), 0),
rewrite_to_non_trapping_overflow (niter));
may_be_zero = NULL_TREE;
}
else if (integer_nonzerop (may_be_zero))
{
*number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
*number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
return cond;
}
else
return cond;
}
*assumptions = niter_assumptions;
*number_of_iterationsm1 = niter;
/* We want the number of loop header executions which is the number
of latch executions plus one.
??? For UINT_MAX latch executions this number overflows to zero
for loops like do { n++; } while (n != 0); */
if (niter && !chrec_contains_undetermined (niter))
niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
build_int_cst (TREE_TYPE (niter), 1));
*number_of_iterations = niter;
return cond;
}
/* Function bb_in_loop_p
Used as predicate for dfs order traversal of the loop bbs. */
static bool
bb_in_loop_p (const_basic_block bb, const void *data)
{
const class loop *const loop = (const class loop *)data;
if (flow_bb_inside_loop_p (loop, bb))
return true;
return false;
}
/* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
stmt_vec_info structs for all the stmts in LOOP_IN. */
_loop_vec_info::_loop_vec_info (class loop *loop_in, vec_info_shared *shared)
: vec_info (vec_info::loop, shared),
loop (loop_in),
bbs (XCNEWVEC (basic_block, loop->num_nodes)),
num_itersm1 (NULL_TREE),
num_iters (NULL_TREE),
num_iters_unchanged (NULL_TREE),
num_iters_assumptions (NULL_TREE),
vector_costs (nullptr),
scalar_costs (nullptr),
th (0),
versioning_threshold (0),
vectorization_factor (0),
main_loop_edge (nullptr),
skip_main_loop_edge (nullptr),
skip_this_loop_edge (nullptr),
reusable_accumulators (),
suggested_unroll_factor (1),
max_vectorization_factor (0),
mask_skip_niters (NULL_TREE),
rgroup_compare_type (NULL_TREE),
simd_if_cond (NULL_TREE),
unaligned_dr (NULL),
peeling_for_alignment (0),
ptr_mask (0),
ivexpr_map (NULL),
scan_map (NULL),
slp_unrolling_factor (1),
inner_loop_cost_factor (param_vect_inner_loop_cost_factor),
vectorizable (false),
can_use_partial_vectors_p (param_vect_partial_vector_usage != 0),
using_partial_vectors_p (false),
epil_using_partial_vectors_p (false),
partial_load_store_bias (0),
peeling_for_gaps (false),
peeling_for_niter (false),
no_data_dependencies (false),
has_mask_store (false),
scalar_loop_scaling (profile_probability::uninitialized ()),
scalar_loop (NULL),
orig_loop_info (NULL)
{
/* CHECKME: We want to visit all BBs before their successors (except for
latch blocks, for which this assertion wouldn't hold). In the simple
case of the loop forms we allow, a dfs order of the BBs would the same
as reversed postorder traversal, so we are safe. */
unsigned int nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
bbs, loop->num_nodes, loop);
gcc_assert (nbbs == loop->num_nodes);
for (unsigned int i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
gimple_stmt_iterator si;
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *phi = gsi_stmt (si);
gimple_set_uid (phi, 0);
add_stmt (phi);
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
gimple_set_uid (stmt, 0);
if (is_gimple_debug (stmt))
continue;
add_stmt (stmt);
/* If .GOMP_SIMD_LANE call for the current loop has 3 arguments, the
third argument is the #pragma omp simd if (x) condition, when 0,
loop shouldn't be vectorized, when non-zero constant, it should
be vectorized normally, otherwise versioned with vectorized loop
done if the condition is non-zero at runtime. */
if (loop_in->simduid
&& is_gimple_call (stmt)
&& gimple_call_internal_p (stmt)
&& gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
&& gimple_call_num_args (stmt) >= 3
&& TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
&& (loop_in->simduid
== SSA_NAME_VAR (gimple_call_arg (stmt, 0))))
{
tree arg = gimple_call_arg (stmt, 2);
if (integer_zerop (arg) || TREE_CODE (arg) == SSA_NAME)
simd_if_cond = arg;
else
gcc_assert (integer_nonzerop (arg));
}
}
}
epilogue_vinfos.create (6);
}
/* Free all levels of rgroup CONTROLS. */
void
release_vec_loop_controls (vec<rgroup_controls> *controls)
{
rgroup_controls *rgc;
unsigned int i;
FOR_EACH_VEC_ELT (*controls, i, rgc)
rgc->controls.release ();
controls->release ();
}
/* Free all memory used by the _loop_vec_info, as well as all the
stmt_vec_info structs of all the stmts in the loop. */
_loop_vec_info::~_loop_vec_info ()
{
free (bbs);
release_vec_loop_controls (&masks);
release_vec_loop_controls (&lens);
delete ivexpr_map;
delete scan_map;
epilogue_vinfos.release ();
delete scalar_costs;
delete vector_costs;
/* When we release an epiloge vinfo that we do not intend to use
avoid clearing AUX of the main loop which should continue to
point to the main loop vinfo since otherwise we'll leak that. */
if (loop->aux == this)
loop->aux = NULL;
}
/* Return an invariant or register for EXPR and emit necessary
computations in the LOOP_VINFO loop preheader. */
tree
cse_and_gimplify_to_preheader (loop_vec_info loop_vinfo, tree expr)
{
if (is_gimple_reg (expr)
|| is_gimple_min_invariant (expr))
return expr;
if (! loop_vinfo->ivexpr_map)
loop_vinfo->ivexpr_map = new hash_map<tree_operand_hash, tree>;
tree &cached = loop_vinfo->ivexpr_map->get_or_insert (expr);
if (! cached)
{
gimple_seq stmts = NULL;
cached = force_gimple_operand (unshare_expr (expr),
&stmts, true, NULL_TREE);
if (stmts)
{
edge e = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
gsi_insert_seq_on_edge_immediate (e, stmts);
}
}
return cached;
}
/* Return true if we can use CMP_TYPE as the comparison type to produce
all masks required to mask LOOP_VINFO. */
static bool
can_produce_all_loop_masks_p (loop_vec_info loop_vinfo, tree cmp_type)
{
rgroup_controls *rgm;
unsigned int i;
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
if (rgm->type != NULL_TREE
&& !direct_internal_fn_supported_p (IFN_WHILE_ULT,
cmp_type, rgm->type,
OPTIMIZE_FOR_SPEED))
return false;
return true;
}
/* Calculate the maximum number of scalars per iteration for every
rgroup in LOOP_VINFO. */
static unsigned int
vect_get_max_nscalars_per_iter (loop_vec_info loop_vinfo)
{
unsigned int res = 1;
unsigned int i;
rgroup_controls *rgm;
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
res = MAX (res, rgm->max_nscalars_per_iter);
return res;
}
/* Calculate the minimum precision necessary to represent:
MAX_NITERS * FACTOR
as an unsigned integer, where MAX_NITERS is the maximum number of
loop header iterations for the original scalar form of LOOP_VINFO. */
static unsigned
vect_min_prec_for_max_niters (loop_vec_info loop_vinfo, unsigned int factor)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Get the maximum number of iterations that is representable
in the counter type. */
tree ni_type = TREE_TYPE (LOOP_VINFO_NITERSM1 (loop_vinfo));
widest_int max_ni = wi::to_widest (TYPE_MAX_VALUE (ni_type)) + 1;
/* Get a more refined estimate for the number of iterations. */
widest_int max_back_edges;
if (max_loop_iterations (loop, &max_back_edges))
max_ni = wi::smin (max_ni, max_back_edges + 1);
/* Work out how many bits we need to represent the limit. */
return wi::min_precision (max_ni * factor, UNSIGNED);
}
/* True if the loop needs peeling or partial vectors when vectorized. */
static bool
vect_need_peeling_or_partial_vectors_p (loop_vec_info loop_vinfo)
{
unsigned HOST_WIDE_INT const_vf;
HOST_WIDE_INT max_niter
= likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
if (!th && LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo))
th = LOOP_VINFO_COST_MODEL_THRESHOLD (LOOP_VINFO_ORIG_LOOP_INFO
(loop_vinfo));
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
{
/* Work out the (constant) number of iterations that need to be
peeled for reasons other than niters. */
unsigned int peel_niter = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
peel_niter += 1;
if (!multiple_p (LOOP_VINFO_INT_NITERS (loop_vinfo) - peel_niter,
LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
return true;
}
else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
/* ??? When peeling for gaps but not alignment, we could
try to check whether the (variable) niters is known to be
VF * N + 1. That's something of a niche case though. */
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|| !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&const_vf)
|| ((tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
< (unsigned) exact_log2 (const_vf))
/* In case of versioning, check if the maximum number of
iterations is greater than th. If they are identical,
the epilogue is unnecessary. */
&& (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
|| ((unsigned HOST_WIDE_INT) max_niter
> (th / const_vf) * const_vf))))
return true;
return false;
}
/* Each statement in LOOP_VINFO can be masked where necessary. Check
whether we can actually generate the masks required. Return true if so,
storing the type of the scalar IV in LOOP_VINFO_RGROUP_COMPARE_TYPE. */
static bool
vect_verify_full_masking (loop_vec_info loop_vinfo)
{
unsigned int min_ni_width;
unsigned int max_nscalars_per_iter
= vect_get_max_nscalars_per_iter (loop_vinfo);
/* Use a normal loop if there are no statements that need masking.
This only happens in rare degenerate cases: it means that the loop
has no loads, no stores, and no live-out values. */
if (LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
return false;
/* Work out how many bits we need to represent the limit. */
min_ni_width
= vect_min_prec_for_max_niters (loop_vinfo, max_nscalars_per_iter);
/* Find a scalar mode for which WHILE_ULT is supported. */
opt_scalar_int_mode cmp_mode_iter;
tree cmp_type = NULL_TREE;
tree iv_type = NULL_TREE;
widest_int iv_limit = vect_iv_limit_for_partial_vectors (loop_vinfo);
unsigned int iv_precision = UINT_MAX;
if (iv_limit != -1)
iv_precision = wi::min_precision (iv_limit * max_nscalars_per_iter,
UNSIGNED);
FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
{
unsigned int cmp_bits = GET_MODE_BITSIZE (cmp_mode_iter.require ());
if (cmp_bits >= min_ni_width
&& targetm.scalar_mode_supported_p (cmp_mode_iter.require ()))
{
tree this_type = build_nonstandard_integer_type (cmp_bits, true);
if (this_type
&& can_produce_all_loop_masks_p (loop_vinfo, this_type))
{
/* Although we could stop as soon as we find a valid mode,
there are at least two reasons why that's not always the
best choice:
- An IV that's Pmode or wider is more likely to be reusable
in address calculations than an IV that's narrower than
Pmode.
- Doing the comparison in IV_PRECISION or wider allows
a natural 0-based IV, whereas using a narrower comparison
type requires mitigations against wrap-around.
Conversely, if the IV limit is variable, doing the comparison
in a wider type than the original type can introduce
unnecessary extensions, so picking the widest valid mode
is not always a good choice either.
Here we prefer the first IV type that's Pmode or wider,
and the first comparison type that's IV_PRECISION or wider.
(The comparison type must be no wider than the IV type,
to avoid extensions in the vector loop.)
??? We might want to try continuing beyond Pmode for ILP32
targets if CMP_BITS < IV_PRECISION. */
iv_type = this_type;
if (!cmp_type || iv_precision > TYPE_PRECISION (cmp_type))
cmp_type = this_type;
if (cmp_bits >= GET_MODE_BITSIZE (Pmode))
break;
}
}
}
if (!cmp_type)
return false;
LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo) = cmp_type;
LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo) = iv_type;
return true;
}
/* Check whether we can use vector access with length based on precison
comparison. So far, to keep it simple, we only allow the case that the
precision of the target supported length is larger than the precision
required by loop niters. */
static bool
vect_verify_loop_lens (loop_vec_info loop_vinfo)
{
if (LOOP_VINFO_LENS (loop_vinfo).is_empty ())
return false;
machine_mode len_load_mode = get_len_load_store_mode
(loop_vinfo->vector_mode, true).require ();
machine_mode len_store_mode = get_len_load_store_mode
(loop_vinfo->vector_mode, false).require ();
signed char partial_load_bias = internal_len_load_store_bias
(IFN_LEN_LOAD, len_load_mode);
signed char partial_store_bias = internal_len_load_store_bias
(IFN_LEN_STORE, len_store_mode);
gcc_assert (partial_load_bias == partial_store_bias);
if (partial_load_bias == VECT_PARTIAL_BIAS_UNSUPPORTED)
return false;
/* If the backend requires a bias of -1 for LEN_LOAD, we must not emit
len_loads with a length of zero. In order to avoid that we prohibit
more than one loop length here. */
if (partial_load_bias == -1
&& LOOP_VINFO_LENS (loop_vinfo).length () > 1)
return false;
LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo) = partial_load_bias;
unsigned int max_nitems_per_iter = 1;
unsigned int i;
rgroup_controls *rgl;
/* Find the maximum number of items per iteration for every rgroup. */
FOR_EACH_VEC_ELT (LOOP_VINFO_LENS (loop_vinfo), i, rgl)
{
unsigned nitems_per_iter = rgl->max_nscalars_per_iter * rgl->factor;
max_nitems_per_iter = MAX (max_nitems_per_iter, nitems_per_iter);
}
/* Work out how many bits we need to represent the length limit. */
unsigned int min_ni_prec
= vect_min_prec_for_max_niters (loop_vinfo, max_nitems_per_iter);
/* Now use the maximum of below precisions for one suitable IV type:
- the IV's natural precision
- the precision needed to hold: the maximum number of scalar
iterations multiplied by the scale factor (min_ni_prec above)
- the Pmode precision
If min_ni_prec is less than the precision of the current niters,
we perfer to still use the niters type. Prefer to use Pmode and
wider IV to avoid narrow conversions. */
unsigned int ni_prec
= TYPE_PRECISION (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)));
min_ni_prec = MAX (min_ni_prec, ni_prec);
min_ni_prec = MAX (min_ni_prec, GET_MODE_BITSIZE (Pmode));
tree iv_type = NULL_TREE;
opt_scalar_int_mode tmode_iter;
FOR_EACH_MODE_IN_CLASS (tmode_iter, MODE_INT)
{
scalar_mode tmode = tmode_iter.require ();
unsigned int tbits = GET_MODE_BITSIZE (tmode);
/* ??? Do we really want to construct one IV whose precision exceeds
BITS_PER_WORD? */
if (tbits > BITS_PER_WORD)
break;
/* Find the first available standard integral type. */
if (tbits >= min_ni_prec && targetm.scalar_mode_supported_p (tmode))
{
iv_type = build_nonstandard_integer_type (tbits, true);
break;
}
}
if (!iv_type)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't vectorize with length-based partial vectors"
" because there is no suitable iv type.\n");
return false;
}
LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo) = iv_type;
LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo) = iv_type;
return true;
}
/* Calculate the cost of one scalar iteration of the loop. */
static void
vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes, factor;
int innerloop_iters, i;
DUMP_VECT_SCOPE ("vect_compute_single_scalar_iteration_cost");
/* Gather costs for statements in the scalar loop. */
/* FORNOW. */
innerloop_iters = 1;
if (loop->inner)
innerloop_iters = LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo);
for (i = 0; i < nbbs; i++)
{
gimple_stmt_iterator si;
basic_block bb = bbs[i];
if (bb->loop_father == loop->inner)
factor = innerloop_iters;
else
factor = 1;
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
continue;
/* Skip stmts that are not vectorized inside the loop. */
stmt_vec_info vstmt_info = vect_stmt_to_vectorize (stmt_info);
if (!STMT_VINFO_RELEVANT_P (vstmt_info)
&& (!STMT_VINFO_LIVE_P (vstmt_info)
|| !VECTORIZABLE_CYCLE_DEF
(STMT_VINFO_DEF_TYPE (vstmt_info))))
continue;
vect_cost_for_stmt kind;
if (STMT_VINFO_DATA_REF (stmt_info))
{
if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
kind = scalar_load;
else
kind = scalar_store;
}
else if (vect_nop_conversion_p (stmt_info))
continue;
else
kind = scalar_stmt;
/* We are using vect_prologue here to avoid scaling twice
by the inner loop factor. */
record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
factor, kind, stmt_info, 0, vect_prologue);
}
}
/* Now accumulate cost. */
loop_vinfo->scalar_costs = init_cost (loop_vinfo, true);
add_stmt_costs (loop_vinfo->scalar_costs,
&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo));
loop_vinfo->scalar_costs->finish_cost (nullptr);
}
/* Function vect_analyze_loop_form.
Verify that certain CFG restrictions hold, including:
- the loop has a pre-header
- the loop has a single entry and exit
- the loop exit condition is simple enough
- the number of iterations can be analyzed, i.e, a countable loop. The
niter could be analyzed under some assumptions. */
opt_result
vect_analyze_loop_form (class loop *loop, vect_loop_form_info *info)
{
DUMP_VECT_SCOPE ("vect_analyze_loop_form");
/* Different restrictions apply when we are considering an inner-most loop,
vs. an outer (nested) loop.
(FORNOW. May want to relax some of these restrictions in the future). */
info->inner_loop_cond = NULL;
if (!loop->inner)
{
/* Inner-most loop. We currently require that the number of BBs is
exactly 2 (the header and latch). Vectorizable inner-most loops
look like this:
(pre-header)
|
header <--------+
| | |
| +--> latch --+
|
(exit-bb) */
if (loop->num_nodes != 2)
return opt_result::failure_at (vect_location,
"not vectorized:"
" control flow in loop.\n");
if (empty_block_p (loop->header))
return opt_result::failure_at (vect_location,
"not vectorized: empty loop.\n");
}
else
{
class loop *innerloop = loop->inner;
edge entryedge;
/* Nested loop. We currently require that the loop is doubly-nested,
contains a single inner loop, and the number of BBs is exactly 5.
Vectorizable outer-loops look like this:
(pre-header)
|
header <---+
| |
inner-loop |
| |
tail ------+
|
(exit-bb)
The inner-loop has the properties expected of inner-most loops
as described above. */
if ((loop->inner)->inner || (loop->inner)->next)
return opt_result::failure_at (vect_location,
"not vectorized:"
" multiple nested loops.\n");
if (loop->num_nodes != 5)
return opt_result::failure_at (vect_location,
"not vectorized:"
" control flow in loop.\n");
entryedge = loop_preheader_edge (innerloop);
if (entryedge->src != loop->header
|| !single_exit (innerloop)
|| single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
return opt_result::failure_at (vect_location,
"not vectorized:"
" unsupported outerloop form.\n");
/* Analyze the inner-loop. */
vect_loop_form_info inner;
opt_result res = vect_analyze_loop_form (loop->inner, &inner);
if (!res)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: Bad inner loop.\n");
return res;
}
/* Don't support analyzing niter under assumptions for inner
loop. */
if (!integer_onep (inner.assumptions))
return opt_result::failure_at (vect_location,
"not vectorized: Bad inner loop.\n");
if (!expr_invariant_in_loop_p (loop, inner.number_of_iterations))
return opt_result::failure_at (vect_location,
"not vectorized: inner-loop count not"
" invariant.\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Considering outer-loop vectorization.\n");
info->inner_loop_cond = inner.loop_cond;
}
if (!single_exit (loop))
return opt_result::failure_at (vect_location,
"not vectorized: multiple exits.\n");
if (EDGE_COUNT (loop->header->preds) != 2)
return opt_result::failure_at (vect_location,
"not vectorized:"
" too many incoming edges.\n");
/* We assume that the loop exit condition is at the end of the loop. i.e,
that the loop is represented as a do-while (with a proper if-guard
before the loop if needed), where the loop header contains all the
executable statements, and the latch is empty. */
if (!empty_block_p (loop->latch)
|| !gimple_seq_empty_p (phi_nodes (loop->latch)))
return opt_result::failure_at (vect_location,
"not vectorized: latch block not empty.\n");
/* Make sure the exit is not abnormal. */
edge e = single_exit (loop);
if (e->flags & EDGE_ABNORMAL)
return opt_result::failure_at (vect_location,
"not vectorized:"
" abnormal loop exit edge.\n");
info->loop_cond
= vect_get_loop_niters (loop, &info->assumptions,
&info->number_of_iterations,
&info->number_of_iterationsm1);
if (!info->loop_cond)
return opt_result::failure_at
(vect_location,
"not vectorized: complicated exit condition.\n");
if (integer_zerop (info->assumptions)
|| !info->number_of_iterations
|| chrec_contains_undetermined (info->number_of_iterations))
return opt_result::failure_at
(info->loop_cond,
"not vectorized: number of iterations cannot be computed.\n");
if (integer_zerop (info->number_of_iterations))
return opt_result::failure_at
(info->loop_cond,
"not vectorized: number of iterations = 0.\n");
if (!(tree_fits_shwi_p (info->number_of_iterations)
&& tree_to_shwi (info->number_of_iterations) > 0))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Symbolic number of iterations is ");
dump_generic_expr (MSG_NOTE, TDF_DETAILS, info->number_of_iterations);
dump_printf (MSG_NOTE, "\n");
}
}
return opt_result::success ();
}
/* Create a loop_vec_info for LOOP with SHARED and the
vect_analyze_loop_form result. */
loop_vec_info
vect_create_loop_vinfo (class loop *loop, vec_info_shared *shared,
const vect_loop_form_info *info,
loop_vec_info main_loop_info)
{
loop_vec_info loop_vinfo = new _loop_vec_info (loop, shared);
LOOP_VINFO_NITERSM1 (loop_vinfo) = info->number_of_iterationsm1;
LOOP_VINFO_NITERS (loop_vinfo) = info->number_of_iterations;
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = info->number_of_iterations;
LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = main_loop_info;
/* Also record the assumptions for versioning. */
if (!integer_onep (info->assumptions) && !main_loop_info)
LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = info->assumptions;
stmt_vec_info loop_cond_info = loop_vinfo->lookup_stmt (info->loop_cond);
STMT_VINFO_TYPE (loop_cond_info) = loop_exit_ctrl_vec_info_type;
if (info->inner_loop_cond)
{
stmt_vec_info inner_loop_cond_info
= loop_vinfo->lookup_stmt (info->inner_loop_cond);
STMT_VINFO_TYPE (inner_loop_cond_info) = loop_exit_ctrl_vec_info_type;
/* If we have an estimate on the number of iterations of the inner
loop use that to limit the scale for costing, otherwise use
--param vect-inner-loop-cost-factor literally. */
widest_int nit;
if (estimated_stmt_executions (loop->inner, &nit))
LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo)
= wi::smin (nit, param_vect_inner_loop_cost_factor).to_uhwi ();
}
return loop_vinfo;
}
/* Scan the loop stmts and dependent on whether there are any (non-)SLP
statements update the vectorization factor. */
static void
vect_update_vf_for_slp (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
poly_uint64 vectorization_factor;
int i;
DUMP_VECT_SCOPE ("vect_update_vf_for_slp");
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
gcc_assert (known_ne (vectorization_factor, 0U));
/* If all the stmts in the loop can be SLPed, we perform only SLP, and
vectorization factor of the loop is the unrolling factor required by
the SLP instances. If that unrolling factor is 1, we say, that we
perform pure SLP on loop - cross iteration parallelism is not
exploited. */
bool only_slp_in_loop = true;
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (si.phi ());
if (!stmt_info)
continue;
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
&& !PURE_SLP_STMT (stmt_info))
/* STMT needs both SLP and loop-based vectorization. */
only_slp_in_loop = false;
}
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
gsi_next (&si))
{
if (is_gimple_debug (gsi_stmt (si)))
continue;
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
stmt_info = vect_stmt_to_vectorize (stmt_info);
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
&& !PURE_SLP_STMT (stmt_info))
/* STMT needs both SLP and loop-based vectorization. */
only_slp_in_loop = false;
}
}
if (only_slp_in_loop)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Loop contains only SLP stmts\n");
vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
}
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Loop contains SLP and non-SLP stmts\n");
/* Both the vectorization factor and unroll factor have the form
GET_MODE_SIZE (loop_vinfo->vector_mode) * X for some rational X,
so they must have a common multiple. */
vectorization_factor
= force_common_multiple (vectorization_factor,
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
}
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Updating vectorization factor to ");
dump_dec (MSG_NOTE, vectorization_factor);
dump_printf (MSG_NOTE, ".\n");
}
}
/* Return true if STMT_INFO describes a double reduction phi and if
the other phi in the reduction is also relevant for vectorization.
This rejects cases such as:
outer1:
x_1 = PHI <x_3(outer2), ...>;
...
inner:
x_2 = ...;
...
outer2:
x_3 = PHI <x_2(inner)>;
if nothing in x_2 or elsewhere makes x_1 relevant. */
static bool
vect_active_double_reduction_p (stmt_vec_info stmt_info)
{
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
return false;
return STMT_VINFO_RELEVANT_P (STMT_VINFO_REDUC_DEF (stmt_info));
}
/* Function vect_analyze_loop_operations.
Scan the loop stmts and make sure they are all vectorizable. */
static opt_result
vect_analyze_loop_operations (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
int i;
stmt_vec_info stmt_info;
bool need_to_vectorize = false;
bool ok;
DUMP_VECT_SCOPE ("vect_analyze_loop_operations");
auto_vec<stmt_info_for_cost> cost_vec;
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
gphi *phi = si.phi ();
ok = true;
stmt_info = loop_vinfo->lookup_stmt (phi);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "examining phi: %G", phi);
if (virtual_operand_p (gimple_phi_result (phi)))
continue;
/* Inner-loop loop-closed exit phi in outer-loop vectorization
(i.e., a phi in the tail of the outer-loop). */
if (! is_loop_header_bb_p (bb))
{
/* FORNOW: we currently don't support the case that these phis
are not used in the outerloop (unless it is double reduction,
i.e., this phi is vect_reduction_def), cause this case
requires to actually do something here. */
if (STMT_VINFO_LIVE_P (stmt_info)
&& !vect_active_double_reduction_p (stmt_info))
return opt_result::failure_at (phi,
"Unsupported loop-closed phi"
" in outer-loop.\n");
/* If PHI is used in the outer loop, we check that its operand
is defined in the inner loop. */
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
tree phi_op;
if (gimple_phi_num_args (phi) != 1)
return opt_result::failure_at (phi, "unsupported phi");
phi_op = PHI_ARG_DEF (phi, 0);
stmt_vec_info op_def_info = loop_vinfo->lookup_def (phi_op);
if (!op_def_info)
return opt_result::failure_at (phi, "unsupported phi\n");
if (STMT_VINFO_RELEVANT (op_def_info) != vect_used_in_outer
&& (STMT_VINFO_RELEVANT (op_def_info)
!= vect_used_in_outer_by_reduction))
return opt_result::failure_at (phi, "unsupported phi\n");
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def
|| (STMT_VINFO_DEF_TYPE (stmt_info)
== vect_double_reduction_def))
&& !vectorizable_lc_phi (loop_vinfo,
stmt_info, NULL, NULL))
return opt_result::failure_at (phi, "unsupported phi\n");
}
continue;
}
gcc_assert (stmt_info);
if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
|| STMT_VINFO_LIVE_P (stmt_info))
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
/* A scalar-dependence cycle that we don't support. */
return opt_result::failure_at (phi,
"not vectorized:"
" scalar dependence cycle.\n");
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
need_to_vectorize = true;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
&& ! PURE_SLP_STMT (stmt_info))
ok = vectorizable_induction (loop_vinfo,
stmt_info, NULL, NULL,
&cost_vec);
else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|| (STMT_VINFO_DEF_TYPE (stmt_info)
== vect_double_reduction_def)
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
&& ! PURE_SLP_STMT (stmt_info))
ok = vectorizable_reduction (loop_vinfo,
stmt_info, NULL, NULL, &cost_vec);
}
/* SLP PHIs are tested by vect_slp_analyze_node_operations. */
if (ok
&& STMT_VINFO_LIVE_P (stmt_info)
&& !PURE_SLP_STMT (stmt_info))
ok = vectorizable_live_operation (loop_vinfo,
stmt_info, NULL, NULL, NULL,
-1, false, &cost_vec);
if (!ok)
return opt_result::failure_at (phi,
"not vectorized: relevant phi not "
"supported: %G",
static_cast <gimple *> (phi));
}
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
if (!gimple_clobber_p (stmt)
&& !is_gimple_debug (stmt))
{
opt_result res
= vect_analyze_stmt (loop_vinfo,
loop_vinfo->lookup_stmt (stmt),
&need_to_vectorize,
NULL, NULL, &cost_vec);
if (!res)
return res;
}
}
} /* bbs */
add_stmt_costs (loop_vinfo->vector_costs, &cost_vec);
/* All operations in the loop are either irrelevant (deal with loop
control, or dead), or only used outside the loop and can be moved
out of the loop (e.g. invariants, inductions). The loop can be
optimized away by scalar optimizations. We're better off not
touching this loop. */
if (!need_to_vectorize)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"All the computation can be taken out of the loop.\n");
return opt_result::failure_at
(vect_location,
"not vectorized: redundant loop. no profit to vectorize.\n");
}
return opt_result::success ();
}
/* Return true if we know that the iteration count is smaller than the
vectorization factor. Return false if it isn't, or if we can't be sure
either way. */
static bool
vect_known_niters_smaller_than_vf (loop_vec_info loop_vinfo)
{
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
HOST_WIDE_INT max_niter;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
max_niter = LOOP_VINFO_INT_NITERS (loop_vinfo);
else
max_niter = max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
if (max_niter != -1 && (unsigned HOST_WIDE_INT) max_niter < assumed_vf)
return true;
return false;
}
/* Analyze the cost of the loop described by LOOP_VINFO. Decide if it
is worthwhile to vectorize. Return 1 if definitely yes, 0 if
definitely no, or -1 if it's worth retrying. */
static int
vect_analyze_loop_costing (loop_vec_info loop_vinfo,
unsigned *suggested_unroll_factor)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
/* Only loops that can handle partially-populated vectors can have iteration
counts less than the vectorization factor. */
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
if (vect_known_niters_smaller_than_vf (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: iteration count smaller than "
"vectorization factor.\n");
return 0;
}
}
/* If using the "very cheap" model. reject cases in which we'd keep
a copy of the scalar code (even if we might be able to vectorize it). */
if (loop_cost_model (loop) == VECT_COST_MODEL_VERY_CHEAP
&& (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|| LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"some scalar iterations would need to be peeled\n");
return 0;
}
int min_profitable_iters, min_profitable_estimate;
vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
&min_profitable_estimate,
suggested_unroll_factor);
if (min_profitable_iters < 0)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vectorization not profitable.\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vector version will never be "
"profitable.\n");
return -1;
}
int min_scalar_loop_bound = (param_min_vect_loop_bound
* assumed_vf);
/* Use the cost model only if it is more conservative than user specified
threshold. */
unsigned int th = (unsigned) MAX (min_scalar_loop_bound,
min_profitable_iters);
LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vectorization not profitable.\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"not vectorized: iteration count smaller than user "
"specified loop bound parameter or minimum profitable "
"iterations (whichever is more conservative).\n");
return 0;
}
/* The static profitablity threshold min_profitable_estimate includes
the cost of having to check at runtime whether the scalar loop
should be used instead. If it turns out that we don't need or want
such a check, the threshold we should use for the static estimate
is simply the point at which the vector loop becomes more profitable
than the scalar loop. */
if (min_profitable_estimate > min_profitable_iters
&& !LOOP_REQUIRES_VERSIONING (loop_vinfo)
&& !LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
&& !LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
&& !vect_apply_runtime_profitability_check_p (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "no need for a runtime"
" choice between the scalar and vector loops\n");
min_profitable_estimate = min_profitable_iters;
}
/* If the vector loop needs multiple iterations to be beneficial then
things are probably too close to call, and the conservative thing
would be to stick with the scalar code. */
if (loop_cost_model (loop) == VECT_COST_MODEL_VERY_CHEAP
&& min_profitable_estimate > (int) vect_vf_for_cost (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"one iteration of the vector loop would be"
" more expensive than the equivalent number of"
" iterations of the scalar loop\n");
return 0;
}
HOST_WIDE_INT estimated_niter;
/* If we are vectorizing an epilogue then we know the maximum number of
scalar iterations it will cover is at least one lower than the
vectorization factor of the main loop. */
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
estimated_niter
= vect_vf_for_cost (LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo)) - 1;
else
{
estimated_niter = estimated_stmt_executions_int (loop);
if (estimated_niter == -1)
estimated_niter = likely_max_stmt_executions_int (loop);
}
if (estimated_niter != -1
&& ((unsigned HOST_WIDE_INT) estimated_niter
< MAX (th, (unsigned) min_profitable_estimate)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: estimated iteration count too "
"small.\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"not vectorized: estimated iteration count smaller "
"than specified loop bound parameter or minimum "
"profitable iterations (whichever is more "
"conservative).\n");
return -1;
}
return 1;
}
static opt_result
vect_get_datarefs_in_loop (loop_p loop, basic_block *bbs,
vec<data_reference_p> *datarefs,
unsigned int *n_stmts)
{
*n_stmts = 0;
for (unsigned i = 0; i < loop->num_nodes; i++)
for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
++(*n_stmts);
opt_result res = vect_find_stmt_data_reference (loop, stmt, datarefs,
NULL, 0);
if (!res)
{
if (is_gimple_call (stmt) && loop->safelen)
{
tree fndecl = gimple_call_fndecl (stmt), op;
if (fndecl != NULL_TREE)
{
cgraph_node *node = cgraph_node::get (fndecl);
if (node != NULL && node->simd_clones != NULL)
{
unsigned int j, n = gimple_call_num_args (stmt);
for (j = 0; j < n; j++)
{
op = gimple_call_arg (stmt, j);
if (DECL_P (op)
|| (REFERENCE_CLASS_P (op)
&& get_base_address (op)))
break;
}
op = gimple_call_lhs (stmt);
/* Ignore #pragma omp declare simd functions
if they don't have data references in the
call stmt itself. */
if (j == n
&& !(op
&& (DECL_P (op)
|| (REFERENCE_CLASS_P (op)
&& get_base_address (op)))))
continue;
}
}
}
return res;
}
/* If dependence analysis will give up due to the limit on the
number of datarefs stop here and fail fatally. */
if (datarefs->length ()
> (unsigned)param_loop_max_datarefs_for_datadeps)
return opt_result::failure_at (stmt, "exceeded param "
"loop-max-datarefs-for-datadeps\n");
}
return opt_result::success ();
}
/* Look for SLP-only access groups and turn each individual access into its own
group. */
static void
vect_dissolve_slp_only_groups (loop_vec_info loop_vinfo)
{
unsigned int i;
struct data_reference *dr;
DUMP_VECT_SCOPE ("vect_dissolve_slp_only_groups");
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
FOR_EACH_VEC_ELT (datarefs, i, dr)
{
gcc_assert (DR_REF (dr));
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (DR_STMT (dr));
/* Check if the load is a part of an interleaving chain. */
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
{
stmt_vec_info first_element = DR_GROUP_FIRST_ELEMENT (stmt_info);
dr_vec_info *dr_info = STMT_VINFO_DR_INFO (first_element);
unsigned int group_size = DR_GROUP_SIZE (first_element);
/* Check if SLP-only groups. */
if (!STMT_SLP_TYPE (stmt_info)
&& STMT_VINFO_SLP_VECT_ONLY (first_element))
{
/* Dissolve the group. */
STMT_VINFO_SLP_VECT_ONLY (first_element) = false;
stmt_vec_info vinfo = first_element;
while (vinfo)
{
stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (vinfo);
DR_GROUP_FIRST_ELEMENT (vinfo) = vinfo;
DR_GROUP_NEXT_ELEMENT (vinfo) = NULL;
DR_GROUP_SIZE (vinfo) = 1;
if (STMT_VINFO_STRIDED_P (first_element))
DR_GROUP_GAP (vinfo) = 0;
else
DR_GROUP_GAP (vinfo) = group_size - 1;
/* Duplicate and adjust alignment info, it needs to
be present on each group leader, see dr_misalignment. */
if (vinfo != first_element)
{
dr_vec_info *dr_info2 = STMT_VINFO_DR_INFO (vinfo);
dr_info2->target_alignment = dr_info->target_alignment;
int misalignment = dr_info->misalignment;
if (misalignment != DR_MISALIGNMENT_UNKNOWN)
{
HOST_WIDE_INT diff
= (TREE_INT_CST_LOW (DR_INIT (dr_info2->dr))
- TREE_INT_CST_LOW (DR_INIT (dr_info->dr)));
unsigned HOST_WIDE_INT align_c
= dr_info->target_alignment.to_constant ();
misalignment = (misalignment + diff) % align_c;
}
dr_info2->misalignment = misalignment;
}
vinfo = next;
}
}
}
}
}
/* Determine if operating on full vectors for LOOP_VINFO might leave
some scalar iterations still to do. If so, decide how we should
handle those scalar iterations. The possibilities are:
(1) Make LOOP_VINFO operate on partial vectors instead of full vectors.
In this case:
LOOP_VINFO_USING_PARTIAL_VECTORS_P == true
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == false
LOOP_VINFO_PEELING_FOR_NITER == false
(2) Make LOOP_VINFO operate on full vectors and use an epilogue loop
to handle the remaining scalar iterations. In this case:
LOOP_VINFO_USING_PARTIAL_VECTORS_P == false
LOOP_VINFO_PEELING_FOR_NITER == true
There are two choices:
(2a) Consider vectorizing the epilogue loop at the same VF as the
main loop, but using partial vectors instead of full vectors.
In this case:
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == true
(2b) Consider vectorizing the epilogue loop at lower VFs only.
In this case:
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == false
When FOR_EPILOGUE_P is true, make this determination based on the
assumption that LOOP_VINFO is an epilogue loop, otherwise make it
based on the assumption that LOOP_VINFO is the main loop. The caller
has made sure that the number of iterations is set appropriately for
this value of FOR_EPILOGUE_P. */
opt_result
vect_determine_partial_vectors_and_peeling (loop_vec_info loop_vinfo,
bool for_epilogue_p)
{
/* Determine whether there would be any scalar iterations left over. */
bool need_peeling_or_partial_vectors_p
= vect_need_peeling_or_partial_vectors_p (loop_vinfo);
/* Decide whether to vectorize the loop with partial vectors. */
LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo) = false;
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P (loop_vinfo) = false;
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
&& need_peeling_or_partial_vectors_p)
{
/* For partial-vector-usage=1, try to push the handling of partial
vectors to the epilogue, with the main loop continuing to operate
on full vectors.
If we are unrolling we also do not want to use partial vectors. This
is to avoid the overhead of generating multiple masks and also to
avoid having to execute entire iterations of FALSE masked instructions
when dealing with one or less full iterations.
??? We could then end up failing to use partial vectors if we
decide to peel iterations into a prologue, and if the main loop
then ends up processing fewer than VF iterations. */
if ((param_vect_partial_vector_usage == 1
|| loop_vinfo->suggested_unroll_factor > 1)
&& !LOOP_VINFO_EPILOGUE_P (loop_vinfo)
&& !vect_known_niters_smaller_than_vf (loop_vinfo))
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P (loop_vinfo) = true;
else
LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo) = true;
}
if (dump_enabled_p ())
{
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
dump_printf_loc (MSG_NOTE, vect_location,
"operating on partial vectors%s.\n",
for_epilogue_p ? " for epilogue loop" : "");
else
dump_printf_loc (MSG_NOTE, vect_location,
"operating only on full vectors%s.\n",
for_epilogue_p ? " for epilogue loop" : "");
}
if (for_epilogue_p)
{
loop_vec_info orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
gcc_assert (orig_loop_vinfo);
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
gcc_assert (known_lt (LOOP_VINFO_VECT_FACTOR (loop_vinfo),
LOOP_VINFO_VECT_FACTOR (orig_loop_vinfo)));
}
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* Check that the loop processes at least one full vector. */
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
tree scalar_niters = LOOP_VINFO_NITERS (loop_vinfo);
if (known_lt (wi::to_widest (scalar_niters), vf))
return opt_result::failure_at (vect_location,
"loop does not have enough iterations"
" to support vectorization.\n");
/* If we need to peel an extra epilogue iteration to handle data
accesses with gaps, check that there are enough scalar iterations
available.
The check above is redundant with this one when peeling for gaps,
but the distinction is useful for diagnostics. */
tree scalar_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
&& known_lt (wi::to_widest (scalar_nitersm1), vf))
return opt_result::failure_at (vect_location,
"loop does not have enough iterations"
" to support peeling for gaps.\n");
}
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
= (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
&& need_peeling_or_partial_vectors_p);
return opt_result::success ();
}
/* Function vect_analyze_loop_2.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. */
static opt_result
vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal,
unsigned *suggested_unroll_factor)
{
opt_result ok = opt_result::success ();
int res;
unsigned int max_vf = MAX_VECTORIZATION_FACTOR;
poly_uint64 min_vf = 2;
loop_vec_info orig_loop_vinfo = NULL;
/* If we are dealing with an epilogue then orig_loop_vinfo points to the
loop_vec_info of the first vectorized loop. */
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
else
orig_loop_vinfo = loop_vinfo;
gcc_assert (orig_loop_vinfo);
/* The first group of checks is independent of the vector size. */
fatal = true;
if (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)
&& integer_zerop (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)))
return opt_result::failure_at (vect_location,
"not vectorized: simd if(0)\n");
/* Find all data references in the loop (which correspond to vdefs/vuses)
and analyze their evolution in the loop. */
loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Gather the data references and count stmts in the loop. */
if (!LOOP_VINFO_DATAREFS (loop_vinfo).exists ())
{
opt_result res
= vect_get_datarefs_in_loop (loop, LOOP_VINFO_BBS (loop_vinfo),
&LOOP_VINFO_DATAREFS (loop_vinfo),
&LOOP_VINFO_N_STMTS (loop_vinfo));
if (!res)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: loop contains function "
"calls or data references that cannot "
"be analyzed\n");
return res;
}
loop_vinfo->shared->save_datarefs ();
}
else
loop_vinfo->shared->check_datarefs ();
/* Analyze the data references and also adjust the minimal
vectorization factor according to the loads and stores. */
ok = vect_analyze_data_refs (loop_vinfo, &min_vf, &fatal);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data references.\n");
return ok;
}
/* Classify all cross-iteration scalar data-flow cycles.
Cross-iteration cycles caused by virtual phis are analyzed separately. */
vect_analyze_scalar_cycles (loop_vinfo);
vect_pattern_recog (loop_vinfo);
vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
/* Analyze the access patterns of the data-refs in the loop (consecutive,
complex, etc.). FORNOW: Only handle consecutive access pattern. */
ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data access.\n");
return ok;
}
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo, &fatal);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unexpected pattern.\n");
return ok;
}
/* While the rest of the analysis below depends on it in some way. */
fatal = false;
/* Analyze data dependences between the data-refs in the loop
and adjust the maximum vectorization factor according to
the dependences.
FORNOW: fail at the first data dependence that we encounter. */
ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data dependence.\n");
return ok;
}
if (max_vf != MAX_VECTORIZATION_FACTOR
&& maybe_lt (max_vf, min_vf))
return opt_result::failure_at (vect_location, "bad data dependence.\n");
LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) = max_vf;
ok = vect_determine_vectorization_factor (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't determine vectorization factor.\n");
return ok;
}
if (max_vf != MAX_VECTORIZATION_FACTOR
&& maybe_lt (max_vf, LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
return opt_result::failure_at (vect_location, "bad data dependence.\n");
/* Compute the scalar iteration cost. */
vect_compute_single_scalar_iteration_cost (loop_vinfo);
poly_uint64 saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
/* Check the SLP opportunities in the loop, analyze and build SLP trees. */
ok = vect_analyze_slp (loop_vinfo, LOOP_VINFO_N_STMTS (loop_vinfo));
if (!ok)
return ok;
/* If there are any SLP instances mark them as pure_slp. */
bool slp = vect_make_slp_decision (loop_vinfo);
if (slp)
{
/* Find stmts that need to be both vectorized and SLPed. */
vect_detect_hybrid_slp (loop_vinfo);
/* Update the vectorization factor based on the SLP decision. */
vect_update_vf_for_slp (loop_vinfo);
/* Optimize the SLP graph with the vectorization factor fixed. */
vect_optimize_slp (loop_vinfo);
/* Gather the loads reachable from the SLP graph entries. */
vect_gather_slp_loads (loop_vinfo);
}
bool saved_can_use_partial_vectors_p
= LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo);
/* We don't expect to have to roll back to anything other than an empty
set of rgroups. */
gcc_assert (LOOP_VINFO_MASKS (loop_vinfo).is_empty ());
/* This is the point where we can re-start analysis with SLP forced off. */
start_over:
/* Apply the suggested unrolling factor, this was determined by the backend
during finish_cost the first time we ran the analyzis for this
vector mode. */
if (loop_vinfo->suggested_unroll_factor > 1)
LOOP_VINFO_VECT_FACTOR (loop_vinfo) *= loop_vinfo->suggested_unroll_factor;
/* Now the vectorization factor is final. */
poly_uint64 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
gcc_assert (known_ne (vectorization_factor, 0U));
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"vectorization_factor = ");
dump_dec (MSG_NOTE, vectorization_factor);
dump_printf (MSG_NOTE, ", niters = %wd\n",
LOOP_VINFO_INT_NITERS (loop_vinfo));
}
loop_vinfo->vector_costs = init_cost (loop_vinfo, false);
/* Analyze the alignment of the data-refs in the loop.
Fail if a data reference is found that cannot be vectorized. */
ok = vect_analyze_data_refs_alignment (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data alignment.\n");
return ok;
}
/* Prune the list of ddrs to be tested at run-time by versioning for alias.
It is important to call pruning after vect_analyze_data_ref_accesses,
since we use grouping information gathered by interleaving analysis. */
ok = vect_prune_runtime_alias_test_list (loop_vinfo);
if (!ok)
return ok;
/* Do not invoke vect_enhance_data_refs_alignment for epilogue
vectorization, since we do not want to add extra peeling or
add versioning for alignment. */
if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
/* This pass will decide on using loop versioning and/or loop peeling in
order to enhance the alignment of data references in the loop. */
ok = vect_enhance_data_refs_alignment (loop_vinfo);
if (!ok)
return ok;
if (slp)
{
/* Analyze operations in the SLP instances. Note this may
remove unsupported SLP instances which makes the above
SLP kind detection invalid. */
unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
vect_slp_analyze_operations (loop_vinfo);
if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
{
ok = opt_result::failure_at (vect_location,
"unsupported SLP instances\n");
goto again;
}
/* Check whether any load in ALL SLP instances is possibly permuted. */
slp_tree load_node, slp_root;
unsigned i, x;
slp_instance instance;
bool can_use_lanes = true;
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), x, instance)
{
slp_root = SLP_INSTANCE_TREE (instance);
int group_size = SLP_TREE_LANES (slp_root);
tree vectype = SLP_TREE_VECTYPE (slp_root);
bool loads_permuted = false;
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load_node)
{
if (!SLP_TREE_LOAD_PERMUTATION (load_node).exists ())
continue;
unsigned j;
stmt_vec_info load_info;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (load_node), j, load_info)
if (SLP_TREE_LOAD_PERMUTATION (load_node)[j] != j)
{
loads_permuted = true;
break;
}
}
/* If the loads and stores can be handled with load/store-lane
instructions record it and move on to the next instance. */
if (loads_permuted
&& SLP_INSTANCE_KIND (instance) == slp_inst_kind_store
&& vect_store_lanes_supported (vectype, group_size, false))
{
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load_node)
{
stmt_vec_info stmt_vinfo = DR_GROUP_FIRST_ELEMENT
(SLP_TREE_SCALAR_STMTS (load_node)[0]);
/* Use SLP for strided accesses (or if we can't
load-lanes). */
if (STMT_VINFO_STRIDED_P (stmt_vinfo)
|| ! vect_load_lanes_supported
(STMT_VINFO_VECTYPE (stmt_vinfo),
DR_GROUP_SIZE (stmt_vinfo), false))
break;
}
can_use_lanes
= can_use_lanes && i == SLP_INSTANCE_LOADS (instance).length ();
if (can_use_lanes && dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"SLP instance %p can use load/store-lanes\n",
instance);
}
else
{
can_use_lanes = false;
break;
}
}
/* If all SLP instances can use load/store-lanes abort SLP and try again
with SLP disabled. */
if (can_use_lanes)
{
ok = opt_result::failure_at (vect_location,
"Built SLP cancelled: can use "
"load/store-lanes\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Built SLP cancelled: all SLP instances support "
"load/store-lanes\n");
goto again;
}
}
/* Dissolve SLP-only groups. */
vect_dissolve_slp_only_groups (loop_vinfo);
/* Scan all the remaining operations in the loop that are not subject
to SLP and make sure they are vectorizable. */
ok = vect_analyze_loop_operations (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad operation or unsupported loop bound.\n");
return ok;
}
/* For now, we don't expect to mix both masking and length approaches for one
loop, disable it if both are recorded. */
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
&& !LOOP_VINFO_MASKS (loop_vinfo).is_empty ()
&& !LOOP_VINFO_LENS (loop_vinfo).is_empty ())
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't vectorize a loop with partial vectors"
" because we don't expect to mix different"
" approaches with partial vectors for the"
" same loop.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
/* If we still have the option of using partial vectors,
check whether we can generate the necessary loop controls. */
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
&& !vect_verify_full_masking (loop_vinfo)
&& !vect_verify_loop_lens (loop_vinfo))
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
/* If we're vectorizing an epilogue loop, the vectorized loop either needs
to be able to handle fewer than VF scalars, or needs to have a lower VF
than the main loop. */
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo)
&& !LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
&& maybe_ge (LOOP_VINFO_VECT_FACTOR (loop_vinfo),
LOOP_VINFO_VECT_FACTOR (orig_loop_vinfo)))
return opt_result::failure_at (vect_location,
"Vectorization factor too high for"
" epilogue loop.\n");
/* Decide whether this loop_vinfo should use partial vectors or peeling,
assuming that the loop will be used as a main loop. We will redo
this analysis later if we instead decide to use the loop as an
epilogue loop. */
ok = vect_determine_partial_vectors_and_peeling (loop_vinfo, false);
if (!ok)
return ok;
/* Check the costings of the loop make vectorizing worthwhile. */
res = vect_analyze_loop_costing (loop_vinfo, suggested_unroll_factor);
if (res < 0)
{
ok = opt_result::failure_at (vect_location,
"Loop costings may not be worthwhile.\n");
goto again;
}
if (!res)
return opt_result::failure_at (vect_location,
"Loop costings not worthwhile.\n");
/* If an epilogue loop is required make sure we can create one. */
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|| LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
if (!vect_can_advance_ivs_p (loop_vinfo)
|| !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
single_exit (LOOP_VINFO_LOOP
(loop_vinfo))))
{
ok = opt_result::failure_at (vect_location,
"not vectorized: can't create required "
"epilog loop\n");
goto again;
}
}
/* During peeling, we need to check if number of loop iterations is
enough for both peeled prolog loop and vector loop. This check
can be merged along with threshold check of loop versioning, so
increase threshold for this case if necessary.
If we are analyzing an epilogue we still want to check what its
versioning threshold would be. If we decide to vectorize the epilogues we
will want to use the lowest versioning threshold of all epilogues and main
loop. This will enable us to enter a vectorized epilogue even when
versioning the loop. We can't simply check whether the epilogue requires
versioning though since we may have skipped some versioning checks when
analyzing the epilogue. For instance, checks for alias versioning will be
skipped when dealing with epilogues as we assume we already checked them
for the main loop. So instead we always check the 'orig_loop_vinfo'. */
if (LOOP_REQUIRES_VERSIONING (orig_loop_vinfo))
{
poly_uint64 niters_th = 0;
unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
{
/* Niters for peeled prolog loop. */
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
{
dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
niters_th += TYPE_VECTOR_SUBPARTS (vectype) - 1;
}
else
niters_th += LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
}
/* Niters for at least one iteration of vectorized loop. */
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
/* One additional iteration because of peeling for gap. */
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
niters_th += 1;
/* Use the same condition as vect_transform_loop to decide when to use
the cost to determine a versioning threshold. */
if (vect_apply_runtime_profitability_check_p (loop_vinfo)
&& ordered_p (th, niters_th))
niters_th = ordered_max (poly_uint64 (th), niters_th);
LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = niters_th;
}
gcc_assert (known_eq (vectorization_factor,
LOOP_VINFO_VECT_FACTOR (loop_vinfo)));
/* Ok to vectorize! */
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
return opt_result::success ();
again:
/* Ensure that "ok" is false (with an opt_problem if dumping is enabled). */
gcc_assert (!ok);
/* Try again with SLP forced off but if we didn't do any SLP there is
no point in re-trying. */
if (!slp)
return ok;
/* If there are reduction chains re-trying will fail anyway. */
if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
return ok;
/* Likewise if the grouped loads or stores in the SLP cannot be handled
via interleaving or lane instructions. */
slp_instance instance;
slp_tree node;
unsigned i, j;
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
{
stmt_vec_info vinfo;
vinfo = SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0];
if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
continue;
vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
unsigned int size = DR_GROUP_SIZE (vinfo);
tree vectype = STMT_VINFO_VECTYPE (vinfo);
if (! vect_store_lanes_supported (vectype, size, false)
&& ! known_eq (TYPE_VECTOR_SUBPARTS (vectype), 1U)
&& ! vect_grouped_store_supported (vectype, size))
return opt_result::failure_at (vinfo->stmt,
"unsupported grouped store\n");
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
{
vinfo = SLP_TREE_SCALAR_STMTS (node)[0];
vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
bool single_element_p = !DR_GROUP_NEXT_ELEMENT (vinfo);
size = DR_GROUP_SIZE (vinfo);
vectype = STMT_VINFO_VECTYPE (vinfo);
if (! vect_load_lanes_supported (vectype, size, false)
&& ! vect_grouped_load_supported (vectype, single_element_p,
size))
return opt_result::failure_at (vinfo->stmt,
"unsupported grouped load\n");
}
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"re-trying with SLP disabled\n");
/* Roll back state appropriately. No SLP this time. */
slp = false;
/* Restore vectorization factor as it were without SLP. */
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
/* Free the SLP instances. */
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
vect_free_slp_instance (instance);
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
/* Reset SLP type to loop_vect on all stmts. */
for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
{
basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
for (gimple_stmt_iterator si = gsi_start_phis (bb);
!gsi_end_p (si); gsi_next (&si))
{
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
STMT_SLP_TYPE (stmt_info) = loop_vect;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
{
/* vectorizable_reduction adjusts reduction stmt def-types,
restore them to that of the PHI. */
STMT_VINFO_DEF_TYPE (STMT_VINFO_REDUC_DEF (stmt_info))
= STMT_VINFO_DEF_TYPE (stmt_info);
STMT_VINFO_DEF_TYPE (vect_stmt_to_vectorize
(STMT_VINFO_REDUC_DEF (stmt_info)))
= STMT_VINFO_DEF_TYPE (stmt_info);
}
}
for (gimple_stmt_iterator si = gsi_start_bb (bb);
!gsi_end_p (si); gsi_next (&si))
{
if (is_gimple_debug (gsi_stmt (si)))
continue;
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
STMT_SLP_TYPE (stmt_info) = loop_vect;
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
{
stmt_vec_info pattern_stmt_info
= STMT_VINFO_RELATED_STMT (stmt_info);
if (STMT_VINFO_SLP_VECT_ONLY_PATTERN (pattern_stmt_info))
STMT_VINFO_IN_PATTERN_P (stmt_info) = false;
gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
STMT_SLP_TYPE (pattern_stmt_info) = loop_vect;
for (gimple_stmt_iterator pi = gsi_start (pattern_def_seq);
!gsi_end_p (pi); gsi_next (&pi))
STMT_SLP_TYPE (loop_vinfo->lookup_stmt (gsi_stmt (pi)))
= loop_vect;
}
}
}
/* Free optimized alias test DDRS. */
LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).truncate (0);
LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).release ();
/* Reset target cost data. */
delete loop_vinfo->vector_costs;
loop_vinfo->vector_costs = nullptr;
/* Reset accumulated rgroup information. */
release_vec_loop_controls (&LOOP_VINFO_MASKS (loop_vinfo));
release_vec_loop_controls (&LOOP_VINFO_LENS (loop_vinfo));
/* Reset assorted flags. */
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = 0;
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
= saved_can_use_partial_vectors_p;
goto start_over;
}
/* Return true if vectorizing a loop using NEW_LOOP_VINFO appears
to be better than vectorizing it using OLD_LOOP_VINFO. Assume that
OLD_LOOP_VINFO is better unless something specifically indicates
otherwise.
Note that this deliberately isn't a partial order. */
static bool
vect_better_loop_vinfo_p (loop_vec_info new_loop_vinfo,
loop_vec_info old_loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (new_loop_vinfo);
gcc_assert (LOOP_VINFO_LOOP (old_loop_vinfo) == loop);
poly_int64 new_vf = LOOP_VINFO_VECT_FACTOR (new_loop_vinfo);
poly_int64 old_vf = LOOP_VINFO_VECT_FACTOR (old_loop_vinfo);
/* Always prefer a VF of loop->simdlen over any other VF. */
if (loop->simdlen)
{
bool new_simdlen_p = known_eq (new_vf, loop->simdlen);
bool old_simdlen_p = known_eq (old_vf, loop->simdlen);
if (new_simdlen_p != old_simdlen_p)
return new_simdlen_p;
}
const auto *old_costs = old_loop_vinfo->vector_costs;
const auto *new_costs = new_loop_vinfo->vector_costs;
if (loop_vec_info main_loop = LOOP_VINFO_ORIG_LOOP_INFO (old_loop_vinfo))
return new_costs->better_epilogue_loop_than_p (old_costs, main_loop);
return new_costs->better_main_loop_than_p (old_costs);
}
/* Decide whether to replace OLD_LOOP_VINFO with NEW_LOOP_VINFO. Return
true if we should. */
static bool
vect_joust_loop_vinfos (loop_vec_info new_loop_vinfo,
loop_vec_info old_loop_vinfo)
{
if (!vect_better_loop_vinfo_p (new_loop_vinfo, old_loop_vinfo))
return false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Preferring vector mode %s to vector mode %s\n",
GET_MODE_NAME (new_loop_vinfo->vector_mode),
GET_MODE_NAME (old_loop_vinfo->vector_mode));
return true;
}
/* Analyze LOOP with VECTOR_MODES[MODE_I] and as epilogue if MAIN_LOOP_VINFO is
not NULL. Set AUTODETECTED_VECTOR_MODE if VOIDmode and advance
MODE_I to the next mode useful to analyze.
Return the loop_vinfo on success and wrapped null on failure. */
static opt_loop_vec_info
vect_analyze_loop_1 (class loop *loop, vec_info_shared *shared,
const vect_loop_form_info *loop_form_info,
loop_vec_info main_loop_vinfo,
const vector_modes &vector_modes, unsigned &mode_i,
machine_mode &autodetected_vector_mode,
bool &fatal)
{
loop_vec_info loop_vinfo
= vect_create_loop_vinfo (loop, shared, loop_form_info, main_loop_vinfo);
machine_mode vector_mode = vector_modes[mode_i];
loop_vinfo->vector_mode = vector_mode;
unsigned int suggested_unroll_factor = 1;
/* Run the main analysis. */
opt_result res = vect_analyze_loop_2 (loop_vinfo, fatal,
&suggested_unroll_factor);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Analysis %s with vector mode %s\n",
res ? "succeeded" : " failed",
GET_MODE_NAME (loop_vinfo->vector_mode));
if (!main_loop_vinfo && suggested_unroll_factor > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Re-trying analysis for unrolling"
" with unroll factor %d.\n",
suggested_unroll_factor);
loop_vec_info unroll_vinfo
= vect_create_loop_vinfo (loop, shared, loop_form_info, main_loop_vinfo);
unroll_vinfo->vector_mode = vector_mode;
unroll_vinfo->suggested_unroll_factor = suggested_unroll_factor;
opt_result new_res = vect_analyze_loop_2 (unroll_vinfo, fatal, NULL);
if (new_res)
{
delete loop_vinfo;
loop_vinfo = unroll_vinfo;
}
else
delete unroll_vinfo;
}
/* Remember the autodetected vector mode. */
if (vector_mode == VOIDmode)
autodetected_vector_mode = loop_vinfo->vector_mode;
/* Advance mode_i, first skipping modes that would result in the
same analysis result. */
while (mode_i + 1 < vector_modes.length ()
&& vect_chooses_same_modes_p (loop_vinfo,
vector_modes[mode_i + 1]))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** The result for vector mode %s would"
" be the same\n",
GET_MODE_NAME (vector_modes[mode_i + 1]));
mode_i += 1;
}
if (mode_i + 1 < vector_modes.length ()
&& VECTOR_MODE_P (autodetected_vector_mode)
&& (related_vector_mode (vector_modes[mode_i + 1],
GET_MODE_INNER (autodetected_vector_mode))
== autodetected_vector_mode)
&& (related_vector_mode (autodetected_vector_mode,
GET_MODE_INNER (vector_modes[mode_i + 1]))
== vector_modes[mode_i + 1]))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Skipping vector mode %s, which would"
" repeat the analysis for %s\n",
GET_MODE_NAME (vector_modes[mode_i + 1]),
GET_MODE_NAME (autodetected_vector_mode));
mode_i += 1;
}
mode_i++;
if (!res)
{
delete loop_vinfo;
if (fatal)
gcc_checking_assert (main_loop_vinfo == NULL);
return opt_loop_vec_info::propagate_failure (res);
}
return opt_loop_vec_info::success (loop_vinfo);
}
/* Function vect_analyze_loop.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. */
opt_loop_vec_info
vect_analyze_loop (class loop *loop, vec_info_shared *shared)
{
DUMP_VECT_SCOPE ("analyze_loop_nest");
if (loop_outer (loop)
&& loop_vec_info_for_loop (loop_outer (loop))
&& LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
return opt_loop_vec_info::failure_at (vect_location,
"outer-loop already vectorized.\n");
if (!find_loop_nest (loop, &shared->loop_nest))
return opt_loop_vec_info::failure_at
(vect_location,
"not vectorized: loop nest containing two or more consecutive inner"
" loops cannot be vectorized\n");
/* Analyze the loop form. */
vect_loop_form_info loop_form_info;
opt_result res = vect_analyze_loop_form (loop, &loop_form_info);
if (!res)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad loop form.\n");
return opt_loop_vec_info::propagate_failure (res);
}
if (!integer_onep (loop_form_info.assumptions))
{
/* We consider to vectorize this loop by versioning it under
some assumptions. In order to do this, we need to clear
existing information computed by scev and niter analyzer. */
scev_reset_htab ();
free_numbers_of_iterations_estimates (loop);
/* Also set flag for this loop so that following scev and niter
analysis are done under the assumptions. */
loop_constraint_set (loop, LOOP_C_FINITE);
}
auto_vector_modes vector_modes;
/* Autodetect first vector size we try. */
vector_modes.safe_push (VOIDmode);
unsigned int autovec_flags
= targetm.vectorize.autovectorize_vector_modes (&vector_modes,
loop->simdlen != 0);
bool pick_lowest_cost_p = ((autovec_flags & VECT_COMPARE_COSTS)
&& !unlimited_cost_model (loop));
machine_mode autodetected_vector_mode = VOIDmode;
opt_loop_vec_info first_loop_vinfo = opt_loop_vec_info::success (NULL);
unsigned int mode_i = 0;
unsigned HOST_WIDE_INT simdlen = loop->simdlen;
/* Keep track of the VF for each mode. Initialize all to 0 which indicates
a mode has not been analyzed. */
auto_vec<poly_uint64, 8> cached_vf_per_mode;
for (unsigned i = 0; i < vector_modes.length (); ++i)
cached_vf_per_mode.safe_push (0);
/* First determine the main loop vectorization mode, either the first
one that works, starting with auto-detecting the vector mode and then
following the targets order of preference, or the one with the
lowest cost if pick_lowest_cost_p. */
while (1)
{
bool fatal;
unsigned int last_mode_i = mode_i;
/* Set cached VF to -1 prior to analysis, which indicates a mode has
failed. */
cached_vf_per_mode[last_mode_i] = -1;
opt_loop_vec_info loop_vinfo
= vect_analyze_loop_1 (loop, shared, &loop_form_info,
NULL, vector_modes, mode_i,
autodetected_vector_mode, fatal);
if (fatal)
break;
if (loop_vinfo)
{
/* Analyzis has been successful so update the VF value. The
VF should always be a multiple of unroll_factor and we want to
capture the original VF here. */
cached_vf_per_mode[last_mode_i]
= exact_div (LOOP_VINFO_VECT_FACTOR (loop_vinfo),
loop_vinfo->suggested_unroll_factor);
/* Once we hit the desired simdlen for the first time,
discard any previous attempts. */
if (simdlen
&& known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), simdlen))
{
delete first_loop_vinfo;
first_loop_vinfo = opt_loop_vec_info::success (NULL);
simdlen = 0;
}
else if (pick_lowest_cost_p
&& first_loop_vinfo
&& vect_joust_loop_vinfos (loop_vinfo, first_loop_vinfo))
{
/* Pick loop_vinfo over first_loop_vinfo. */
delete first_loop_vinfo;
first_loop_vinfo = opt_loop_vec_info::success (NULL);
}
if (first_loop_vinfo == NULL)
first_loop_vinfo = loop_vinfo;
else
{
delete loop_vinfo;
loop_vinfo = opt_loop_vec_info::success (NULL);
}
/* Commit to first_loop_vinfo if we have no reason to try
alternatives. */
if (!simdlen && !pick_lowest_cost_p)
break;
}
if (mode_i == vector_modes.length ()
|| autodetected_vector_mode == VOIDmode)
break;
/* Try the next biggest vector size. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Re-trying analysis with vector mode %s\n",
GET_MODE_NAME (vector_modes[mode_i]));
}
if (!first_loop_vinfo)
return opt_loop_vec_info::propagate_failure (res);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Choosing vector mode %s\n",
GET_MODE_NAME (first_loop_vinfo->vector_mode));
/* Only vectorize epilogues if PARAM_VECT_EPILOGUES_NOMASK is
enabled, SIMDUID is not set, it is the innermost loop and we have
either already found the loop's SIMDLEN or there was no SIMDLEN to
begin with.
TODO: Enable epilogue vectorization for loops with SIMDUID set. */
bool vect_epilogues = (!simdlen
&& loop->inner == NULL
&& param_vect_epilogues_nomask
&& LOOP_VINFO_PEELING_FOR_NITER (first_loop_vinfo)
&& !loop->simduid);
if (!vect_epilogues)
return first_loop_vinfo;
/* Now analyze first_loop_vinfo for epilogue vectorization. */
poly_uint64 lowest_th = LOOP_VINFO_VERSIONING_THRESHOLD (first_loop_vinfo);
/* For epilogues start the analysis from the first mode. The motivation
behind starting from the beginning comes from cases where the VECTOR_MODES
array may contain length-agnostic and length-specific modes. Their
ordering is not guaranteed, so we could end up picking a mode for the main
loop that is after the epilogue's optimal mode. */
vector_modes[0] = autodetected_vector_mode;
mode_i = 0;
bool supports_partial_vectors =
partial_vectors_supported_p () && param_vect_partial_vector_usage != 0;
poly_uint64 first_vinfo_vf = LOOP_VINFO_VECT_FACTOR (first_loop_vinfo);
while (1)
{
/* If the target does not support partial vectors we can shorten the
number of modes to analyze for the epilogue as we know we can't pick a
mode that would lead to a VF at least as big as the
FIRST_VINFO_VF. */
if (!supports_partial_vectors
&& maybe_ge (cached_vf_per_mode[mode_i], first_vinfo_vf))
{
mode_i++;
if (mode_i == vector_modes.length ())
break;
continue;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Re-trying epilogue analysis with vector "
"mode %s\n", GET_MODE_NAME (vector_modes[mode_i]));
bool fatal;
opt_loop_vec_info loop_vinfo
= vect_analyze_loop_1 (loop, shared, &loop_form_info,
first_loop_vinfo,
vector_modes, mode_i,
autodetected_vector_mode, fatal);
if (fatal)
break;
if (loop_vinfo)
{
if (pick_lowest_cost_p)
{
/* Keep trying to roll back vectorization attempts while the
loop_vec_infos they produced were worse than this one. */
vec<loop_vec_info> &vinfos = first_loop_vinfo->epilogue_vinfos;
while (!vinfos.is_empty ()
&& vect_joust_loop_vinfos (loop_vinfo, vinfos.last ()))
{
gcc_assert (vect_epilogues);
delete vinfos.pop ();
}
}
/* For now only allow one epilogue loop. */
if (first_loop_vinfo->epilogue_vinfos.is_empty ())
{
first_loop_vinfo->epilogue_vinfos.safe_push (loop_vinfo);
poly_uint64 th = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
gcc_assert (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
|| maybe_ne (lowest_th, 0U));
/* Keep track of the known smallest versioning
threshold. */
if (ordered_p (lowest_th, th))
lowest_th = ordered_min (lowest_th, th);
}
else
{
delete loop_vinfo;
loop_vinfo = opt_loop_vec_info::success (NULL);
}
/* For now only allow one epilogue loop, but allow
pick_lowest_cost_p to replace it, so commit to the
first epilogue if we have no reason to try alternatives. */
if (!pick_lowest_cost_p)
break;
}
if (mode_i == vector_modes.length ())
break;
}
if (!first_loop_vinfo->epilogue_vinfos.is_empty ())
{
LOOP_VINFO_VERSIONING_THRESHOLD (first_loop_vinfo) = lowest_th;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Choosing epilogue vector mode %s\n",
GET_MODE_NAME
(first_loop_vinfo->epilogue_vinfos[0]->vector_mode));
}
return first_loop_vinfo;
}
/* Return true if there is an in-order reduction function for CODE, storing
it in *REDUC_FN if so. */
static bool
fold_left_reduction_fn (code_helper code, internal_fn *reduc_fn)
{
if (code == PLUS_EXPR)
{
*reduc_fn = IFN_FOLD_LEFT_PLUS;
return true;
}
return false;
}
/* Function reduction_fn_for_scalar_code
Input:
CODE - tree_code of a reduction operations.
Output:
REDUC_FN - the corresponding internal function to be used to reduce the
vector of partial results into a single scalar result, or IFN_LAST
if the operation is a supported reduction operation, but does not have
such an internal function.
Return FALSE if CODE currently cannot be vectorized as reduction. */
bool
reduction_fn_for_scalar_code (code_helper code, internal_fn *reduc_fn)
{
if (code.is_tree_code ())
switch (tree_code (code))
{
case MAX_EXPR:
*reduc_fn = IFN_REDUC_MAX;
return true;
case MIN_EXPR:
*reduc_fn = IFN_REDUC_MIN;
return true;
case PLUS_EXPR:
*reduc_fn = IFN_REDUC_PLUS;
return true;
case BIT_AND_EXPR:
*reduc_fn = IFN_REDUC_AND;
return true;
case BIT_IOR_EXPR:
*reduc_fn = IFN_REDUC_IOR;
return true;
case BIT_XOR_EXPR:
*reduc_fn = IFN_REDUC_XOR;
return true;
case MULT_EXPR:
case MINUS_EXPR:
*reduc_fn = IFN_LAST;
return true;
default:
return false;
}
else
switch (combined_fn (code))
{
CASE_CFN_FMAX:
*reduc_fn = IFN_REDUC_FMAX;
return true;
CASE_CFN_FMIN:
*reduc_fn = IFN_REDUC_FMIN;
return true;
default:
return false;
}
}
/* If there is a neutral value X such that a reduction would not be affected
by the introduction of additional X elements, return that X, otherwise
return null. CODE is the code of the reduction and SCALAR_TYPE is type
of the scalar elements. If the reduction has just a single initial value
then INITIAL_VALUE is that value, otherwise it is null. */
tree
neutral_op_for_reduction (tree scalar_type, code_helper code,
tree initial_value)
{
if (code.is_tree_code ())
switch (tree_code (code))
{
case WIDEN_SUM_EXPR:
case DOT_PROD_EXPR:
case SAD_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
return build_zero_cst (scalar_type);
case MULT_EXPR:
return build_one_cst (scalar_type);
case BIT_AND_EXPR:
return build_all_ones_cst (scalar_type);
case MAX_EXPR:
case MIN_EXPR:
return initial_value;
default:
return NULL_TREE;
}
else
switch (combined_fn (code))
{
CASE_CFN_FMIN:
CASE_CFN_FMAX:
return initial_value;
default:
return NULL_TREE;
}
}
/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
STMT is printed with a message MSG. */
static void
report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
{
dump_printf_loc (msg_type, vect_location, "%s%G", msg, stmt);
}
/* Return true if we need an in-order reduction for operation CODE
on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
overflow must wrap. */
bool
needs_fold_left_reduction_p (tree type, code_helper code)
{
/* CHECKME: check for !flag_finite_math_only too? */
if (SCALAR_FLOAT_TYPE_P (type))
{
if (code.is_tree_code ())
switch (tree_code (code))
{
case MIN_EXPR:
case MAX_EXPR:
return false;
default:
return !flag_associative_math;
}
else
switch (combined_fn (code))
{
CASE_CFN_FMIN:
CASE_CFN_FMAX:
return false;
default:
return !flag_associative_math;
}
}
if (INTEGRAL_TYPE_P (type))
return (!code.is_tree_code ()
|| !operation_no_trapping_overflow (type, tree_code (code)));
if (SAT_FIXED_POINT_TYPE_P (type))
return true;
return false;
}
/* Return true if the reduction PHI in LOOP with latch arg LOOP_ARG and
has a handled computation expression. Store the main reduction
operation in *CODE. */
static bool
check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
tree loop_arg, code_helper *code,
vec<std::pair<ssa_op_iter, use_operand_p> > &path)
{
auto_bitmap visited;
tree lookfor = PHI_RESULT (phi);
ssa_op_iter curri;
use_operand_p curr = op_iter_init_phiuse (&curri, phi, SSA_OP_USE);
while (USE_FROM_PTR (curr) != loop_arg)
curr = op_iter_next_use (&curri);
curri.i = curri.numops;
do
{
path.safe_push (std::make_pair (curri, curr));
tree use = USE_FROM_PTR (curr);
if (use == lookfor)
break;
gimple *def = SSA_NAME_DEF_STMT (use);
if (gimple_nop_p (def)
|| ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
{
pop:
do
{
std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
curri = x.first;
curr = x.second;
do
curr = op_iter_next_use (&curri);
/* Skip already visited or non-SSA operands (from iterating
over PHI args). */
while (curr != NULL_USE_OPERAND_P
&& (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
|| ! bitmap_set_bit (visited,
SSA_NAME_VERSION
(USE_FROM_PTR (curr)))));
}
while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
if (curr == NULL_USE_OPERAND_P)
break;
}
else
{
if (gimple_code (def) == GIMPLE_PHI)
curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
else
curr = op_iter_init_use (&curri, def, SSA_OP_USE);
while (curr != NULL_USE_OPERAND_P
&& (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
|| ! bitmap_set_bit (visited,
SSA_NAME_VERSION
(USE_FROM_PTR (curr)))))
curr = op_iter_next_use (&curri);
if (curr == NULL_USE_OPERAND_P)
goto pop;
}
}
while (1);
if (dump_file && (dump_flags & TDF_DETAILS))
{
dump_printf_loc (MSG_NOTE, loc, "reduction path: ");
unsigned i;
std::pair<ssa_op_iter, use_operand_p> *x;
FOR_EACH_VEC_ELT (path, i, x)
dump_printf (MSG_NOTE, "%T ", USE_FROM_PTR (x->second));
dump_printf (MSG_NOTE, "\n");
}
/* Check whether the reduction path detected is valid. */
bool fail = path.length () == 0;
bool neg = false;
int sign = -1;
*code = ERROR_MARK;
for (unsigned i = 1; i < path.length (); ++i)
{
gimple *use_stmt = USE_STMT (path[i].second);
gimple_match_op op;
if (!gimple_extract_op (use_stmt, &op))
{
fail = true;
break;
}
unsigned int opi = op.num_ops;
if (gassign *assign = dyn_cast<gassign *> (use_stmt))
{
/* The following make sure we can compute the operand index
easily plus it mostly disallows chaining via COND_EXPR condition
operands. */
for (opi = 0; opi < op.num_ops; ++opi)
if (gimple_assign_rhs1_ptr (assign) + opi == path[i].second->use)
break;
}
else if (gcall *call = dyn_cast<gcall *> (use_stmt))
{
for (opi = 0; opi < op.num_ops; ++opi)
if (gimple_call_arg_ptr (call, opi) == path[i].second->use)
break;
}
if (opi == op.num_ops)
{
fail = true;
break;
}
op.code = canonicalize_code (op.code, op.type);
if (op.code == MINUS_EXPR)
{
op.code = PLUS_EXPR;
/* Track whether we negate the reduction value each iteration. */
if (op.ops[1] == op.ops[opi])
neg = ! neg;
}
if (CONVERT_EXPR_CODE_P (op.code)
&& tree_nop_conversion_p (op.type, TREE_TYPE (op.ops[0])))
;
else if (*code == ERROR_MARK)
{
*code = op.code;
sign = TYPE_SIGN (op.type);
}
else if (op.code != *code)
{
fail = true;
break;
}
else if ((op.code == MIN_EXPR
|| op.code == MAX_EXPR)
&& sign != TYPE_SIGN (op.type))
{
fail = true;
break;
}
/* Check there's only a single stmt the op is used on. For the
not value-changing tail and the last stmt allow out-of-loop uses.
??? We could relax this and handle arbitrary live stmts by
forcing a scalar epilogue for example. */
imm_use_iterator imm_iter;
gimple *op_use_stmt;
unsigned cnt = 0;
FOR_EACH_IMM_USE_STMT (op_use_stmt, imm_iter, op.ops[opi])
if (!is_gimple_debug (op_use_stmt)
&& (*code != ERROR_MARK
|| flow_bb_inside_loop_p (loop, gimple_bb (op_use_stmt))))
{
/* We want to allow x + x but not x < 1 ? x : 2. */
if (is_gimple_assign (op_use_stmt)
&& gimple_assign_rhs_code (op_use_stmt) == COND_EXPR)
{
use_operand_p use_p;
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
cnt++;
}
else
cnt++;
}
if (cnt != 1)
{
fail = true;
break;
}
}
return ! fail && ! neg && *code != ERROR_MARK;
}
bool
check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
tree loop_arg, enum tree_code code)
{
auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
code_helper code_;
return (check_reduction_path (loc, loop, phi, loop_arg, &code_, path)
&& code_ == code);
}
/* Function vect_is_simple_reduction
(1) Detect a cross-iteration def-use cycle that represents a simple
reduction computation. We look for the following pattern:
loop_header:
a1 = phi < a0, a2 >
a3 = ...
a2 = operation (a3, a1)
or
a3 = ...
loop_header:
a1 = phi < a0, a2 >
a2 = operation (a3, a1)
such that:
1. operation is commutative and associative and it is safe to
change the order of the computation
2. no uses for a2 in the loop (a2 is used out of the loop)
3. no uses of a1 in the loop besides the reduction operation
4. no uses of a1 outside the loop.
Conditions 1,4 are tested here.
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
(2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
nested cycles.
(3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
reductions:
a1 = phi < a0, a2 >
inner loop (def of a3)
a2 = phi < a3 >
(4) Detect condition expressions, ie:
for (int i = 0; i < N; i++)
if (a[i] < val)
ret_val = a[i];
*/
static stmt_vec_info
vect_is_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
bool *double_reduc, bool *reduc_chain_p)
{
gphi *phi = as_a <gphi *> (phi_info->stmt);
gimple *phi_use_stmt = NULL;
imm_use_iterator imm_iter;
use_operand_p use_p;
*double_reduc = false;
*reduc_chain_p = false;
STMT_VINFO_REDUC_TYPE (phi_info) = TREE_CODE_REDUCTION;
tree phi_name = PHI_RESULT (phi);
/* ??? If there are no uses of the PHI result the inner loop reduction
won't be detected as possibly double-reduction by vectorizable_reduction
because that tries to walk the PHI arg from the preheader edge which
can be constant. See PR60382. */
if (has_zero_uses (phi_name))
return NULL;
class loop *loop = (gimple_bb (phi))->loop_father;
unsigned nphi_def_loop_uses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"intermediate value used outside loop.\n");
return NULL;
}
nphi_def_loop_uses++;
phi_use_stmt = use_stmt;
}
tree latch_def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
if (TREE_CODE (latch_def) != SSA_NAME)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction: not ssa_name: %T\n", latch_def);
return NULL;
}
stmt_vec_info def_stmt_info = loop_info->lookup_def (latch_def);
if (!def_stmt_info
|| !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt)))
return NULL;
bool nested_in_vect_loop
= flow_loop_nested_p (LOOP_VINFO_LOOP (loop_info), loop);
unsigned nlatch_def_loop_uses = 0;
auto_vec<gphi *, 3> lcphis;
bool inner_loop_of_double_reduc = false;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, latch_def)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
nlatch_def_loop_uses++;
else
{
/* We can have more than one loop-closed PHI. */
lcphis.safe_push (as_a <gphi *> (use_stmt));
if (nested_in_vect_loop
&& (STMT_VINFO_DEF_TYPE (loop_info->lookup_stmt (use_stmt))
== vect_double_reduction_def))
inner_loop_of_double_reduc = true;
}
}
/* If we are vectorizing an inner reduction we are executing that
in the original order only in case we are not dealing with a
double reduction. */
if (nested_in_vect_loop && !inner_loop_of_double_reduc)
{
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt_info->stmt,
"detected nested cycle: ");
return def_stmt_info;
}
/* When the inner loop of a double reduction ends up with more than
one loop-closed PHI we have failed to classify alternate such
PHIs as double reduction, leading to wrong code. See PR103237. */
if (inner_loop_of_double_reduc && lcphis.length () != 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unhandle double reduction\n");
return NULL;
}
/* If this isn't a nested cycle or if the nested cycle reduction value
is used ouside of the inner loop we cannot handle uses of the reduction
value. */
if (nlatch_def_loop_uses > 1 || nphi_def_loop_uses > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction used in loop.\n");
return NULL;
}
/* If DEF_STMT is a phi node itself, we expect it to have a single argument
defined in the inner loop. */
if (gphi *def_stmt = dyn_cast <gphi *> (def_stmt_info->stmt))
{
tree op1 = PHI_ARG_DEF (def_stmt, 0);
if (gimple_phi_num_args (def_stmt) != 1
|| TREE_CODE (op1) != SSA_NAME)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported phi node definition.\n");
return NULL;
}
gimple *def1 = SSA_NAME_DEF_STMT (op1);
if (gimple_bb (def1)
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
&& loop->inner
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
&& (is_gimple_assign (def1) || is_gimple_call (def1))
&& is_a <gphi *> (phi_use_stmt)
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
{
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt,
"detected double reduction: ");
*double_reduc = true;
return def_stmt_info;
}
return NULL;
}
/* Look for the expression computing latch_def from then loop PHI result. */
auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
code_helper code;
if (check_reduction_path (vect_location, loop, phi, latch_def, &code,
path))
{
STMT_VINFO_REDUC_CODE (phi_info) = code;
if (code == COND_EXPR && !nested_in_vect_loop)
STMT_VINFO_REDUC_TYPE (phi_info) = COND_REDUCTION;
/* Fill in STMT_VINFO_REDUC_IDX and gather stmts for an SLP
reduction chain for which the additional restriction is that
all operations in the chain are the same. */
auto_vec<stmt_vec_info, 8> reduc_chain;
unsigned i;
bool is_slp_reduc = !nested_in_vect_loop && code != COND_EXPR;
for (i = path.length () - 1; i >= 1; --i)
{
gimple *stmt = USE_STMT (path[i].second);
stmt_vec_info stmt_info = loop_info->lookup_stmt (stmt);
gimple_match_op op;
if (!gimple_extract_op (stmt, &op))
gcc_unreachable ();
if (gassign *assign = dyn_cast<gassign *> (stmt))
STMT_VINFO_REDUC_IDX (stmt_info)
= path[i].second->use - gimple_assign_rhs1_ptr (assign);
else
{
gcall *call = as_a<gcall *> (stmt);
STMT_VINFO_REDUC_IDX (stmt_info)
= path[i].second->use - gimple_call_arg_ptr (call, 0);
}
bool leading_conversion = (CONVERT_EXPR_CODE_P (op.code)
&& (i == 1 || i == path.length () - 1));
if ((op.code != code && !leading_conversion)
/* We can only handle the final value in epilogue
generation for reduction chains. */
|| (i != 1 && !has_single_use (gimple_get_lhs (stmt))))
is_slp_reduc = false;
/* For reduction chains we support a trailing/leading
conversions. We do not store those in the actual chain. */
if (leading_conversion)
continue;
reduc_chain.safe_push (stmt_info);
}
if (is_slp_reduc && reduc_chain.length () > 1)
{
for (unsigned i = 0; i < reduc_chain.length () - 1; ++i)
{
REDUC_GROUP_FIRST_ELEMENT (reduc_chain[i]) = reduc_chain[0];
REDUC_GROUP_NEXT_ELEMENT (reduc_chain[i]) = reduc_chain[i+1];
}
REDUC_GROUP_FIRST_ELEMENT (reduc_chain.last ()) = reduc_chain[0];
REDUC_GROUP_NEXT_ELEMENT (reduc_chain.last ()) = NULL;
/* Save the chain for further analysis in SLP detection. */
LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (reduc_chain[0]);
REDUC_GROUP_SIZE (reduc_chain[0]) = reduc_chain.length ();
*reduc_chain_p = true;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"reduction: detected reduction chain\n");
}
else if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"reduction: detected reduction\n");
return def_stmt_info;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"reduction: unknown pattern\n");
return NULL;
}
/* Estimate the number of peeled epilogue iterations for LOOP_VINFO.
PEEL_ITERS_PROLOGUE is the number of peeled prologue iterations,
or -1 if not known. */
static int
vect_get_peel_iters_epilogue (loop_vec_info loop_vinfo, int peel_iters_prologue)
{
int assumed_vf = vect_vf_for_cost (loop_vinfo);
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) || peel_iters_prologue == -1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"cost model: epilogue peel iters set to vf/2 "
"because loop iterations are unknown .\n");
return assumed_vf / 2;
}
else
{
int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
peel_iters_prologue = MIN (niters, peel_iters_prologue);
int peel_iters_epilogue = (niters - peel_iters_prologue) % assumed_vf;
/* If we need to peel for gaps, but no peeling is required, we have to
peel VF iterations. */
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !peel_iters_epilogue)
peel_iters_epilogue = assumed_vf;
return peel_iters_epilogue;
}
}
/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
int
vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
int *peel_iters_epilogue,
stmt_vector_for_cost *scalar_cost_vec,
stmt_vector_for_cost *prologue_cost_vec,
stmt_vector_for_cost *epilogue_cost_vec)
{
int retval = 0;
*peel_iters_epilogue
= vect_get_peel_iters_epilogue (loop_vinfo, peel_iters_prologue);
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
/* If peeled iterations are known but number of scalar loop
iterations are unknown, count a taken branch per peeled loop. */
if (peel_iters_prologue > 0)
retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
vect_prologue);
if (*peel_iters_epilogue > 0)
retval += record_stmt_cost (epilogue_cost_vec, 1, cond_branch_taken,
vect_epilogue);
}
stmt_info_for_cost *si;
int j;
if (peel_iters_prologue)
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
retval += record_stmt_cost (prologue_cost_vec,
si->count * peel_iters_prologue,
si->kind, si->stmt_info, si->misalign,
vect_prologue);
if (*peel_iters_epilogue)
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
retval += record_stmt_cost (epilogue_cost_vec,
si->count * *peel_iters_epilogue,
si->kind, si->stmt_info, si->misalign,
vect_epilogue);
return retval;
}
/* Function vect_estimate_min_profitable_iters
Return the number of iterations required for the vector version of the
loop to be profitable relative to the cost of the scalar version of the
loop.
*RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
of iterations for vectorization. -1 value means loop vectorization
is not profitable. This returned value may be used for dynamic
profitability check.
*RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
for static check against estimated number of iterations. */
static void
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
int *ret_min_profitable_niters,
int *ret_min_profitable_estimate,
unsigned *suggested_unroll_factor)
{
int min_profitable_iters;
int min_profitable_estimate;
int peel_iters_prologue;
int peel_iters_epilogue;
unsigned vec_inside_cost = 0;
int vec_outside_cost = 0;
unsigned vec_prologue_cost = 0;
unsigned vec_epilogue_cost = 0;
int scalar_single_iter_cost = 0;
int scalar_outside_cost = 0;
int assumed_vf = vect_vf_for_cost (loop_vinfo);
int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
vector_costs *target_cost_data = loop_vinfo->vector_costs;
/* Cost model disabled. */
if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
*ret_min_profitable_niters = 0;
*ret_min_profitable_estimate = 0;
return;
}
/* Requires loop versioning tests to handle misalignment. */
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
{
/* FIXME: Make cost depend on complexity of individual check. */
unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
(void) add_stmt_cost (target_cost_data, len, scalar_stmt, vect_prologue);
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
"cost model: Adding cost of checks for loop "
"versioning to treat misalignment.\n");
}
/* Requires loop versioning with alias checks. */
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
{
/* FIXME: Make cost depend on complexity of individual check. */
unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
(void) add_stmt_cost (target_cost_data, len, scalar_stmt, vect_prologue);
len = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).length ();
if (len)
/* Count LEN - 1 ANDs and LEN comparisons. */
(void) add_stmt_cost (target_cost_data, len * 2 - 1,
scalar_stmt, vect_prologue);
len = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).length ();
if (len)
{
/* Count LEN - 1 ANDs and LEN comparisons. */
unsigned int nstmts = len * 2 - 1;
/* +1 for each bias that needs adding. */
for (unsigned int i = 0; i < len; ++i)
if (!LOOP_VINFO_LOWER_BOUNDS (loop_vinfo)[i].unsigned_p)
nstmts += 1;
(void) add_stmt_cost (target_cost_data, nstmts,
scalar_stmt, vect_prologue);
}
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
"cost model: Adding cost of checks for loop "
"versioning aliasing.\n");
}
/* Requires loop versioning with niter checks. */
if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
{
/* FIXME: Make cost depend on complexity of individual check. */
(void) add_stmt_cost (target_cost_data, 1, vector_stmt,
NULL, NULL, NULL_TREE, 0, vect_prologue);
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
"cost model: Adding cost of checks for loop "
"versioning niters.\n");
}
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
vect_prologue);
/* Count statements in scalar loop. Using this as scalar cost for a single
iteration for now.
TODO: Add outer loop support.
TODO: Consider assigning different costs to different scalar
statements. */
scalar_single_iter_cost = loop_vinfo->scalar_costs->total_cost ();
/* Add additional cost for the peeled instructions in prologue and epilogue
loop. (For fully-masked loops there will be no peeling.)
FORNOW: If we don't know the value of peel_iters for prologue or epilogue
at compile-time - we assume it's vf/2 (the worst would be vf-1).
TODO: Build an expression that represents peel_iters for prologue and
epilogue to be used in a run-time test. */
bool prologue_need_br_taken_cost = false;
bool prologue_need_br_not_taken_cost = false;
/* Calculate peel_iters_prologue. */
if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
peel_iters_prologue = 0;
else if (npeel < 0)
{
peel_iters_prologue = assumed_vf / 2;
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "cost model: "
"prologue peel iters set to vf/2.\n");
/* If peeled iterations are unknown, count a taken branch and a not taken
branch per peeled loop. Even if scalar loop iterations are known,
vector iterations are not known since peeled prologue iterations are
not known. Hence guards remain the same. */
prologue_need_br_taken_cost = true;
prologue_need_br_not_taken_cost = true;
}
else
{
peel_iters_prologue = npeel;
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && peel_iters_prologue > 0)
/* If peeled iterations are known but number of scalar loop
iterations are unknown, count a taken branch per peeled loop. */
prologue_need_br_taken_cost = true;
}
bool epilogue_need_br_taken_cost = false;
bool epilogue_need_br_not_taken_cost = false;
/* Calculate peel_iters_epilogue. */
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
/* We need to peel exactly one iteration for gaps. */
peel_iters_epilogue = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
else if (npeel < 0)
{
/* If peeling for alignment is unknown, loop bound of main loop
becomes unknown. */
peel_iters_epilogue = assumed_vf / 2;
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "cost model: "
"epilogue peel iters set to vf/2 because "
"peeling for alignment is unknown.\n");
/* See the same reason above in peel_iters_prologue calculation. */
epilogue_need_br_taken_cost = true;
epilogue_need_br_not_taken_cost = true;
}
else
{
peel_iters_epilogue = vect_get_peel_iters_epilogue (loop_vinfo, npeel);
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && peel_iters_epilogue > 0)
/* If peeled iterations are known but number of scalar loop
iterations are unknown, count a taken branch per peeled loop. */
epilogue_need_br_taken_cost = true;
}
stmt_info_for_cost *si;
int j;
/* Add costs associated with peel_iters_prologue. */
if (peel_iters_prologue)
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
{
(void) add_stmt_cost (target_cost_data,
si->count * peel_iters_prologue, si->kind,
si->stmt_info, si->node, si->vectype,
si->misalign, vect_prologue);
}
/* Add costs associated with peel_iters_epilogue. */
if (peel_iters_epilogue)
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
{
(void) add_stmt_cost (target_cost_data,
si->count * peel_iters_epilogue, si->kind,
si->stmt_info, si->node, si->vectype,
si->misalign, vect_epilogue);
}
/* Add possible cond_branch_taken/cond_branch_not_taken cost. */
if (prologue_need_br_taken_cost)
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
vect_prologue);
if (prologue_need_br_not_taken_cost)
(void) add_stmt_cost (target_cost_data, 1,
cond_branch_not_taken, vect_prologue);
if (epilogue_need_br_taken_cost)
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
vect_epilogue);
if (epilogue_need_br_not_taken_cost)
(void) add_stmt_cost (target_cost_data, 1,
cond_branch_not_taken, vect_epilogue);
/* Take care of special costs for rgroup controls of partial vectors. */
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
{
/* Calculate how many masks we need to generate. */
unsigned int num_masks = 0;
rgroup_controls *rgm;
unsigned int num_vectors_m1;
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), num_vectors_m1, rgm)
if (rgm->type)
num_masks += num_vectors_m1 + 1;
gcc_assert (num_masks > 0);
/* In the worst case, we need to generate each mask in the prologue
and in the loop body. One of the loop body mask instructions
replaces the comparison in the scalar loop, and since we don't
count the scalar comparison against the scalar body, we shouldn't
count that vector instruction against the vector body either.
Sometimes we can use unpacks instead of generating prologue
masks and sometimes the prologue mask will fold to a constant,
so the actual prologue cost might be smaller. However, it's
simpler and safer to use the worst-case cost; if this ends up
being the tie-breaker between vectorizing or not, then it's
probably better not to vectorize. */
(void) add_stmt_cost (target_cost_data, num_masks,
vector_stmt, NULL, NULL, NULL_TREE, 0,
vect_prologue);
(void) add_stmt_cost (target_cost_data, num_masks - 1,
vector_stmt, NULL, NULL, NULL_TREE, 0,
vect_body);
}
else if (LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo))
{
/* Referring to the functions vect_set_loop_condition_partial_vectors
and vect_set_loop_controls_directly, we need to generate each
length in the prologue and in the loop body if required. Although
there are some possible optimizations, we consider the worst case
here. */
bool niters_known_p = LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo);
signed char partial_load_store_bias
= LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
bool need_iterate_p
= (!LOOP_VINFO_EPILOGUE_P (loop_vinfo)
&& !vect_known_niters_smaller_than_vf (loop_vinfo));
/* Calculate how many statements to be added. */
unsigned int prologue_stmts = 0;
unsigned int body_stmts = 0;
rgroup_controls *rgc;
unsigned int num_vectors_m1;
FOR_EACH_VEC_ELT (LOOP_VINFO_LENS (loop_vinfo), num_vectors_m1, rgc)
if (rgc->type)
{
/* May need one SHIFT for nitems_total computation. */
unsigned nitems = rgc->max_nscalars_per_iter * rgc->factor;
if (nitems != 1 && !niters_known_p)
prologue_stmts += 1;
/* May need one MAX and one MINUS for wrap around. */
if (vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc))
prologue_stmts += 2;
/* Need one MAX and one MINUS for each batch limit excepting for
the 1st one. */
prologue_stmts += num_vectors_m1 * 2;
unsigned int num_vectors = num_vectors_m1 + 1;
/* Need to set up lengths in prologue, only one MIN required
for each since start index is zero. */
prologue_stmts += num_vectors;
/* If we have a non-zero partial load bias, we need one PLUS
to adjust the load length. */
if (partial_load_store_bias != 0)
body_stmts += 1;
/* Each may need two MINs and one MINUS to update lengths in body
for next iteration. */
if (need_iterate_p)
body_stmts += 3 * num_vectors;
}
(void) add_stmt_cost (target_cost_data, prologue_stmts,
scalar_stmt, vect_prologue);
(void) add_stmt_cost (target_cost_data, body_stmts,
scalar_stmt, vect_body);
}
/* FORNOW: The scalar outside cost is incremented in one of the
following ways:
1. The vectorizer checks for alignment and aliasing and generates
a condition that allows dynamic vectorization. A cost model
check is ANDED with the versioning condition. Hence scalar code
path now has the added cost of the versioning check.
if (cost > th & versioning_check)
jmp to vector code
Hence run-time scalar is incremented by not-taken branch cost.
2. The vectorizer then checks if a prologue is required. If the
cost model check was not done before during versioning, it has to
be done before the prologue check.
if (cost <= th)
prologue = scalar_iters
if (prologue == 0)
jmp to vector code
else
execute prologue
if (prologue == num_iters)
go to exit
Hence the run-time scalar cost is incremented by a taken branch,
plus a not-taken branch, plus a taken branch cost.
3. The vectorizer then checks if an epilogue is required. If the
cost model check was not done before during prologue check, it
has to be done with the epilogue check.
if (prologue == 0)
jmp to vector code
else
execute prologue
if (prologue == num_iters)
go to exit
vector code:
if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
jmp to epilogue
Hence the run-time scalar cost should be incremented by 2 taken
branches.
TODO: The back end may reorder the BBS's differently and reverse
conditions/branch directions. Change the estimates below to
something more reasonable. */
/* If the number of iterations is known and we do not do versioning, we can
decide whether to vectorize at compile time. Hence the scalar version
do not carry cost model guard costs. */
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| LOOP_REQUIRES_VERSIONING (loop_vinfo))
{
/* Cost model check occurs at versioning. */
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
else
{
/* Cost model check occurs at prologue generation. */
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
+ vect_get_stmt_cost (cond_branch_not_taken);
/* Cost model check occurs at epilogue generation. */
else
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
}
}
/* Complete the target-specific cost calculations. */
finish_cost (loop_vinfo->vector_costs, loop_vinfo->scalar_costs,
&vec_prologue_cost, &vec_inside_cost, &vec_epilogue_cost,
suggested_unroll_factor);
if (suggested_unroll_factor && *suggested_unroll_factor > 1
&& LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) != MAX_VECTORIZATION_FACTOR
&& !known_le (LOOP_VINFO_VECT_FACTOR (loop_vinfo) *
*suggested_unroll_factor,
LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't unroll as unrolled vectorization factor larger"
" than maximum vectorization factor: "
HOST_WIDE_INT_PRINT_UNSIGNED "\n",
LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo));
*suggested_unroll_factor = 1;
}
vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
vec_inside_cost);
dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
vec_prologue_cost);
dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
vec_epilogue_cost);
dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
scalar_single_iter_cost);
dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
scalar_outside_cost);
dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
vec_outside_cost);
dump_printf (MSG_NOTE, " prologue iterations: %d\n",
peel_iters_prologue);
dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
peel_iters_epilogue);
}
/* Calculate number of iterations required to make the vector version
profitable, relative to the loop bodies only. The following condition
must hold true:
SIC * niters + SOC > VIC * ((niters - NPEEL) / VF) + VOC
where
SIC = scalar iteration cost, VIC = vector iteration cost,
VOC = vector outside cost, VF = vectorization factor,
NPEEL = prologue iterations + epilogue iterations,
SOC = scalar outside cost for run time cost model check. */
int saving_per_viter = (scalar_single_iter_cost * assumed_vf
- vec_inside_cost);
if (saving_per_viter <= 0)
{
if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
warning_at (vect_location.get_location_t (), OPT_Wopenmp_simd,
"vectorization did not happen for a simd loop");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"cost model: the vector iteration cost = %d "
"divided by the scalar iteration cost = %d "
"is greater or equal to the vectorization factor = %d"
".\n",
vec_inside_cost, scalar_single_iter_cost, assumed_vf);
*ret_min_profitable_niters = -1;
*ret_min_profitable_estimate = -1;
return;
}
/* ??? The "if" arm is written to handle all cases; see below for what
we would do for !LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* Rewriting the condition above in terms of the number of
vector iterations (vniters) rather than the number of
scalar iterations (niters) gives:
SIC * (vniters * VF + NPEEL) + SOC > VIC * vniters + VOC
<==> vniters * (SIC * VF - VIC) > VOC - SIC * NPEEL - SOC
For integer N, X and Y when X > 0:
N * X > Y <==> N >= (Y /[floor] X) + 1. */
int outside_overhead = (vec_outside_cost
- scalar_single_iter_cost * peel_iters_prologue
- scalar_single_iter_cost * peel_iters_epilogue
- scalar_outside_cost);
/* We're only interested in cases that require at least one
vector iteration. */
int min_vec_niters = 1;
if (outside_overhead > 0)
min_vec_niters = outside_overhead / saving_per_viter + 1;
if (dump_enabled_p ())
dump_printf (MSG_NOTE, " Minimum number of vector iterations: %d\n",
min_vec_niters);
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* Now that we know the minimum number of vector iterations,
find the minimum niters for which the scalar cost is larger:
SIC * niters > VIC * vniters + VOC - SOC
We know that the minimum niters is no more than
vniters * VF + NPEEL, but it might be (and often is) less
than that if a partial vector iteration is cheaper than the
equivalent scalar code. */
int threshold = (vec_inside_cost * min_vec_niters
+ vec_outside_cost
- scalar_outside_cost);
if (threshold <= 0)
min_profitable_iters = 1;
else
min_profitable_iters = threshold / scalar_single_iter_cost + 1;
}
else
/* Convert the number of vector iterations into a number of
scalar iterations. */
min_profitable_iters = (min_vec_niters * assumed_vf
+ peel_iters_prologue
+ peel_iters_epilogue);
}
else
{
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost)
* assumed_vf
- vec_inside_cost * peel_iters_prologue
- vec_inside_cost * peel_iters_epilogue);
if (min_profitable_iters <= 0)
min_profitable_iters = 0;
else
{
min_profitable_iters /= saving_per_viter;
if ((scalar_single_iter_cost * assumed_vf * min_profitable_iters)
<= (((int) vec_inside_cost * min_profitable_iters)
+ (((int) vec_outside_cost - scalar_outside_cost)
* assumed_vf)))
min_profitable_iters++;
}
}
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
" Calculated minimum iters for profitability: %d\n",
min_profitable_iters);
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
&& min_profitable_iters < (assumed_vf + peel_iters_prologue))
/* We want the vectorized loop to execute at least once. */
min_profitable_iters = assumed_vf + peel_iters_prologue;
else if (min_profitable_iters < peel_iters_prologue)
/* For LOOP_VINFO_USING_PARTIAL_VECTORS_P, we need to ensure the
vectorized loop executes at least once. */
min_profitable_iters = peel_iters_prologue;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
" Runtime profitability threshold = %d\n",
min_profitable_iters);
*ret_min_profitable_niters = min_profitable_iters;
/* Calculate number of iterations required to make the vector version
profitable, relative to the loop bodies only.
Non-vectorized variant is SIC * niters and it must win over vector
variant on the expected loop trip count. The following condition must hold true:
SIC * niters > VIC * ((niters - NPEEL) / VF) + VOC + SOC */
if (vec_outside_cost <= 0)
min_profitable_estimate = 0;
/* ??? This "else if" arm is written to handle all cases; see below for
what we would do for !LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
else if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* This is a repeat of the code above, but with + SOC rather
than - SOC. */
int outside_overhead = (vec_outside_cost
- scalar_single_iter_cost * peel_iters_prologue
- scalar_single_iter_cost * peel_iters_epilogue
+ scalar_outside_cost);
int min_vec_niters = 1;
if (outside_overhead > 0)
min_vec_niters = outside_overhead / saving_per_viter + 1;
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
int threshold = (vec_inside_cost * min_vec_niters
+ vec_outside_cost
+ scalar_outside_cost);
min_profitable_estimate = threshold / scalar_single_iter_cost + 1;
}
else
min_profitable_estimate = (min_vec_niters * assumed_vf
+ peel_iters_prologue
+ peel_iters_epilogue);
}
else
{
min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost)
* assumed_vf
- vec_inside_cost * peel_iters_prologue
- vec_inside_cost * peel_iters_epilogue)
/ ((scalar_single_iter_cost * assumed_vf)
- vec_inside_cost);
}
min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
" Static estimate profitability threshold = %d\n",
min_profitable_estimate);
*ret_min_profitable_estimate = min_profitable_estimate;
}
/* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
vector elements (not bits) for a vector with NELT elements. */
static void
calc_vec_perm_mask_for_shift (unsigned int offset, unsigned int nelt,
vec_perm_builder *sel)
{
/* The encoding is a single stepped pattern. Any wrap-around is handled
by vec_perm_indices. */
sel->new_vector (nelt, 1, 3);
for (unsigned int i = 0; i < 3; i++)
sel->quick_push (i + offset);
}
/* Checks whether the target supports whole-vector shifts for vectors of mode
MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
it supports vec_perm_const with masks for all necessary shift amounts. */
static bool
have_whole_vector_shift (machine_mode mode)
{
if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
return true;
/* Variable-length vectors should be handled via the optab. */
unsigned int nelt;
if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
return false;
vec_perm_builder sel;
vec_perm_indices indices;
for (unsigned int i = nelt / 2; i >= 1; i /= 2)
{
calc_vec_perm_mask_for_shift (i, nelt, &sel);
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (mode, indices, false))
return false;
}
return true;
}
/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
functions. Design better to avoid maintenance issues. */
/* Function vect_model_reduction_cost.
Models cost for a reduction operation, including the vector ops
generated within the strip-mine loop in some cases, the initial
definition before the loop, and the epilogue code that must be generated. */
static void
vect_model_reduction_cost (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, internal_fn reduc_fn,
vect_reduction_type reduction_type,
int ncopies, stmt_vector_for_cost *cost_vec)
{
int prologue_cost = 0, epilogue_cost = 0, inside_cost = 0;
tree vectype;
machine_mode mode;
class loop *loop = NULL;
if (loop_vinfo)
loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Condition reductions generate two reductions in the loop. */
if (reduction_type == COND_REDUCTION)
ncopies *= 2;
vectype = STMT_VINFO_VECTYPE (stmt_info);
mode = TYPE_MODE (vectype);
stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
gimple_match_op op;
if (!gimple_extract_op (orig_stmt_info->stmt, &op))
gcc_unreachable ();
if (reduction_type == EXTRACT_LAST_REDUCTION)
/* No extra instructions are needed in the prologue. The loop body
operations are costed in vectorizable_condition. */
inside_cost = 0;
else if (reduction_type == FOLD_LEFT_REDUCTION)
{
/* No extra instructions needed in the prologue. */
prologue_cost = 0;
if (reduc_fn != IFN_LAST)
/* Count one reduction-like operation per vector. */
inside_cost = record_stmt_cost (cost_vec, ncopies, vec_to_scalar,
stmt_info, 0, vect_body);
else
{
/* Use NELEMENTS extracts and NELEMENTS scalar ops. */
unsigned int nelements = ncopies * vect_nunits_for_cost (vectype);
inside_cost = record_stmt_cost (cost_vec, nelements,
vec_to_scalar, stmt_info, 0,
vect_body);
inside_cost += record_stmt_cost (cost_vec, nelements,
scalar_stmt, stmt_info, 0,
vect_body);
}
}
else
{
/* Add in cost for initial definition.
For cond reduction we have four vectors: initial index, step,
initial result of the data reduction, initial value of the index
reduction. */
int prologue_stmts = reduction_type == COND_REDUCTION ? 4 : 1;
prologue_cost += record_stmt_cost (cost_vec, prologue_stmts,
scalar_to_vec, stmt_info, 0,
vect_prologue);
}
/* Determine cost of epilogue code.
We have a reduction operator that will reduce the vector in one statement.
Also requires scalar extract. */
if (!loop || !nested_in_vect_loop_p (loop, orig_stmt_info))
{
if (reduc_fn != IFN_LAST)
{
if (reduction_type == COND_REDUCTION)
{
/* An EQ stmt and an COND_EXPR stmt. */
epilogue_cost += record_stmt_cost (cost_vec, 2,
vector_stmt, stmt_info, 0,
vect_epilogue);
/* Reduction of the max index and a reduction of the found
values. */
epilogue_cost += record_stmt_cost (cost_vec, 2,
vec_to_scalar, stmt_info, 0,
vect_epilogue);
/* A broadcast of the max value. */
epilogue_cost += record_stmt_cost (cost_vec, 1,
scalar_to_vec, stmt_info, 0,
vect_epilogue);
}
else
{
epilogue_cost += record_stmt_cost (cost_vec, 1, vector_stmt,
stmt_info, 0, vect_epilogue);
epilogue_cost += record_stmt_cost (cost_vec, 1,
vec_to_scalar, stmt_info, 0,
vect_epilogue);
}
}
else if (reduction_type == COND_REDUCTION)
{
unsigned estimated_nunits = vect_nunits_for_cost (vectype);
/* Extraction of scalar elements. */
epilogue_cost += record_stmt_cost (cost_vec,
2 * estimated_nunits,
vec_to_scalar, stmt_info, 0,
vect_epilogue);
/* Scalar max reductions via COND_EXPR / MAX_EXPR. */
epilogue_cost += record_stmt_cost (cost_vec,
2 * estimated_nunits - 3,
scalar_stmt, stmt_info, 0,
vect_epilogue);
}
else if (reduction_type == EXTRACT_LAST_REDUCTION
|| reduction_type == FOLD_LEFT_REDUCTION)
/* No extra instructions need in the epilogue. */
;
else
{
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
tree bitsize = TYPE_SIZE (op.type);
int element_bitsize = tree_to_uhwi (bitsize);
int nelements = vec_size_in_bits / element_bitsize;
if (op.code == COND_EXPR)
op.code = MAX_EXPR;
/* We have a whole vector shift available. */
if (VECTOR_MODE_P (mode)
&& directly_supported_p (op.code, vectype)
&& have_whole_vector_shift (mode))
{
/* Final reduction via vector shifts and the reduction operator.
Also requires scalar extract. */
epilogue_cost += record_stmt_cost (cost_vec,
exact_log2 (nelements) * 2,
vector_stmt, stmt_info, 0,
vect_epilogue);
epilogue_cost += record_stmt_cost (cost_vec, 1,
vec_to_scalar, stmt_info, 0,
vect_epilogue);
}
else
/* Use extracts and reduction op for final reduction. For N
elements, we have N extracts and N-1 reduction ops. */
epilogue_cost += record_stmt_cost (cost_vec,
nelements + nelements - 1,
vector_stmt, stmt_info, 0,
vect_epilogue);
}
}
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
"vect_model_reduction_cost: inside_cost = %d, "
"prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
prologue_cost, epilogue_cost);
}
/* SEQ is a sequence of instructions that initialize the reduction
described by REDUC_INFO. Emit them in the appropriate place. */
static void
vect_emit_reduction_init_stmts (loop_vec_info loop_vinfo,
stmt_vec_info reduc_info, gimple *seq)
{
if (reduc_info->reused_accumulator)
{
/* When reusing an accumulator from the main loop, we only need
initialization instructions if the main loop can be skipped.
In that case, emit the initialization instructions at the end
of the guard block that does the skip. */
edge skip_edge = loop_vinfo->skip_main_loop_edge;
gcc_assert (skip_edge);
gimple_stmt_iterator gsi = gsi_last_bb (skip_edge->src);
gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
}
else
{
/* The normal case: emit the initialization instructions on the
preheader edge. */
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), seq);
}
}
/* Function get_initial_def_for_reduction
Input:
REDUC_INFO - the info_for_reduction
INIT_VAL - the initial value of the reduction variable
NEUTRAL_OP - a value that has no effect on the reduction, as per
neutral_op_for_reduction
Output:
Return a vector variable, initialized according to the operation that
STMT_VINFO performs. This vector will be used as the initial value
of the vector of partial results.
The value we need is a vector in which element 0 has value INIT_VAL
and every other element has value NEUTRAL_OP. */
static tree
get_initial_def_for_reduction (loop_vec_info loop_vinfo,
stmt_vec_info reduc_info,
tree init_val, tree neutral_op)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree scalar_type = TREE_TYPE (init_val);
tree vectype = get_vectype_for_scalar_type (loop_vinfo, scalar_type);
tree init_def;
gimple_seq stmts = NULL;
gcc_assert (vectype);
gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
|| SCALAR_FLOAT_TYPE_P (scalar_type));
gcc_assert (nested_in_vect_loop_p (loop, reduc_info)
|| loop == (gimple_bb (reduc_info->stmt))->loop_father);
if (operand_equal_p (init_val, neutral_op))
{
/* If both elements are equal then the vector described above is
just a splat. */
neutral_op = gimple_convert (&stmts, TREE_TYPE (vectype), neutral_op);
init_def = gimple_build_vector_from_val (&stmts, vectype, neutral_op);
}
else
{
neutral_op = gimple_convert (&stmts, TREE_TYPE (vectype), neutral_op);
init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant ())
{
/* Construct a splat of NEUTRAL_OP and insert INIT_VAL into
element 0. */
init_def = gimple_build_vector_from_val (&stmts, vectype,
neutral_op);
init_def = gimple_build (&stmts, CFN_VEC_SHL_INSERT,
vectype, init_def, init_val);
}
else
{
/* Build {INIT_VAL, NEUTRAL_OP, NEUTRAL_OP, ...}. */
tree_vector_builder elts (vectype, 1, 2);
elts.quick_push (init_val);
elts.quick_push (neutral_op);
init_def = gimple_build_vector (&stmts, &elts);
}
}
if (stmts)
vect_emit_reduction_init_stmts (loop_vinfo, reduc_info, stmts);
return init_def;
}
/* Get at the initial defs for the reduction PHIs for REDUC_INFO,
which performs a reduction involving GROUP_SIZE scalar statements.
NUMBER_OF_VECTORS is the number of vector defs to create. If NEUTRAL_OP
is nonnull, introducing extra elements of that value will not change the
result. */
static void
get_initial_defs_for_reduction (loop_vec_info loop_vinfo,
stmt_vec_info reduc_info,
vec<tree> *vec_oprnds,
unsigned int number_of_vectors,
unsigned int group_size, tree neutral_op)
{
vec<tree> &initial_values = reduc_info->reduc_initial_values;
unsigned HOST_WIDE_INT nunits;
unsigned j, number_of_places_left_in_vector;
tree vector_type = STMT_VINFO_VECTYPE (reduc_info);
unsigned int i;
gcc_assert (group_size == initial_values.length () || neutral_op);
/* NUMBER_OF_COPIES is the number of times we need to use the same values in
created vectors. It is greater than 1 if unrolling is performed.
For example, we have two scalar operands, s1 and s2 (e.g., group of
strided accesses of size two), while NUNITS is four (i.e., four scalars
of this type can be packed in a vector). The output vector will contain
two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
will be 2).
If REDUC_GROUP_SIZE > NUNITS, the scalars will be split into several
vectors containing the operands.
For example, NUNITS is four as before, and the group size is 8
(s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
{s5, s6, s7, s8}. */
if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits))
nunits = group_size;
number_of_places_left_in_vector = nunits;
bool constant_p = true;
tree_vector_builder elts (vector_type, nunits, 1);
elts.quick_grow (nunits);
gimple_seq ctor_seq = NULL;
for (j = 0; j < nunits * number_of_vectors; ++j)
{
tree op;
i = j % group_size;
/* Get the def before the loop. In reduction chain we have only
one initial value. Else we have as many as PHIs in the group. */
if (i >= initial_values.length () || (j > i && neutral_op))
op = neutral_op;
else
op = initial_values[i];
/* Create 'vect_ = {op0,op1,...,opn}'. */
number_of_places_left_in_vector--;
elts[nunits - number_of_places_left_in_vector - 1] = op;
if (!CONSTANT_CLASS_P (op))
constant_p = false;
if (number_of_places_left_in_vector == 0)
{
tree init;
if (constant_p && !neutral_op
? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits)
: known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits))
/* Build the vector directly from ELTS. */
init = gimple_build_vector (&ctor_seq, &elts);
else if (neutral_op)
{
/* Build a vector of the neutral value and shift the
other elements into place. */
init = gimple_build_vector_from_val (&ctor_seq, vector_type,
neutral_op);
int k = nunits;
while (k > 0 && elts[k - 1] == neutral_op)
k -= 1;
while (k > 0)
{
k -= 1;
init = gimple_build (&ctor_seq, CFN_VEC_SHL_INSERT,
vector_type, init, elts[k]);
}
}
else
{
/* First time round, duplicate ELTS to fill the
required number of vectors. */
duplicate_and_interleave (loop_vinfo, &ctor_seq, vector_type,
elts, number_of_vectors, *vec_oprnds);
break;
}
vec_oprnds->quick_push (init);
number_of_places_left_in_vector = nunits;
elts.new_vector (vector_type, nunits, 1);
elts.quick_grow (nunits);
constant_p = true;
}
}
if (ctor_seq != NULL)
vect_emit_reduction_init_stmts (loop_vinfo, reduc_info, ctor_seq);
}
/* For a statement STMT_INFO taking part in a reduction operation return
the stmt_vec_info the meta information is stored on. */
stmt_vec_info
info_for_reduction (vec_info *vinfo, stmt_vec_info stmt_info)
{
stmt_info = vect_orig_stmt (stmt_info);
gcc_assert (STMT_VINFO_REDUC_DEF (stmt_info));
if (!is_a <gphi *> (stmt_info->stmt)
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
gphi *phi = as_a <gphi *> (stmt_info->stmt);
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
{
if (gimple_phi_num_args (phi) == 1)
stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
}
else if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
{
stmt_vec_info info = vinfo->lookup_def (vect_phi_initial_value (phi));
if (info && STMT_VINFO_DEF_TYPE (info) == vect_double_reduction_def)
stmt_info = info;
}
return stmt_info;
}
/* See if LOOP_VINFO is an epilogue loop whose main loop had a reduction that
REDUC_INFO can build on. Adjust REDUC_INFO and return true if so, otherwise
return false. */
static bool
vect_find_reusable_accumulator (loop_vec_info loop_vinfo,
stmt_vec_info reduc_info)
{
loop_vec_info main_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
if (!main_loop_vinfo)
return false;
if (STMT_VINFO_REDUC_TYPE (reduc_info) != TREE_CODE_REDUCTION)
return false;
unsigned int num_phis = reduc_info->reduc_initial_values.length ();
auto_vec<tree, 16> main_loop_results (num_phis);
auto_vec<tree, 16> initial_values (num_phis);
if (edge main_loop_edge = loop_vinfo->main_loop_edge)
{
/* The epilogue loop can be entered either from the main loop or
from an earlier guard block. */
edge skip_edge = loop_vinfo->skip_main_loop_edge;
for (tree incoming_value : reduc_info->reduc_initial_values)
{
/* Look for:
INCOMING_VALUE = phi<MAIN_LOOP_RESULT(main loop),
INITIAL_VALUE(guard block)>. */
gcc_assert (TREE_CODE (incoming_value) == SSA_NAME);
gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (incoming_value));
gcc_assert (gimple_bb (phi) == main_loop_edge->dest);
tree from_main_loop = PHI_ARG_DEF_FROM_EDGE (phi, main_loop_edge);
tree from_skip = PHI_ARG_DEF_FROM_EDGE (phi, skip_edge);
main_loop_results.quick_push (from_main_loop);
initial_values.quick_push (from_skip);
}
}
else
/* The main loop dominates the epilogue loop. */
main_loop_results.splice (reduc_info->reduc_initial_values);
/* See if the main loop has the kind of accumulator we need. */
vect_reusable_accumulator *accumulator
= main_loop_vinfo->reusable_accumulators.get (main_loop_results[0]);
if (!accumulator
|| num_phis != accumulator->reduc_info->reduc_scalar_results.length ()
|| !std::equal (main_loop_results.begin (), main_loop_results.end (),
accumulator->reduc_info->reduc_scalar_results.begin ()))
return false;
/* Handle the case where we can reduce wider vectors to narrower ones. */
tree vectype = STMT_VINFO_VECTYPE (reduc_info);
tree old_vectype = TREE_TYPE (accumulator->reduc_input);
unsigned HOST_WIDE_INT m;
if (!constant_multiple_p (TYPE_VECTOR_SUBPARTS (old_vectype),
TYPE_VECTOR_SUBPARTS (vectype), &m))
return false;
/* Check the intermediate vector types and operations are available. */
tree prev_vectype = old_vectype;
poly_uint64 intermediate_nunits = TYPE_VECTOR_SUBPARTS (old_vectype);
while (known_gt (intermediate_nunits, TYPE_VECTOR_SUBPARTS (vectype)))
{
intermediate_nunits = exact_div (intermediate_nunits, 2);
tree intermediate_vectype = get_related_vectype_for_scalar_type
(TYPE_MODE (vectype), TREE_TYPE (vectype), intermediate_nunits);
if (!intermediate_vectype
|| !directly_supported_p (STMT_VINFO_REDUC_CODE (reduc_info),
intermediate_vectype)
|| !can_vec_extract (TYPE_MODE (prev_vectype),
TYPE_MODE (intermediate_vectype)))
return false;
prev_vectype = intermediate_vectype;
}
/* Non-SLP reductions might apply an adjustment after the reduction
operation, in order to simplify the initialization of the accumulator.
If the epilogue loop carries on from where the main loop left off,
it should apply the same adjustment to the final reduction result.
If the epilogue loop can also be entered directly (rather than via
the main loop), we need to be able to handle that case in the same way,
with the same adjustment. (In principle we could add a PHI node
to select the correct adjustment, but in practice that shouldn't be
necessary.) */
tree main_adjustment
= STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (accumulator->reduc_info);
if (loop_vinfo->main_loop_edge && main_adjustment)
{
gcc_assert (num_phis == 1);
tree initial_value = initial_values[0];
/* Check that we can use INITIAL_VALUE as the adjustment and
initialize the accumulator with a neutral value instead. */
if (!operand_equal_p (initial_value, main_adjustment))
return false;
code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
initial_values[0] = neutral_op_for_reduction (TREE_TYPE (initial_value),
code, initial_value);
}
STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info) = main_adjustment;
reduc_info->reduc_initial_values.truncate (0);
reduc_info->reduc_initial_values.splice (initial_values);
reduc_info->reused_accumulator = accumulator;
return true;
}
/* Reduce the vector VEC_DEF down to VECTYPE with reduction operation
CODE emitting stmts before GSI. Returns a vector def of VECTYPE. */
static tree
vect_create_partial_epilog (tree vec_def, tree vectype, code_helper code,
gimple_seq *seq)
{
unsigned nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec_def)).to_constant ();
unsigned nunits1 = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
tree stype = TREE_TYPE (vectype);
tree new_temp = vec_def;
while (nunits > nunits1)
{
nunits /= 2;
tree vectype1 = get_related_vectype_for_scalar_type (TYPE_MODE (vectype),
stype, nunits);
unsigned int bitsize = tree_to_uhwi (TYPE_SIZE (vectype1));
/* The target has to make sure we support lowpart/highpart
extraction, either via direct vector extract or through
an integer mode punning. */
tree dst1, dst2;
gimple *epilog_stmt;
if (convert_optab_handler (vec_extract_optab,
TYPE_MODE (TREE_TYPE (new_temp)),
TYPE_MODE (vectype1))
!= CODE_FOR_nothing)
{
/* Extract sub-vectors directly once vec_extract becomes
a conversion optab. */
dst1 = make_ssa_name (vectype1);
epilog_stmt
= gimple_build_assign (dst1, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, vectype1,
new_temp, TYPE_SIZE (vectype1),
bitsize_int (0)));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
dst2 = make_ssa_name (vectype1);
epilog_stmt
= gimple_build_assign (dst2, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, vectype1,
new_temp, TYPE_SIZE (vectype1),
bitsize_int (bitsize)));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
}
else
{
/* Extract via punning to appropriately sized integer mode
vector. */
tree eltype = build_nonstandard_integer_type (bitsize, 1);
tree etype = build_vector_type (eltype, 2);
gcc_assert (convert_optab_handler (vec_extract_optab,
TYPE_MODE (etype),
TYPE_MODE (eltype))
!= CODE_FOR_nothing);
tree tem = make_ssa_name (etype);
epilog_stmt = gimple_build_assign (tem, VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR,
etype, new_temp));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
new_temp = tem;
tem = make_ssa_name (eltype);
epilog_stmt
= gimple_build_assign (tem, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, eltype,
new_temp, TYPE_SIZE (eltype),
bitsize_int (0)));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
dst1 = make_ssa_name (vectype1);
epilog_stmt = gimple_build_assign (dst1, VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR,
vectype1, tem));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
tem = make_ssa_name (eltype);
epilog_stmt
= gimple_build_assign (tem, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, eltype,
new_temp, TYPE_SIZE (eltype),
bitsize_int (bitsize)));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
dst2 = make_ssa_name (vectype1);
epilog_stmt = gimple_build_assign (dst2, VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR,
vectype1, tem));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
}
new_temp = gimple_build (seq, code, vectype1, dst1, dst2);
}
return new_temp;
}
/* Function vect_create_epilog_for_reduction
Create code at the loop-epilog to finalize the result of a reduction
computation.
STMT_INFO is the scalar reduction stmt that is being vectorized.
SLP_NODE is an SLP node containing a group of reduction statements. The
first one in this group is STMT_INFO.
SLP_NODE_INSTANCE is the SLP node instance containing SLP_NODE
REDUC_INDEX says which rhs operand of the STMT_INFO is the reduction phi
(counting from 0)
This function:
1. Completes the reduction def-use cycles.
2. "Reduces" each vector of partial results VECT_DEFS into a single result,
by calling the function specified by REDUC_FN if available, or by
other means (whole-vector shifts or a scalar loop).
The function also creates a new phi node at the loop exit to preserve
loop-closed form, as illustrated below.
The flow at the entry to this function:
loop:
vec_def = phi <vec_init, null> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT_INFO
s_loop = scalar_stmt # (scalar) STMT_INFO
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
use <s_out0>
use <s_out0>
The above is transformed by this function into:
loop:
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT_INFO
s_loop = scalar_stmt # (scalar) STMT_INFO
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out4>
use <s_out4>
*/
static void
vect_create_epilog_for_reduction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info,
slp_tree slp_node,
slp_instance slp_node_instance)
{
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
gcc_assert (reduc_info->is_reduc_info);
/* For double reductions we need to get at the inner loop reduction
stmt which has the meta info attached. Our stmt_info is that of the
loop-closed PHI of the inner loop which we remember as
def for the reduction PHI generation. */
bool double_reduc = false;
stmt_vec_info rdef_info = stmt_info;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
{
gcc_assert (!slp_node);
double_reduc = true;
stmt_info = loop_vinfo->lookup_def (gimple_phi_arg_def
(stmt_info->stmt, 0));
stmt_info = vect_stmt_to_vectorize (stmt_info);
}
gphi *reduc_def_stmt
= as_a <gphi *> (STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info))->stmt);
code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
internal_fn reduc_fn = STMT_VINFO_REDUC_FN (reduc_info);
tree vectype;
machine_mode mode;
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
basic_block exit_bb;
tree scalar_dest;
tree scalar_type;
gimple *new_phi = NULL, *phi;
gimple_stmt_iterator exit_gsi;
tree new_temp = NULL_TREE, new_name, new_scalar_dest;
gimple *epilog_stmt = NULL;
gimple *exit_phi;
tree bitsize;
tree def;
tree orig_name, scalar_result;
imm_use_iterator imm_iter, phi_imm_iter;
use_operand_p use_p, phi_use_p;
gimple *use_stmt;
auto_vec<tree> reduc_inputs;
int j, i;
vec<tree> &scalar_results = reduc_info->reduc_scalar_results;
unsigned int group_size = 1, k;
auto_vec<gimple *> phis;
/* SLP reduction without reduction chain, e.g.,
# a1 = phi <a2, a0>
# b1 = phi <b2, b0>
a2 = operation (a1)
b2 = operation (b1) */
bool slp_reduc = (slp_node && !REDUC_GROUP_FIRST_ELEMENT (stmt_info));
bool direct_slp_reduc;
tree induction_index = NULL_TREE;
if (slp_node)
group_size = SLP_TREE_LANES (slp_node);
if (nested_in_vect_loop_p (loop, stmt_info))
{
outer_loop = loop;
loop = loop->inner;
gcc_assert (!slp_node && double_reduc);
}
vectype = STMT_VINFO_REDUC_VECTYPE (reduc_info);
gcc_assert (vectype);
mode = TYPE_MODE (vectype);
tree induc_val = NULL_TREE;
tree adjustment_def = NULL;
if (slp_node)
;
else
{
/* Optimize: for induction condition reduction, if we can't use zero
for induc_val, use initial_def. */
if (STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
induc_val = STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info);
else if (double_reduc)
;
else
adjustment_def = STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info);
}
stmt_vec_info single_live_out_stmt[] = { stmt_info };
array_slice<const stmt_vec_info> live_out_stmts = single_live_out_stmt;
if (slp_reduc)
/* All statements produce live-out values. */
live_out_stmts = SLP_TREE_SCALAR_STMTS (slp_node);
else if (slp_node)
{
/* The last statement in the reduction chain produces the live-out
value. Note SLP optimization can shuffle scalar stmts to
optimize permutations so we have to search for the last stmt. */
for (k = 0; k < group_size; ++k)
if (!REDUC_GROUP_NEXT_ELEMENT (SLP_TREE_SCALAR_STMTS (slp_node)[k]))
{
single_live_out_stmt[0] = SLP_TREE_SCALAR_STMTS (slp_node)[k];
break;
}
}
unsigned vec_num;
int ncopies;
if (slp_node)
{
vec_num = SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis).length ();
ncopies = 1;
}
else
{
stmt_vec_info reduc_info = loop_vinfo->lookup_stmt (reduc_def_stmt);
vec_num = 1;
ncopies = STMT_VINFO_VEC_STMTS (reduc_info).length ();
}
/* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
which is updated with the current index of the loop for every match of
the original loop's cond_expr (VEC_STMT). This results in a vector
containing the last time the condition passed for that vector lane.
The first match will be a 1 to allow 0 to be used for non-matching
indexes. If there are no matches at all then the vector will be all
zeroes.
PR92772: This algorithm is broken for architectures that support
masked vectors, but do not provide fold_extract_last. */
if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION)
{
auto_vec<std::pair<tree, bool>, 2> ccompares;
stmt_vec_info cond_info = STMT_VINFO_REDUC_DEF (reduc_info);
cond_info = vect_stmt_to_vectorize (cond_info);
while (cond_info != reduc_info)
{
if (gimple_assign_rhs_code (cond_info->stmt) == COND_EXPR)
{
gimple *vec_stmt = STMT_VINFO_VEC_STMTS (cond_info)[0];
gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
ccompares.safe_push
(std::make_pair (unshare_expr (gimple_assign_rhs1 (vec_stmt)),
STMT_VINFO_REDUC_IDX (cond_info) == 2));
}
cond_info
= loop_vinfo->lookup_def (gimple_op (cond_info->stmt,
1 + STMT_VINFO_REDUC_IDX
(cond_info)));
cond_info = vect_stmt_to_vectorize (cond_info);
}
gcc_assert (ccompares.length () != 0);
tree indx_before_incr, indx_after_incr;
poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
int scalar_precision
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (vectype)));
tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
tree cr_index_vector_type = get_related_vectype_for_scalar_type
(TYPE_MODE (vectype), cr_index_scalar_type,
TYPE_VECTOR_SUBPARTS (vectype));
/* First we create a simple vector induction variable which starts
with the values {1,2,3,...} (SERIES_VECT) and increments by the
vector size (STEP). */
/* Create a {1,2,3,...} vector. */
tree series_vect = build_index_vector (cr_index_vector_type, 1, 1);
/* Create a vector of the step value. */
tree step = build_int_cst (cr_index_scalar_type, nunits_out);
tree vec_step = build_vector_from_val (cr_index_vector_type, step);
/* Create an induction variable. */
gimple_stmt_iterator incr_gsi;
bool insert_after;
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
insert_after, &indx_before_incr, &indx_after_incr);
/* Next create a new phi node vector (NEW_PHI_TREE) which starts
filled with zeros (VEC_ZERO). */
/* Create a vector of 0s. */
tree zero = build_zero_cst (cr_index_scalar_type);
tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
/* Create a vector phi node. */
tree new_phi_tree = make_ssa_name (cr_index_vector_type);
new_phi = create_phi_node (new_phi_tree, loop->header);
add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
loop_preheader_edge (loop), UNKNOWN_LOCATION);
/* Now take the condition from the loops original cond_exprs
and produce a new cond_exprs (INDEX_COND_EXPR) which for
every match uses values from the induction variable
(INDEX_BEFORE_INCR) otherwise uses values from the phi node
(NEW_PHI_TREE).
Finally, we update the phi (NEW_PHI_TREE) to take the value of
the new cond_expr (INDEX_COND_EXPR). */
gimple_seq stmts = NULL;
for (int i = ccompares.length () - 1; i != -1; --i)
{
tree ccompare = ccompares[i].first;
if (ccompares[i].second)
new_phi_tree = gimple_build (&stmts, VEC_COND_EXPR,
cr_index_vector_type,
ccompare,
indx_before_incr, new_phi_tree);
else
new_phi_tree = gimple_build (&stmts, VEC_COND_EXPR,
cr_index_vector_type,
ccompare,
new_phi_tree, indx_before_incr);
}
gsi_insert_seq_before (&incr_gsi, stmts, GSI_SAME_STMT);
/* Update the phi with the vec cond. */
induction_index = new_phi_tree;
add_phi_arg (as_a <gphi *> (new_phi), induction_index,
loop_latch_edge (loop), UNKNOWN_LOCATION);
}
/* 2. Create epilog code.
The reduction epilog code operates across the elements of the vector
of partial results computed by the vectorized loop.
The reduction epilog code consists of:
step 1: compute the scalar result in a vector (v_out2)
step 2: extract the scalar result (s_out3) from the vector (v_out2)
step 3: adjust the scalar result (s_out3) if needed.
Step 1 can be accomplished using one the following three schemes:
(scheme 1) using reduc_fn, if available.
(scheme 2) using whole-vector shifts, if available.
(scheme 3) using a scalar loop. In this case steps 1+2 above are
combined.
The overall epilog code looks like this:
s_out0 = phi <s_loop> # original EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1> # step 1
s_out3 = extract_field <v_out2, 0> # step 2
s_out4 = adjust_result <s_out3> # step 3
(step 3 is optional, and steps 1 and 2 may be combined).
Lastly, the uses of s_out0 are replaced by s_out4. */
/* 2.1 Create new loop-exit-phis to preserve loop-closed form:
v_out1 = phi <VECT_DEF>
Store them in NEW_PHIS. */
if (double_reduc)
loop = outer_loop;
exit_bb = single_exit (loop)->dest;
exit_gsi = gsi_after_labels (exit_bb);
reduc_inputs.create (slp_node ? vec_num : ncopies);
for (unsigned i = 0; i < vec_num; i++)
{
gimple_seq stmts = NULL;
if (slp_node)
def = vect_get_slp_vect_def (slp_node, i);
else
def = gimple_get_lhs (STMT_VINFO_VEC_STMTS (rdef_info)[0]);
for (j = 0; j < ncopies; j++)
{
tree new_def = copy_ssa_name (def);
phi = create_phi_node (new_def, exit_bb);
if (j)
def = gimple_get_lhs (STMT_VINFO_VEC_STMTS (rdef_info)[j]);
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
new_def = gimple_convert (&stmts, vectype, new_def);
reduc_inputs.quick_push (new_def);
}
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
}
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
(i.e. when reduc_fn is not available) and in the final adjustment
code (if needed). Also get the original scalar reduction variable as
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
represents a reduction pattern), the tree-code and scalar-def are
taken from the original stmt that the pattern-stmt (STMT) replaces.
Otherwise (it is a regular reduction) - the tree-code and scalar-def
are taken from STMT. */
stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
if (orig_stmt_info != stmt_info)
{
/* Reduction pattern */
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt_info);
}
scalar_dest = gimple_get_lhs (orig_stmt_info->stmt);
scalar_type = TREE_TYPE (scalar_dest);
scalar_results.truncate (0);
scalar_results.reserve_exact (group_size);
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
bitsize = TYPE_SIZE (scalar_type);
/* True if we should implement SLP_REDUC using native reduction operations
instead of scalar operations. */
direct_slp_reduc = (reduc_fn != IFN_LAST
&& slp_reduc
&& !TYPE_VECTOR_SUBPARTS (vectype).is_constant ());
/* In case of reduction chain, e.g.,
# a1 = phi <a3, a0>
a2 = operation (a1)
a3 = operation (a2),
we may end up with more than one vector result. Here we reduce them
to one vector.
The same is true if we couldn't use a single defuse cycle. */
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info)
|| direct_slp_reduc
|| ncopies > 1)
{
gimple_seq stmts = NULL;
tree single_input = reduc_inputs[0];
for (k = 1; k < reduc_inputs.length (); k++)
single_input = gimple_build (&stmts, code, vectype,
single_input, reduc_inputs[k]);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
reduc_inputs.truncate (0);
reduc_inputs.safe_push (single_input);
}
tree orig_reduc_input = reduc_inputs[0];
/* If this loop is an epilogue loop that can be skipped after the
main loop, we can only share a reduction operation between the
main loop and the epilogue if we put it at the target of the
skip edge.
We can still reuse accumulators if this check fails. Doing so has
the minor(?) benefit of making the epilogue loop's scalar result
independent of the main loop's scalar result. */
bool unify_with_main_loop_p = false;
if (reduc_info->reused_accumulator
&& loop_vinfo->skip_this_loop_edge
&& single_succ_p (exit_bb)
&& single_succ (exit_bb) == loop_vinfo->skip_this_loop_edge->dest)
{
unify_with_main_loop_p = true;
basic_block reduc_block = loop_vinfo->skip_this_loop_edge->dest;
reduc_inputs[0] = make_ssa_name (vectype);
gphi *new_phi = create_phi_node (reduc_inputs[0], reduc_block);
add_phi_arg (new_phi, orig_reduc_input, single_succ_edge (exit_bb),
UNKNOWN_LOCATION);
add_phi_arg (new_phi, reduc_info->reused_accumulator->reduc_input,
loop_vinfo->skip_this_loop_edge, UNKNOWN_LOCATION);
exit_gsi = gsi_after_labels (reduc_block);
}
/* Shouldn't be used beyond this point. */
exit_bb = nullptr;
if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION
&& reduc_fn != IFN_LAST)
{
/* For condition reductions, we have a vector (REDUC_INPUTS 0) containing
various data values where the condition matched and another vector
(INDUCTION_INDEX) containing all the indexes of those matches. We
need to extract the last matching index (which will be the index with
highest value) and use this to index into the data vector.
For the case where there were no matches, the data vector will contain
all default values and the index vector will be all zeros. */
/* Get various versions of the type of the vector of indexes. */
tree index_vec_type = TREE_TYPE (induction_index);
gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
tree index_scalar_type = TREE_TYPE (index_vec_type);
tree index_vec_cmp_type = truth_type_for (index_vec_type);
/* Get an unsigned integer version of the type of the data vector. */
int scalar_precision
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
tree vectype_unsigned = get_same_sized_vectype (scalar_type_unsigned,
vectype);
/* First we need to create a vector (ZERO_VEC) of zeros and another
vector (MAX_INDEX_VEC) filled with the last matching index, which we
can create using a MAX reduction and then expanding.
In the case where the loop never made any matches, the max index will
be zero. */
/* Vector of {0, 0, 0,...}. */
tree zero_vec = build_zero_cst (vectype);
/* Find maximum value from the vector of found indexes. */
tree max_index = make_ssa_name (index_scalar_type);
gcall *max_index_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
1, induction_index);
gimple_call_set_lhs (max_index_stmt, max_index);
gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
/* Vector of {max_index, max_index, max_index,...}. */
tree max_index_vec = make_ssa_name (index_vec_type);
tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
max_index);
gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
max_index_vec_rhs);
gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
/* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
with the vector (INDUCTION_INDEX) of found indexes, choosing values
from the data vector (REDUC_INPUTS 0) for matches, 0 (ZERO_VEC)
otherwise. Only one value should match, resulting in a vector
(VEC_COND) with one data value and the rest zeros.
In the case where the loop never made any matches, every index will
match, resulting in a vector with all data values (which will all be
the default value). */
/* Compare the max index vector to the vector of found indexes to find
the position of the max value. */
tree vec_compare = make_ssa_name (index_vec_cmp_type);
gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
induction_index,
max_index_vec);
gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
/* Use the compare to choose either values from the data vector or
zero. */
tree vec_cond = make_ssa_name (vectype);
gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
vec_compare,
reduc_inputs[0],
zero_vec);
gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
/* Finally we need to extract the data value from the vector (VEC_COND)
into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
reduction, but because this doesn't exist, we can use a MAX reduction
instead. The data value might be signed or a float so we need to cast
it first.
In the case where the loop never made any matches, the data values are
all identical, and so will reduce down correctly. */
/* Make the matched data values unsigned. */
tree vec_cond_cast = make_ssa_name (vectype_unsigned);
tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
vec_cond);
gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
VIEW_CONVERT_EXPR,
vec_cond_cast_rhs);
gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
/* Reduce down to a scalar value. */
tree data_reduc = make_ssa_name (scalar_type_unsigned);
gcall *data_reduc_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
1, vec_cond_cast);
gimple_call_set_lhs (data_reduc_stmt, data_reduc);
gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
/* Convert the reduced value back to the result type and set as the
result. */
gimple_seq stmts = NULL;
new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
data_reduc);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
scalar_results.safe_push (new_temp);
}
else if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION
&& reduc_fn == IFN_LAST)
{
/* Condition reduction without supported IFN_REDUC_MAX. Generate
idx = 0;
idx_val = induction_index[0];
val = data_reduc[0];
for (idx = 0, val = init, i = 0; i < nelts; ++i)
if (induction_index[i] > idx_val)
val = data_reduc[i], idx_val = induction_index[i];
return val; */
tree data_eltype = TREE_TYPE (vectype);
tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
/* Enforced by vectorizable_reduction, which ensures we have target
support before allowing a conditional reduction on variable-length
vectors. */
unsigned HOST_WIDE_INT v_size = el_size * nunits.to_constant ();
tree idx_val = NULL_TREE, val = NULL_TREE;
for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
{
tree old_idx_val = idx_val;
tree old_val = val;
idx_val = make_ssa_name (idx_eltype);
epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, idx_eltype,
induction_index,
bitsize_int (el_size),
bitsize_int (off)));
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
val = make_ssa_name (data_eltype);
epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
build3 (BIT_FIELD_REF,
data_eltype,
reduc_inputs[0],
bitsize_int (el_size),
bitsize_int (off)));
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
if (off != 0)
{
tree new_idx_val = idx_val;
if (off != v_size - el_size)
{
new_idx_val = make_ssa_name (idx_eltype);
epilog_stmt = gimple_build_assign (new_idx_val,
MAX_EXPR, idx_val,
old_idx_val);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
}
tree new_val = make_ssa_name (data_eltype);
epilog_stmt = gimple_build_assign (new_val,
COND_EXPR,
build2 (GT_EXPR,
boolean_type_node,
idx_val,
old_idx_val),
val, old_val);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
idx_val = new_idx_val;
val = new_val;
}
}
/* Convert the reduced value back to the result type and set as the
result. */
gimple_seq stmts = NULL;
val = gimple_convert (&stmts, scalar_type, val);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
scalar_results.safe_push (val);
}
/* 2.3 Create the reduction code, using one of the three schemes described
above. In SLP we simply need to extract all the elements from the
vector (without reducing them), so we use scalar shifts. */
else if (reduc_fn != IFN_LAST && !slp_reduc)
{
tree tmp;
tree vec_elem_type;
/* Case 1: Create:
v_out2 = reduc_expr <v_out1> */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Reduce using direct vector reduction.\n");
gimple_seq stmts = NULL;
vec_elem_type = TREE_TYPE (vectype);
new_temp = gimple_build (&stmts, as_combined_fn (reduc_fn),
vec_elem_type, reduc_inputs[0]);
new_temp = gimple_convert (&stmts, scalar_type, new_temp);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
if ((STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
&& induc_val)
{
/* Earlier we set the initial value to be a vector if induc_val
values. Check the result and if it is induc_val then replace
with the original initial value, unless induc_val is
the same as initial_def already. */
tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
induc_val);
tree initial_def = reduc_info->reduc_initial_values[0];
tmp = make_ssa_name (new_scalar_dest);
epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
initial_def, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
new_temp = tmp;
}
scalar_results.safe_push (new_temp);
}
else if (direct_slp_reduc)
{
/* Here we create one vector for each of the REDUC_GROUP_SIZE results,
with the elements for other SLP statements replaced with the
neutral value. We can then do a normal reduction on each vector. */
/* Enforced by vectorizable_reduction. */
gcc_assert (reduc_inputs.length () == 1);
gcc_assert (pow2p_hwi (group_size));
gimple_seq seq = NULL;
/* Build a vector {0, 1, 2, ...}, with the same number of elements
and the same element size as VECTYPE. */
tree index = build_index_vector (vectype, 0, 1);
tree index_type = TREE_TYPE (index);
tree index_elt_type = TREE_TYPE (index_type);
tree mask_type = truth_type_for (index_type);
/* Create a vector that, for each element, identifies which of
the REDUC_GROUP_SIZE results should use it. */
tree index_mask = build_int_cst (index_elt_type, group_size - 1);
index = gimple_build (&seq, BIT_AND_EXPR, index_type, index,
build_vector_from_val (index_type, index_mask));
/* Get a neutral vector value. This is simply a splat of the neutral
scalar value if we have one, otherwise the initial scalar value
is itself a neutral value. */
tree vector_identity = NULL_TREE;
tree neutral_op = NULL_TREE;
if (slp_node)
{
tree initial_value = NULL_TREE;
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
initial_value = reduc_info->reduc_initial_values[0];
neutral_op = neutral_op_for_reduction (TREE_TYPE (vectype), code,
initial_value);
}
if (neutral_op)
vector_identity = gimple_build_vector_from_val (&seq, vectype,
neutral_op);
for (unsigned int i = 0; i < group_size; ++i)
{
/* If there's no univeral neutral value, we can use the
initial scalar value from the original PHI. This is used
for MIN and MAX reduction, for example. */
if (!neutral_op)
{
tree scalar_value = reduc_info->reduc_initial_values[i];
scalar_value = gimple_convert (&seq, TREE_TYPE (vectype),
scalar_value);
vector_identity = gimple_build_vector_from_val (&seq, vectype,
scalar_value);
}
/* Calculate the equivalent of:
sel[j] = (index[j] == i);
which selects the elements of REDUC_INPUTS[0] that should
be included in the result. */
tree compare_val = build_int_cst (index_elt_type, i);
compare_val = build_vector_from_val (index_type, compare_val);
tree sel = gimple_build (&seq, EQ_EXPR, mask_type,
index, compare_val);
/* Calculate the equivalent of:
vec = seq ? reduc_inputs[0] : vector_identity;
VEC is now suitable for a full vector reduction. */
tree vec = gimple_build (&seq, VEC_COND_EXPR, vectype,
sel, reduc_inputs[0], vector_identity);
/* Do the reduction and convert it to the appropriate type. */
tree scalar = gimple_build (&seq, as_combined_fn (reduc_fn),
TREE_TYPE (vectype), vec);
scalar = gimple_convert (&seq, scalar_type, scalar);
scalar_results.safe_push (scalar);
}
gsi_insert_seq_before (&exit_gsi, seq, GSI_SAME_STMT);
}
else
{
bool reduce_with_shift;
tree vec_temp;
gcc_assert (slp_reduc || reduc_inputs.length () == 1);
/* See if the target wants to do the final (shift) reduction
in a vector mode of smaller size and first reduce upper/lower
halves against each other. */
enum machine_mode mode1 = mode;
tree stype = TREE_TYPE (vectype);
unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
unsigned nunits1 = nunits;
if ((mode1 = targetm.vectorize.split_reduction (mode)) != mode
&& reduc_inputs.length () == 1)
{
nunits1 = GET_MODE_NUNITS (mode1).to_constant ();
/* For SLP reductions we have to make sure lanes match up, but
since we're doing individual element final reduction reducing
vector width here is even more important.
??? We can also separate lanes with permutes, for the common
case of power-of-two group-size odd/even extracts would work. */
if (slp_reduc && nunits != nunits1)
{
nunits1 = least_common_multiple (nunits1, group_size);
gcc_assert (exact_log2 (nunits1) != -1 && nunits1 <= nunits);
}
}
if (!slp_reduc
&& (mode1 = targetm.vectorize.split_reduction (mode)) != mode)
nunits1 = GET_MODE_NUNITS (mode1).to_constant ();
tree vectype1 = get_related_vectype_for_scalar_type (TYPE_MODE (vectype),
stype, nunits1);
reduce_with_shift = have_whole_vector_shift (mode1);
if (!VECTOR_MODE_P (mode1)
|| !directly_supported_p (code, vectype1))
reduce_with_shift = false;
/* First reduce the vector to the desired vector size we should
do shift reduction on by combining upper and lower halves. */
gimple_seq stmts = NULL;
new_temp = vect_create_partial_epilog (reduc_inputs[0], vectype1,
code, &stmts);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
reduc_inputs[0] = new_temp;
if (reduce_with_shift && !slp_reduc)
{
int element_bitsize = tree_to_uhwi (bitsize);
/* Enforced by vectorizable_reduction, which disallows SLP reductions
for variable-length vectors and also requires direct target support
for loop reductions. */
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
int nelements = vec_size_in_bits / element_bitsize;
vec_perm_builder sel;
vec_perm_indices indices;
int elt_offset;
tree zero_vec = build_zero_cst (vectype1);
/* Case 2: Create:
for (offset = nelements/2; offset >= 1; offset/=2)
{
Create: va' = vec_shift <va, offset>
Create: va = vop <va, va'>
} */
tree rhs;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Reduce using vector shifts\n");
gimple_seq stmts = NULL;
new_temp = gimple_convert (&stmts, vectype1, new_temp);
for (elt_offset = nelements / 2;
elt_offset >= 1;
elt_offset /= 2)
{
calc_vec_perm_mask_for_shift (elt_offset, nelements, &sel);
indices.new_vector (sel, 2, nelements);
tree mask = vect_gen_perm_mask_any (vectype1, indices);
new_name = gimple_build (&stmts, VEC_PERM_EXPR, vectype1,
new_temp, zero_vec, mask);
new_temp = gimple_build (&stmts, code,
vectype1, new_name, new_temp);
}
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
/* 2.4 Extract the final scalar result. Create:
s_out3 = extract_field <v_out2, bitpos> */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"extract scalar result\n");
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
bitsize, bitsize_zero_node);
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
scalar_results.safe_push (new_temp);
}
else
{
/* Case 3: Create:
s = extract_field <v_out2, 0>
for (offset = element_size;
offset < vector_size;
offset += element_size;)
{
Create: s' = extract_field <v_out2, offset>
Create: s = op <s, s'> // For non SLP cases
} */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Reduce using scalar code.\n");
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
int element_bitsize = tree_to_uhwi (bitsize);
tree compute_type = TREE_TYPE (vectype);
gimple_seq stmts = NULL;
FOR_EACH_VEC_ELT (reduc_inputs, i, vec_temp)
{
int bit_offset;
new_temp = gimple_build (&stmts, BIT_FIELD_REF, compute_type,
vec_temp, bitsize, bitsize_zero_node);
/* In SLP we don't need to apply reduction operation, so we just
collect s' values in SCALAR_RESULTS. */
if (slp_reduc)
scalar_results.safe_push (new_temp);
for (bit_offset = element_bitsize;
bit_offset < vec_size_in_bits;
bit_offset += element_bitsize)
{
tree bitpos = bitsize_int (bit_offset);
new_name = gimple_build (&stmts, BIT_FIELD_REF,
compute_type, vec_temp,
bitsize, bitpos);
if (slp_reduc)
{
/* In SLP we don't need to apply reduction operation, so
we just collect s' values in SCALAR_RESULTS. */
new_temp = new_name;
scalar_results.safe_push (new_name);
}
else
new_temp = gimple_build (&stmts, code, compute_type,
new_name, new_temp);
}
}
/* The only case where we need to reduce scalar results in SLP, is
unrolling. If the size of SCALAR_RESULTS is greater than
REDUC_GROUP_SIZE, we reduce them combining elements modulo
REDUC_GROUP_SIZE. */
if (slp_reduc)
{
tree res, first_res, new_res;
/* Reduce multiple scalar results in case of SLP unrolling. */
for (j = group_size; scalar_results.iterate (j, &res);
j++)
{
first_res = scalar_results[j % group_size];
new_res = gimple_build (&stmts, code, compute_type,
first_res, res);
scalar_results[j % group_size] = new_res;
}
scalar_results.truncate (group_size);
for (k = 0; k < group_size; k++)
scalar_results[k] = gimple_convert (&stmts, scalar_type,
scalar_results[k]);
}
else
{
/* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
new_temp = gimple_convert (&stmts, scalar_type, new_temp);
scalar_results.safe_push (new_temp);
}
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
}
if ((STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
&& induc_val)
{
/* Earlier we set the initial value to be a vector if induc_val
values. Check the result and if it is induc_val then replace
with the original initial value, unless induc_val is
the same as initial_def already. */
tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
induc_val);
tree initial_def = reduc_info->reduc_initial_values[0];
tree tmp = make_ssa_name (new_scalar_dest);
epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
initial_def, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
scalar_results[0] = tmp;
}
}
/* 2.5 Adjust the final result by the initial value of the reduction
variable. (When such adjustment is not needed, then
'adjustment_def' is zero). For example, if code is PLUS we create:
new_temp = loop_exit_def + adjustment_def */
if (adjustment_def)
{
gcc_assert (!slp_reduc);
gimple_seq stmts = NULL;
if (double_reduc)
{
gcc_assert (VECTOR_TYPE_P (TREE_TYPE (adjustment_def)));
adjustment_def = gimple_convert (&stmts, vectype, adjustment_def);
new_temp = gimple_build (&stmts, code, vectype,
reduc_inputs[0], adjustment_def);
}
else
{
new_temp = scalar_results[0];
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
adjustment_def = gimple_convert (&stmts, scalar_type, adjustment_def);
new_temp = gimple_build (&stmts, code, scalar_type,
new_temp, adjustment_def);
}
epilog_stmt = gimple_seq_last_stmt (stmts);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
scalar_results[0] = new_temp;
}
/* Record this operation if it could be reused by the epilogue loop. */
if (STMT_VINFO_REDUC_TYPE (reduc_info) == TREE_CODE_REDUCTION
&& vec_num == 1)
loop_vinfo->reusable_accumulators.put (scalar_results[0],
{ orig_reduc_input, reduc_info });
if (double_reduc)
loop = outer_loop;
/* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
phis with new adjusted scalar results, i.e., replace use <s_out0>
with use <s_out4>.
Transform:
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out0>
use <s_out0>
into:
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out4>
use <s_out4> */
gcc_assert (live_out_stmts.size () == scalar_results.length ());
for (k = 0; k < live_out_stmts.size (); k++)
{
stmt_vec_info scalar_stmt_info = vect_orig_stmt (live_out_stmts[k]);
scalar_dest = gimple_get_lhs (scalar_stmt_info->stmt);
phis.create (3);
/* Find the loop-closed-use at the loop exit of the original scalar
result. (The reduction result is expected to have two immediate uses,
one at the latch block, and one at the loop exit). For double
reductions we are looking for exit phis of the outer loop. */
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
{
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
{
if (!is_gimple_debug (USE_STMT (use_p)))
phis.safe_push (USE_STMT (use_p));
}
else
{
if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
{
tree phi_res = PHI_RESULT (USE_STMT (use_p));
FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
{
if (!flow_bb_inside_loop_p (loop,
gimple_bb (USE_STMT (phi_use_p)))
&& !is_gimple_debug (USE_STMT (phi_use_p)))
phis.safe_push (USE_STMT (phi_use_p));
}
}
}
}
FOR_EACH_VEC_ELT (phis, i, exit_phi)
{
/* Replace the uses: */
orig_name = PHI_RESULT (exit_phi);
/* Look for a single use at the target of the skip edge. */
if (unify_with_main_loop_p)
{
use_operand_p use_p;
gimple *user;
if (!single_imm_use (orig_name, &use_p, &user))
gcc_unreachable ();
orig_name = gimple_get_lhs (user);
}
scalar_result = scalar_results[k];
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
{
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, scalar_result);
update_stmt (use_stmt);
}
}
phis.release ();
}
}
/* Return a vector of type VECTYPE that is equal to the vector select
operation "MASK ? VEC : IDENTITY". Insert the select statements
before GSI. */
static tree
merge_with_identity (gimple_stmt_iterator *gsi, tree mask, tree vectype,
tree vec, tree identity)
{
tree cond = make_temp_ssa_name (vectype, NULL, "cond");
gimple *new_stmt = gimple_build_assign (cond, VEC_COND_EXPR,
mask, vec, identity);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
return cond;
}
/* Successively apply CODE to each element of VECTOR_RHS, in left-to-right
order, starting with LHS. Insert the extraction statements before GSI and
associate the new scalar SSA names with variable SCALAR_DEST.
Return the SSA name for the result. */
static tree
vect_expand_fold_left (gimple_stmt_iterator *gsi, tree scalar_dest,
tree_code code, tree lhs, tree vector_rhs)
{
tree vectype = TREE_TYPE (vector_rhs);
tree scalar_type = TREE_TYPE (vectype);
tree bitsize = TYPE_SIZE (scalar_type);
unsigned HOST_WIDE_INT vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
unsigned HOST_WIDE_INT element_bitsize = tree_to_uhwi (bitsize);
for (unsigned HOST_WIDE_INT bit_offset = 0;
bit_offset < vec_size_in_bits;
bit_offset += element_bitsize)
{
tree bitpos = bitsize_int (bit_offset);
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vector_rhs,
bitsize, bitpos);
gassign *stmt = gimple_build_assign (scalar_dest, rhs);
rhs = make_ssa_name (scalar_dest, stmt);
gimple_assign_set_lhs (stmt, rhs);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
stmt = gimple_build_assign (scalar_dest, code, lhs, rhs);
tree new_name = make_ssa_name (scalar_dest, stmt);
gimple_assign_set_lhs (stmt, new_name);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
lhs = new_name;
}
return lhs;
}
/* Get a masked internal function equivalent to REDUC_FN. VECTYPE_IN is the
type of the vector input. */
static internal_fn
get_masked_reduction_fn (internal_fn reduc_fn, tree vectype_in)
{
internal_fn mask_reduc_fn;
switch (reduc_fn)
{
case IFN_FOLD_LEFT_PLUS:
mask_reduc_fn = IFN_MASK_FOLD_LEFT_PLUS;
break;
default:
return IFN_LAST;
}
if (direct_internal_fn_supported_p (mask_reduc_fn, vectype_in,
OPTIMIZE_FOR_SPEED))
return mask_reduc_fn;
return IFN_LAST;
}
/* Perform an in-order reduction (FOLD_LEFT_REDUCTION). STMT_INFO is the
statement that sets the live-out value. REDUC_DEF_STMT is the phi
statement. CODE is the operation performed by STMT_INFO and OPS are
its scalar operands. REDUC_INDEX is the index of the operand in
OPS that is set by REDUC_DEF_STMT. REDUC_FN is the function that
implements in-order reduction, or IFN_LAST if we should open-code it.
VECTYPE_IN is the type of the vector input. MASKS specifies the masks
that should be used to control the operation in a fully-masked loop. */
static bool
vectorize_fold_left_reduction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi,
gimple **vec_stmt, slp_tree slp_node,
gimple *reduc_def_stmt,
tree_code code, internal_fn reduc_fn,
tree ops[3], tree vectype_in,
int reduc_index, vec_loop_masks *masks)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
internal_fn mask_reduc_fn = get_masked_reduction_fn (reduc_fn, vectype_in);
int ncopies;
if (slp_node)
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
gcc_assert (!nested_in_vect_loop_p (loop, stmt_info));
gcc_assert (ncopies == 1);
gcc_assert (TREE_CODE_LENGTH (code) == binary_op);
if (slp_node)
gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (vectype_out),
TYPE_VECTOR_SUBPARTS (vectype_in)));
tree op0 = ops[1 - reduc_index];
int group_size = 1;
stmt_vec_info scalar_dest_def_info;
auto_vec<tree> vec_oprnds0;
if (slp_node)
{
auto_vec<vec<tree> > vec_defs (2);
vect_get_slp_defs (loop_vinfo, slp_node, &vec_defs);
vec_oprnds0.safe_splice (vec_defs[1 - reduc_index]);
vec_defs[0].release ();
vec_defs[1].release ();
group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
scalar_dest_def_info = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
}
else
{
vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
op0, &vec_oprnds0);
scalar_dest_def_info = stmt_info;
}
tree scalar_dest = gimple_assign_lhs (scalar_dest_def_info->stmt);
tree scalar_type = TREE_TYPE (scalar_dest);
tree reduc_var = gimple_phi_result (reduc_def_stmt);
int vec_num = vec_oprnds0.length ();
gcc_assert (vec_num == 1 || slp_node);
tree vec_elem_type = TREE_TYPE (vectype_out);
gcc_checking_assert (useless_type_conversion_p (scalar_type, vec_elem_type));
tree vector_identity = NULL_TREE;
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
vector_identity = build_zero_cst (vectype_out);
tree scalar_dest_var = vect_create_destination_var (scalar_dest, NULL);
int i;
tree def0;
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
{
gimple *new_stmt;
tree mask = NULL_TREE;
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
mask = vect_get_loop_mask (gsi, masks, vec_num, vectype_in, i);
/* Handle MINUS by adding the negative. */
if (reduc_fn != IFN_LAST && code == MINUS_EXPR)
{
tree negated = make_ssa_name (vectype_out);
new_stmt = gimple_build_assign (negated, NEGATE_EXPR, def0);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
def0 = negated;
}
if (mask && mask_reduc_fn == IFN_LAST)
def0 = merge_with_identity (gsi, mask, vectype_out, def0,
vector_identity);
/* On the first iteration the input is simply the scalar phi
result, and for subsequent iterations it is the output of
the preceding operation. */
if (reduc_fn != IFN_LAST || (mask && mask_reduc_fn != IFN_LAST))
{
if (mask && mask_reduc_fn != IFN_LAST)
new_stmt = gimple_build_call_internal (mask_reduc_fn, 3, reduc_var,
def0, mask);
else
new_stmt = gimple_build_call_internal (reduc_fn, 2, reduc_var,
def0);
/* For chained SLP reductions the output of the previous reduction
operation serves as the input of the next. For the final statement
the output cannot be a temporary - we reuse the original
scalar destination of the last statement. */
if (i != vec_num - 1)
{
gimple_set_lhs (new_stmt, scalar_dest_var);
reduc_var = make_ssa_name (scalar_dest_var, new_stmt);
gimple_set_lhs (new_stmt, reduc_var);
}
}
else
{
reduc_var = vect_expand_fold_left (gsi, scalar_dest_var, code,
reduc_var, def0);
new_stmt = SSA_NAME_DEF_STMT (reduc_var);
/* Remove the statement, so that we can use the same code paths
as for statements that we've just created. */
gimple_stmt_iterator tmp_gsi = gsi_for_stmt (new_stmt);
gsi_remove (&tmp_gsi, true);
}
if (i == vec_num - 1)
{
gimple_set_lhs (new_stmt, scalar_dest);
vect_finish_replace_stmt (loop_vinfo,
scalar_dest_def_info,
new_stmt);
}
else
vect_finish_stmt_generation (loop_vinfo,
scalar_dest_def_info,
new_stmt, gsi);
if (slp_node)
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
else
{
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
*vec_stmt = new_stmt;
}
}
return true;
}
/* Function is_nonwrapping_integer_induction.
Check if STMT_VINO (which is part of loop LOOP) both increments and
does not cause overflow. */
static bool
is_nonwrapping_integer_induction (stmt_vec_info stmt_vinfo, class loop *loop)
{
gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
tree lhs_type = TREE_TYPE (gimple_phi_result (phi));
widest_int ni, max_loop_value, lhs_max;
wi::overflow_type overflow = wi::OVF_NONE;
/* Make sure the loop is integer based. */
if (TREE_CODE (base) != INTEGER_CST
|| TREE_CODE (step) != INTEGER_CST)
return false;
/* Check that the max size of the loop will not wrap. */
if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
return true;
if (! max_stmt_executions (loop, &ni))
return false;
max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
&overflow);
if (overflow)
return false;
max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
TYPE_SIGN (lhs_type), &overflow);
if (overflow)
return false;
return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
<= TYPE_PRECISION (lhs_type));
}
/* Check if masking can be supported by inserting a conditional expression.
CODE is the code for the operation. COND_FN is the conditional internal
function, if it exists. VECTYPE_IN is the type of the vector input. */
static bool
use_mask_by_cond_expr_p (code_helper code, internal_fn cond_fn,
tree vectype_in)
{
if (cond_fn != IFN_LAST
&& direct_internal_fn_supported_p (cond_fn, vectype_in,
OPTIMIZE_FOR_SPEED))
return false;
if (code.is_tree_code ())
switch (tree_code (code))
{
case DOT_PROD_EXPR:
case SAD_EXPR:
return true;
default:
break;
}
return false;
}
/* Insert a conditional expression to enable masked vectorization. CODE is the
code for the operation. VOP is the array of operands. MASK is the loop
mask. GSI is a statement iterator used to place the new conditional
expression. */
static void
build_vect_cond_expr (code_helper code, tree vop[3], tree mask,
gimple_stmt_iterator *gsi)
{
switch (tree_code (code))
{
case DOT_PROD_EXPR:
{
tree vectype = TREE_TYPE (vop[1]);
tree zero = build_zero_cst (vectype);
tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
mask, vop[1], zero);
gsi_insert_before (gsi, select, GSI_SAME_STMT);
vop[1] = masked_op1;
break;
}
case SAD_EXPR:
{
tree vectype = TREE_TYPE (vop[1]);
tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
mask, vop[1], vop[0]);
gsi_insert_before (gsi, select, GSI_SAME_STMT);
vop[1] = masked_op1;
break;
}
default:
gcc_unreachable ();
}
}
/* Function vectorizable_reduction.
Check if STMT_INFO performs a reduction operation that can be vectorized.
If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at GSI.
Return true if STMT_INFO is vectorizable in this way.
This function also handles reduction idioms (patterns) that have been
recognized in advance during vect_pattern_recog. In this case, STMT_INFO
may be of this form:
X = pattern_expr (arg0, arg1, ..., X)
and its STMT_VINFO_RELATED_STMT points to the last stmt in the original
sequence that had been detected and replaced by the pattern-stmt
(STMT_INFO).
This function also handles reduction of condition expressions, for example:
for (int i = 0; i < N; i++)
if (a[i] < value)
last = a[i];
This is handled by vectorising the loop and creating an additional vector
containing the loop indexes for which "a[i] < value" was true. In the
function epilogue this is reduced to a single max value and then used to
index into the vector of results.
In some cases of reduction patterns, the type of the reduction variable X is
different than the type of the other arguments of STMT_INFO.
In such cases, the vectype that is used when transforming STMT_INFO into
a vector stmt is different than the vectype that is used to determine the
vectorization factor, because it consists of a different number of elements
than the actual number of elements that are being operated upon in parallel.
For example, consider an accumulation of shorts into an int accumulator.
On some targets it's possible to vectorize this pattern operating on 8
shorts at a time (hence, the vectype for purposes of determining the
vectorization factor should be V8HI); on the other hand, the vectype that
is used to create the vector form is actually V4SI (the type of the result).
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
indicates what is the actual level of parallelism (V8HI in the example), so
that the right vectorization factor would be derived. This vectype
corresponds to the type of arguments to the reduction stmt, and should *NOT*
be used to create the vectorized stmt. The right vectype for the vectorized
stmt is obtained from the type of the result X:
get_vectype_for_scalar_type (vinfo, TREE_TYPE (X))
This means that, contrary to "regular" reductions (or "regular" stmts in
general), the following equation:
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (vinfo, TREE_TYPE (X))
does *NOT* necessarily hold for reduction patterns. */
bool
vectorizable_reduction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, slp_tree slp_node,
slp_instance slp_node_instance,
stmt_vector_for_cost *cost_vec)
{
tree vectype_in = NULL_TREE;
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
enum vect_def_type cond_reduc_dt = vect_unknown_def_type;
stmt_vec_info cond_stmt_vinfo = NULL;
int i;
int ncopies;
bool single_defuse_cycle = false;
bool nested_cycle = false;
bool double_reduc = false;
int vec_num;
tree tem;
tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
tree cond_reduc_val = NULL_TREE;
/* Make sure it was already recognized as a reduction computation. */
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
return false;
/* The stmt we store reduction analysis meta on. */
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
reduc_info->is_reduc_info = true;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
{
if (is_a <gphi *> (stmt_info->stmt))
{
if (slp_node)
{
/* We eventually need to set a vector type on invariant
arguments. */
unsigned j;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), j, child)
if (!vect_maybe_update_slp_op_vectype
(child, SLP_TREE_VECTYPE (slp_node)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for "
"invariants\n");
return false;
}
}
/* Analysis for double-reduction is done on the outer
loop PHI, nested cycles have no further restrictions. */
STMT_VINFO_TYPE (stmt_info) = cycle_phi_info_type;
}
else
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
return true;
}
stmt_vec_info orig_stmt_of_analysis = stmt_info;
stmt_vec_info phi_info = stmt_info;
if (!is_a <gphi *> (stmt_info->stmt))
{
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
return true;
}
if (slp_node)
{
slp_node_instance->reduc_phis = slp_node;
/* ??? We're leaving slp_node to point to the PHIs, we only
need it to get at the number of vector stmts which wasn't
yet initialized for the instance root. */
}
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
stmt_info = vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (stmt_info));
else
{
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info)
== vect_double_reduction_def);
use_operand_p use_p;
gimple *use_stmt;
bool res = single_imm_use (gimple_phi_result (stmt_info->stmt),
&use_p, &use_stmt);
gcc_assert (res);
phi_info = loop_vinfo->lookup_stmt (use_stmt);
stmt_info = vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (phi_info));
}
/* PHIs should not participate in patterns. */
gcc_assert (!STMT_VINFO_RELATED_STMT (phi_info));
gphi *reduc_def_phi = as_a <gphi *> (phi_info->stmt);
/* Verify following REDUC_IDX from the latch def leads us back to the PHI
and compute the reduction chain length. Discover the real
reduction operation stmt on the way (stmt_info and slp_for_stmt_info). */
tree reduc_def
= PHI_ARG_DEF_FROM_EDGE (reduc_def_phi,
loop_latch_edge
(gimple_bb (reduc_def_phi)->loop_father));
unsigned reduc_chain_length = 0;
bool only_slp_reduc_chain = true;
stmt_info = NULL;
slp_tree slp_for_stmt_info = slp_node ? slp_node_instance->root : NULL;
while (reduc_def != PHI_RESULT (reduc_def_phi))
{
stmt_vec_info def = loop_vinfo->lookup_def (reduc_def);
stmt_vec_info vdef = vect_stmt_to_vectorize (def);
if (STMT_VINFO_REDUC_IDX (vdef) == -1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction chain broken by patterns.\n");
return false;
}
if (!REDUC_GROUP_FIRST_ELEMENT (vdef))
only_slp_reduc_chain = false;
/* For epilogue generation live members of the chain need
to point back to the PHI via their original stmt for
info_for_reduction to work. For SLP we need to look at
all lanes here - even though we only will vectorize from
the SLP node with live lane zero the other live lanes also
need to be identified as part of a reduction to be able
to skip code generation for them. */
if (slp_for_stmt_info)
{
for (auto s : SLP_TREE_SCALAR_STMTS (slp_for_stmt_info))
if (STMT_VINFO_LIVE_P (s))
STMT_VINFO_REDUC_DEF (vect_orig_stmt (s)) = phi_info;
}
else if (STMT_VINFO_LIVE_P (vdef))
STMT_VINFO_REDUC_DEF (def) = phi_info;
gimple_match_op op;
if (!gimple_extract_op (vdef->stmt, &op))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction chain includes unsupported"
" statement type.\n");
return false;
}
if (CONVERT_EXPR_CODE_P (op.code))
{
if (!tree_nop_conversion_p (op.type, TREE_TYPE (op.ops[0])))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"conversion in the reduction chain.\n");
return false;
}
}
else if (!stmt_info)
/* First non-conversion stmt. */
stmt_info = vdef;
reduc_def = op.ops[STMT_VINFO_REDUC_IDX (vdef)];
reduc_chain_length++;
if (!stmt_info && slp_node)
slp_for_stmt_info = SLP_TREE_CHILDREN (slp_for_stmt_info)[0];
}
/* PHIs should not participate in patterns. */
gcc_assert (!STMT_VINFO_RELATED_STMT (phi_info));
if (nested_in_vect_loop_p (loop, stmt_info))
{
loop = loop->inner;
nested_cycle = true;
}
/* STMT_VINFO_REDUC_DEF doesn't point to the first but the last
element. */
if (slp_node && REDUC_GROUP_FIRST_ELEMENT (stmt_info))
{
gcc_assert (!REDUC_GROUP_NEXT_ELEMENT (stmt_info));
stmt_info = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
}
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
gcc_assert (slp_node
&& REDUC_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info);
/* 1. Is vectorizable reduction? */
/* Not supportable if the reduction variable is used in the loop, unless
it's a reduction chain. */
if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
return false;
/* Reductions that are not used even in an enclosing outer-loop,
are expected to be "live" (used out of the loop). */
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
&& !STMT_VINFO_LIVE_P (stmt_info))
return false;
/* 2. Has this been recognized as a reduction pattern?
Check if STMT represents a pattern that has been recognized
in earlier analysis stages. For stmts that represent a pattern,
the STMT_VINFO_RELATED_STMT field records the last stmt in
the original sequence that constitutes the pattern. */
stmt_vec_info orig_stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
if (orig_stmt_info)
{
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
}
/* 3. Check the operands of the operation. The first operands are defined
inside the loop body. The last operand is the reduction variable,
which is defined by the loop-header-phi. */
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
STMT_VINFO_REDUC_VECTYPE (reduc_info) = vectype_out;
gimple_match_op op;
if (!gimple_extract_op (stmt_info->stmt, &op))
gcc_unreachable ();
bool lane_reduc_code_p = (op.code == DOT_PROD_EXPR
|| op.code == WIDEN_SUM_EXPR
|| op.code == SAD_EXPR);
enum optab_subtype optab_query_kind = optab_vector;
if (op.code == DOT_PROD_EXPR
&& (TYPE_SIGN (TREE_TYPE (op.ops[0]))
!= TYPE_SIGN (TREE_TYPE (op.ops[1]))))
optab_query_kind = optab_vector_mixed_sign;
if (!POINTER_TYPE_P (op.type) && !INTEGRAL_TYPE_P (op.type)
&& !SCALAR_FLOAT_TYPE_P (op.type))
return false;
/* Do not try to vectorize bit-precision reductions. */
if (!type_has_mode_precision_p (op.type))
return false;
/* For lane-reducing ops we're reducing the number of reduction PHIs
which means the only use of that may be in the lane-reducing operation. */
if (lane_reduc_code_p
&& reduc_chain_length != 1
&& !only_slp_reduc_chain)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"lane-reducing reduction with extra stmts.\n");
return false;
}
/* All uses but the last are expected to be defined in the loop.
The last use is the reduction variable. In case of nested cycle this
assumption is not true: we use reduc_index to record the index of the
reduction variable. */
slp_tree *slp_op = XALLOCAVEC (slp_tree, op.num_ops);
/* We need to skip an extra operand for COND_EXPRs with embedded
comparison. */
unsigned opno_adjust = 0;
if (op.code == COND_EXPR && COMPARISON_CLASS_P (op.ops[0]))
opno_adjust = 1;
for (i = 0; i < (int) op.num_ops; i++)
{
/* The condition of COND_EXPR is checked in vectorizable_condition(). */
if (i == 0 && op.code == COND_EXPR)
continue;
stmt_vec_info def_stmt_info;
enum vect_def_type dt;
if (!vect_is_simple_use (loop_vinfo, stmt_info, slp_for_stmt_info,
i + opno_adjust, &op.ops[i], &slp_op[i], &dt,
&tem, &def_stmt_info))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"use not simple.\n");
return false;
}
if (i == STMT_VINFO_REDUC_IDX (stmt_info))
continue;
/* There should be only one cycle def in the stmt, the one
leading to reduc_def. */
if (VECTORIZABLE_CYCLE_DEF (dt))
return false;
/* To properly compute ncopies we are interested in the widest
non-reduction input type in case we're looking at a widening
accumulation that we later handle in vect_transform_reduction. */
if (lane_reduc_code_p
&& tem
&& (!vectype_in
|| (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
< GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (tem))))))
vectype_in = tem;
if (op.code == COND_EXPR)
{
/* Record how the non-reduction-def value of COND_EXPR is defined. */
if (dt == vect_constant_def)
{
cond_reduc_dt = dt;
cond_reduc_val = op.ops[i];
}
if (dt == vect_induction_def
&& def_stmt_info
&& is_nonwrapping_integer_induction (def_stmt_info, loop))
{
cond_reduc_dt = dt;
cond_stmt_vinfo = def_stmt_info;
}
}
}
if (!vectype_in)
vectype_in = STMT_VINFO_VECTYPE (phi_info);
STMT_VINFO_REDUC_VECTYPE_IN (reduc_info) = vectype_in;
enum vect_reduction_type v_reduc_type = STMT_VINFO_REDUC_TYPE (phi_info);
STMT_VINFO_REDUC_TYPE (reduc_info) = v_reduc_type;
/* If we have a condition reduction, see if we can simplify it further. */
if (v_reduc_type == COND_REDUCTION)
{
if (slp_node)
return false;
/* When the condition uses the reduction value in the condition, fail. */
if (STMT_VINFO_REDUC_IDX (stmt_info) == 0)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"condition depends on previous iteration\n");
return false;
}
if (reduc_chain_length == 1
&& direct_internal_fn_supported_p (IFN_FOLD_EXTRACT_LAST,
vectype_in, OPTIMIZE_FOR_SPEED))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"optimizing condition reduction with"
" FOLD_EXTRACT_LAST.\n");
STMT_VINFO_REDUC_TYPE (reduc_info) = EXTRACT_LAST_REDUCTION;
}
else if (cond_reduc_dt == vect_induction_def)
{
tree base
= STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (cond_stmt_vinfo);
tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (cond_stmt_vinfo);
gcc_assert (TREE_CODE (base) == INTEGER_CST
&& TREE_CODE (step) == INTEGER_CST);
cond_reduc_val = NULL_TREE;
enum tree_code cond_reduc_op_code = ERROR_MARK;
tree res = PHI_RESULT (STMT_VINFO_STMT (cond_stmt_vinfo));
if (!types_compatible_p (TREE_TYPE (res), TREE_TYPE (base)))
;
/* Find a suitable value, for MAX_EXPR below base, for MIN_EXPR
above base; punt if base is the minimum value of the type for
MAX_EXPR or maximum value of the type for MIN_EXPR for now. */
else if (tree_int_cst_sgn (step) == -1)
{
cond_reduc_op_code = MIN_EXPR;
if (tree_int_cst_sgn (base) == -1)
cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
else if (tree_int_cst_lt (base,
TYPE_MAX_VALUE (TREE_TYPE (base))))
cond_reduc_val
= int_const_binop (PLUS_EXPR, base, integer_one_node);
}
else
{
cond_reduc_op_code = MAX_EXPR;
if (tree_int_cst_sgn (base) == 1)
cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
else if (tree_int_cst_lt (TYPE_MIN_VALUE (TREE_TYPE (base)),
base))
cond_reduc_val
= int_const_binop (MINUS_EXPR, base, integer_one_node);
}
if (cond_reduc_val)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"condition expression based on "
"integer induction.\n");
STMT_VINFO_REDUC_CODE (reduc_info) = cond_reduc_op_code;
STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info)
= cond_reduc_val;
STMT_VINFO_REDUC_TYPE (reduc_info) = INTEGER_INDUC_COND_REDUCTION;
}
}
else if (cond_reduc_dt == vect_constant_def)
{
enum vect_def_type cond_initial_dt;
tree cond_initial_val = vect_phi_initial_value (reduc_def_phi);
vect_is_simple_use (cond_initial_val, loop_vinfo, &cond_initial_dt);
if (cond_initial_dt == vect_constant_def
&& types_compatible_p (TREE_TYPE (cond_initial_val),
TREE_TYPE (cond_reduc_val)))
{
tree e = fold_binary (LE_EXPR, boolean_type_node,
cond_initial_val, cond_reduc_val);
if (e && (integer_onep (e) || integer_zerop (e)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"condition expression based on "
"compile time constant.\n");
/* Record reduction code at analysis stage. */
STMT_VINFO_REDUC_CODE (reduc_info)
= integer_onep (e) ? MAX_EXPR : MIN_EXPR;
STMT_VINFO_REDUC_TYPE (reduc_info) = CONST_COND_REDUCTION;
}
}
}
}
if (STMT_VINFO_LIVE_P (phi_info))
return false;
if (slp_node)
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
gcc_assert (ncopies >= 1);
poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
if (nested_cycle)
{
gcc_assert (STMT_VINFO_DEF_TYPE (reduc_info)
== vect_double_reduction_def);
double_reduc = true;
}
/* 4.2. Check support for the epilog operation.
If STMT represents a reduction pattern, then the type of the
reduction variable may be different than the type of the rest
of the arguments. For example, consider the case of accumulation
of shorts into an int accumulator; The original code:
S1: int_a = (int) short_a;
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
was replaced with:
STMT: int_acc = widen_sum <short_a, int_acc>
This means that:
1. The tree-code that is used to create the vector operation in the
epilog code (that reduces the partial results) is not the
tree-code of STMT, but is rather the tree-code of the original
stmt from the pattern that STMT is replacing. I.e, in the example
above we want to use 'widen_sum' in the loop, but 'plus' in the
epilog.
2. The type (mode) we use to check available target support
for the vector operation to be created in the *epilog*, is
determined by the type of the reduction variable (in the example
above we'd check this: optab_handler (plus_optab, vect_int_mode])).
However the type (mode) we use to check available target support
for the vector operation to be created *inside the loop*, is
determined by the type of the other arguments to STMT (in the
example we'd check this: optab_handler (widen_sum_optab,
vect_short_mode)).
This is contrary to "regular" reductions, in which the types of all
the arguments are the same as the type of the reduction variable.
For "regular" reductions we can therefore use the same vector type
(and also the same tree-code) when generating the epilog code and
when generating the code inside the loop. */
code_helper orig_code = STMT_VINFO_REDUC_CODE (phi_info);
STMT_VINFO_REDUC_CODE (reduc_info) = orig_code;
vect_reduction_type reduction_type = STMT_VINFO_REDUC_TYPE (reduc_info);
if (reduction_type == TREE_CODE_REDUCTION)
{
/* Check whether it's ok to change the order of the computation.
Generally, when vectorizing a reduction we change the order of the
computation. This may change the behavior of the program in some
cases, so we need to check that this is ok. One exception is when
vectorizing an outer-loop: the inner-loop is executed sequentially,
and therefore vectorizing reductions in the inner-loop during
outer-loop vectorization is safe. Likewise when we are vectorizing
a series of reductions using SLP and the VF is one the reductions
are performed in scalar order. */
if (slp_node
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info)
&& known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1u))
;
else if (needs_fold_left_reduction_p (op.type, orig_code))
{
/* When vectorizing a reduction chain w/o SLP the reduction PHI
is not directy used in stmt. */
if (!only_slp_reduc_chain
&& reduc_chain_length != 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"in-order reduction chain without SLP.\n");
return false;
}
STMT_VINFO_REDUC_TYPE (reduc_info)
= reduction_type = FOLD_LEFT_REDUCTION;
}
else if (!commutative_binary_op_p (orig_code, op.type)
|| !associative_binary_op_p (orig_code, op.type))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction: not commutative/associative");
return false;
}
}
if ((double_reduc || reduction_type != TREE_CODE_REDUCTION)
&& ncopies > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"multiple types in double reduction or condition "
"reduction or fold-left reduction.\n");
return false;
}
internal_fn reduc_fn = IFN_LAST;
if (reduction_type == TREE_CODE_REDUCTION
|| reduction_type == FOLD_LEFT_REDUCTION
|| reduction_type == INTEGER_INDUC_COND_REDUCTION
|| reduction_type == CONST_COND_REDUCTION)
{
if (reduction_type == FOLD_LEFT_REDUCTION
? fold_left_reduction_fn (orig_code, &reduc_fn)
: reduction_fn_for_scalar_code (orig_code, &reduc_fn))
{
if (reduc_fn != IFN_LAST
&& !direct_internal_fn_supported_p (reduc_fn, vectype_out,
OPTIMIZE_FOR_SPEED))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduc op not supported by target.\n");
reduc_fn = IFN_LAST;
}
}
else
{
if (!nested_cycle || double_reduc)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"no reduc code for scalar code.\n");
return false;
}
}
}
else if (reduction_type == COND_REDUCTION)
{
int scalar_precision
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (op.type));
cr_index_scalar_type = make_unsigned_type (scalar_precision);
cr_index_vector_type = get_same_sized_vectype (cr_index_scalar_type,
vectype_out);
if (direct_internal_fn_supported_p (IFN_REDUC_MAX, cr_index_vector_type,
OPTIMIZE_FOR_SPEED))
reduc_fn = IFN_REDUC_MAX;
}
STMT_VINFO_REDUC_FN (reduc_info) = reduc_fn;
if (reduction_type != EXTRACT_LAST_REDUCTION
&& (!nested_cycle || double_reduc)
&& reduc_fn == IFN_LAST
&& !nunits_out.is_constant ())
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"missing target support for reduction on"
" variable-length vectors.\n");
return false;
}
/* For SLP reductions, see if there is a neutral value we can use. */
tree neutral_op = NULL_TREE;
if (slp_node)
{
tree initial_value = NULL_TREE;
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info) != NULL)
initial_value = vect_phi_initial_value (reduc_def_phi);
neutral_op = neutral_op_for_reduction (TREE_TYPE (vectype_out),
orig_code, initial_value);
}
if (double_reduc && reduction_type == FOLD_LEFT_REDUCTION)
{
/* We can't support in-order reductions of code such as this:
for (int i = 0; i < n1; ++i)
for (int j = 0; j < n2; ++j)
l += a[j];
since GCC effectively transforms the loop when vectorizing:
for (int i = 0; i < n1 / VF; ++i)
for (int j = 0; j < n2; ++j)
for (int k = 0; k < VF; ++k)
l += a[j];
which is a reassociation of the original operation. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"in-order double reduction not supported.\n");
return false;
}
if (reduction_type == FOLD_LEFT_REDUCTION
&& slp_node
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
{
/* We cannot use in-order reductions in this case because there is
an implicit reassociation of the operations involved. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"in-order unchained SLP reductions not supported.\n");
return false;
}
/* For double reductions, and for SLP reductions with a neutral value,
we construct a variable-length initial vector by loading a vector
full of the neutral value and then shift-and-inserting the start
values into the low-numbered elements. */
if ((double_reduc || neutral_op)
&& !nunits_out.is_constant ()
&& !direct_internal_fn_supported_p (IFN_VEC_SHL_INSERT,
vectype_out, OPTIMIZE_FOR_SPEED))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction on variable-length vectors requires"
" target support for a vector-shift-and-insert"
" operation.\n");
return false;
}
/* Check extra constraints for variable-length unchained SLP reductions. */
if (STMT_SLP_TYPE (stmt_info)
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info)
&& !nunits_out.is_constant ())
{
/* We checked above that we could build the initial vector when
there's a neutral element value. Check here for the case in
which each SLP statement has its own initial value and in which
that value needs to be repeated for every instance of the
statement within the initial vector. */
unsigned int group_size = SLP_TREE_LANES (slp_node);
if (!neutral_op
&& !can_duplicate_and_interleave_p (loop_vinfo, group_size,
TREE_TYPE (vectype_out)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported form of SLP reduction for"
" variable-length vectors: cannot build"
" initial vector.\n");
return false;
}
/* The epilogue code relies on the number of elements being a multiple
of the group size. The duplicate-and-interleave approach to setting
up the initial vector does too. */
if (!multiple_p (nunits_out, group_size))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported form of SLP reduction for"
" variable-length vectors: the vector size"
" is not a multiple of the number of results.\n");
return false;
}
}
if (reduction_type == COND_REDUCTION)
{
widest_int ni;
if (! max_loop_iterations (loop, &ni))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"loop count not known, cannot create cond "
"reduction.\n");
return false;
}
/* Convert backedges to iterations. */
ni += 1;
/* The additional index will be the same type as the condition. Check
that the loop can fit into this less one (because we'll use up the
zero slot for when there are no matches). */
tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
if (wi::geu_p (ni, wi::to_widest (max_index)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"loop size is greater than data size.\n");
return false;
}
}
/* In case the vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
/* If the reduction is used in an outer loop we need to generate
VF intermediate results, like so (e.g. for ncopies=2):
r0 = phi (init, r0)
r1 = phi (init, r1)
r0 = x0 + r0;
r1 = x1 + r1;
(i.e. we generate VF results in 2 registers).
In this case we have a separate def-use cycle for each copy, and therefore
for each copy we get the vector def for the reduction variable from the
respective phi node created for this copy.
Otherwise (the reduction is unused in the loop nest), we can combine
together intermediate results, like so (e.g. for ncopies=2):
r = phi (init, r)
r = x0 + r;
r = x1 + r;
(i.e. we generate VF/2 results in a single register).
In this case for each copy we get the vector def for the reduction variable
from the vectorized reduction operation generated in the previous iteration.
This only works when we see both the reduction PHI and its only consumer
in vectorizable_reduction and there are no intermediate stmts
participating. When unrolling we want each unrolled iteration to have its
own reduction accumulator since one of the main goals of unrolling a
reduction is to reduce the aggregate loop-carried latency. */
if (ncopies > 1
&& (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
&& reduc_chain_length == 1
&& loop_vinfo->suggested_unroll_factor == 1)
single_defuse_cycle = true;
if (single_defuse_cycle || lane_reduc_code_p)
{
gcc_assert (op.code != COND_EXPR);
/* 4. Supportable by target? */
bool ok = true;
/* 4.1. check support for the operation in the loop */
machine_mode vec_mode = TYPE_MODE (vectype_in);
if (!directly_supported_p (op.code, vectype_in, optab_query_kind))
{
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "op not supported by target.\n");
if (maybe_ne (GET_MODE_SIZE (vec_mode), UNITS_PER_WORD)
|| !vect_can_vectorize_without_simd_p (op.code))
ok = false;
else
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "proceeding using word mode.\n");
}
if (vect_emulated_vector_p (vectype_in)
&& !vect_can_vectorize_without_simd_p (op.code))
{
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "using word mode not possible.\n");
return false;
}
/* lane-reducing operations have to go through vect_transform_reduction.
For the other cases try without the single cycle optimization. */
if (!ok)
{
if (lane_reduc_code_p)
return false;
else
single_defuse_cycle = false;
}
}
STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info) = single_defuse_cycle;
/* If the reduction stmt is one of the patterns that have lane
reduction embedded we cannot handle the case of ! single_defuse_cycle. */
if ((ncopies > 1 && ! single_defuse_cycle)
&& lane_reduc_code_p)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"multi def-use cycle not possible for lane-reducing "
"reduction operation\n");
return false;
}
if (slp_node
&& !(!single_defuse_cycle
&& !lane_reduc_code_p
&& reduction_type != FOLD_LEFT_REDUCTION))
for (i = 0; i < (int) op.num_ops; i++)
if (!vect_maybe_update_slp_op_vectype (slp_op[i], vectype_in))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for invariants\n");
return false;
}
if (slp_node)
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
else
vec_num = 1;
vect_model_reduction_cost (loop_vinfo, stmt_info, reduc_fn,
reduction_type, ncopies, cost_vec);
/* Cost the reduction op inside the loop if transformed via
vect_transform_reduction. Otherwise this is costed by the
separate vectorizable_* routines. */
if (single_defuse_cycle || lane_reduc_code_p)
record_stmt_cost (cost_vec, ncopies, vector_stmt, stmt_info, 0, vect_body);
if (dump_enabled_p ()
&& reduction_type == FOLD_LEFT_REDUCTION)
dump_printf_loc (MSG_NOTE, vect_location,
"using an in-order (fold-left) reduction.\n");
STMT_VINFO_TYPE (orig_stmt_of_analysis) = cycle_phi_info_type;
/* All but single defuse-cycle optimized, lane-reducing and fold-left
reductions go through their own vectorizable_* routines. */
if (!single_defuse_cycle
&& !lane_reduc_code_p
&& reduction_type != FOLD_LEFT_REDUCTION)
{
stmt_vec_info tem
= vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (phi_info));
if (slp_node && REDUC_GROUP_FIRST_ELEMENT (tem))
{
gcc_assert (!REDUC_GROUP_NEXT_ELEMENT (tem));
tem = REDUC_GROUP_FIRST_ELEMENT (tem);
}
STMT_VINFO_DEF_TYPE (vect_orig_stmt (tem)) = vect_internal_def;
STMT_VINFO_DEF_TYPE (tem) = vect_internal_def;
}
else if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo))
{
vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
internal_fn cond_fn = get_conditional_internal_fn (op.code, op.type);
if (reduction_type != FOLD_LEFT_REDUCTION
&& !use_mask_by_cond_expr_p (op.code, cond_fn, vectype_in)
&& (cond_fn == IFN_LAST
|| !direct_internal_fn_supported_p (cond_fn, vectype_in,
OPTIMIZE_FOR_SPEED)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors because"
" no conditional operation is available.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else if (reduction_type == FOLD_LEFT_REDUCTION
&& reduc_fn == IFN_LAST
&& !expand_vec_cond_expr_p (vectype_in,
truth_type_for (vectype_in),
SSA_NAME))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors because"
" no conditional operation is available.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else
vect_record_loop_mask (loop_vinfo, masks, ncopies * vec_num,
vectype_in, NULL);
}
return true;
}
/* Transform the definition stmt STMT_INFO of a reduction PHI backedge
value. */
bool
vect_transform_reduction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, gimple_stmt_iterator *gsi,
gimple **vec_stmt, slp_tree slp_node)
{
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int i;
int ncopies;
int vec_num;
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
gcc_assert (reduc_info->is_reduc_info);
if (nested_in_vect_loop_p (loop, stmt_info))
{
loop = loop->inner;
gcc_assert (STMT_VINFO_DEF_TYPE (reduc_info) == vect_double_reduction_def);
}
gimple_match_op op;
if (!gimple_extract_op (stmt_info->stmt, &op))
gcc_unreachable ();
gcc_assert (op.code.is_tree_code ());
auto code = tree_code (op.code);
/* All uses but the last are expected to be defined in the loop.
The last use is the reduction variable. In case of nested cycle this
assumption is not true: we use reduc_index to record the index of the
reduction variable. */
stmt_vec_info phi_info = STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info));
gphi *reduc_def_phi = as_a <gphi *> (phi_info->stmt);
int reduc_index = STMT_VINFO_REDUC_IDX (stmt_info);
tree vectype_in = STMT_VINFO_REDUC_VECTYPE_IN (reduc_info);
if (slp_node)
{
ncopies = 1;
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
}
else
{
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
vec_num = 1;
}
internal_fn cond_fn = get_conditional_internal_fn (code);
vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
bool mask_by_cond_expr = use_mask_by_cond_expr_p (code, cond_fn, vectype_in);
/* Transform. */
tree new_temp = NULL_TREE;
auto_vec<tree> vec_oprnds0;
auto_vec<tree> vec_oprnds1;
auto_vec<tree> vec_oprnds2;
tree def0;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
/* FORNOW: Multiple types are not supported for condition. */
if (code == COND_EXPR)
gcc_assert (ncopies == 1);
bool masked_loop_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
vect_reduction_type reduction_type = STMT_VINFO_REDUC_TYPE (reduc_info);
if (reduction_type == FOLD_LEFT_REDUCTION)
{
internal_fn reduc_fn = STMT_VINFO_REDUC_FN (reduc_info);
return vectorize_fold_left_reduction
(loop_vinfo, stmt_info, gsi, vec_stmt, slp_node, reduc_def_phi, code,
reduc_fn, op.ops, vectype_in, reduc_index, masks);
}
bool single_defuse_cycle = STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info);
gcc_assert (single_defuse_cycle
|| code == DOT_PROD_EXPR
|| code == WIDEN_SUM_EXPR
|| code == SAD_EXPR);
/* Create the destination vector */
tree scalar_dest = gimple_assign_lhs (stmt_info->stmt);
tree vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
vect_get_vec_defs (loop_vinfo, stmt_info, slp_node, ncopies,
single_defuse_cycle && reduc_index == 0
? NULL_TREE : op.ops[0], &vec_oprnds0,
single_defuse_cycle && reduc_index == 1
? NULL_TREE : op.ops[1], &vec_oprnds1,
op.num_ops == 3
&& !(single_defuse_cycle && reduc_index == 2)
? op.ops[2] : NULL_TREE, &vec_oprnds2);
if (single_defuse_cycle)
{
gcc_assert (!slp_node);
vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
op.ops[reduc_index],
reduc_index == 0 ? &vec_oprnds0
: (reduc_index == 1 ? &vec_oprnds1
: &vec_oprnds2));
}
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
{
gimple *new_stmt;
tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
if (masked_loop_p && !mask_by_cond_expr)
{
/* Make sure that the reduction accumulator is vop[0]. */
if (reduc_index == 1)
{
gcc_assert (commutative_tree_code (code));
std::swap (vop[0], vop[1]);
}
tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies,
vectype_in, i);
gcall *call = gimple_build_call_internal (cond_fn, 4, mask,
vop[0], vop[1], vop[0]);
new_temp = make_ssa_name (vec_dest, call);
gimple_call_set_lhs (call, new_temp);
gimple_call_set_nothrow (call, true);
vect_finish_stmt_generation (loop_vinfo, stmt_info, call, gsi);
new_stmt = call;
}
else
{
if (op.num_ops == 3)
vop[2] = vec_oprnds2[i];
if (masked_loop_p && mask_by_cond_expr)
{
tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies,
vectype_in, i);
build_vect_cond_expr (code, vop, mask, gsi);
}
new_stmt = gimple_build_assign (vec_dest, code,
vop[0], vop[1], vop[2]);
new_temp = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, new_temp);
vect_finish_stmt_generation (loop_vinfo, stmt_info, new_stmt, gsi);
}
if (slp_node)
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
else if (single_defuse_cycle
&& i < ncopies - 1)
{
if (reduc_index == 0)
vec_oprnds0.safe_push (gimple_get_lhs (new_stmt));
else if (reduc_index == 1)
vec_oprnds1.safe_push (gimple_get_lhs (new_stmt));
else if (reduc_index == 2)
vec_oprnds2.safe_push (gimple_get_lhs (new_stmt));
}
else
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
}
if (!slp_node)
*vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0];
return true;
}
/* Transform phase of a cycle PHI. */
bool
vect_transform_cycle_phi (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, gimple **vec_stmt,
slp_tree slp_node, slp_instance slp_node_instance)
{
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int i;
int ncopies;
int j;
bool nested_cycle = false;
int vec_num;
if (nested_in_vect_loop_p (loop, stmt_info))
{
loop = loop->inner;
nested_cycle = true;
}
stmt_vec_info reduc_stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
reduc_stmt_info = vect_stmt_to_vectorize (reduc_stmt_info);
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
gcc_assert (reduc_info->is_reduc_info);
if (STMT_VINFO_REDUC_TYPE (reduc_info) == EXTRACT_LAST_REDUCTION
|| STMT_VINFO_REDUC_TYPE (reduc_info) == FOLD_LEFT_REDUCTION)
/* Leave the scalar phi in place. */
return true;
tree vectype_in = STMT_VINFO_REDUC_VECTYPE_IN (reduc_info);
/* For a nested cycle we do not fill the above. */
if (!vectype_in)
vectype_in = STMT_VINFO_VECTYPE (stmt_info);
gcc_assert (vectype_in);
if (slp_node)
{
/* The size vect_schedule_slp_instance computes is off for us. */
vec_num = vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
* SLP_TREE_LANES (slp_node), vectype_in);
ncopies = 1;
}
else
{
vec_num = 1;
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
}
/* Check whether we should use a single PHI node and accumulate
vectors to one before the backedge. */
if (STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info))
ncopies = 1;
/* Create the destination vector */
gphi *phi = as_a <gphi *> (stmt_info->stmt);
tree vec_dest = vect_create_destination_var (gimple_phi_result (phi),
vectype_out);
/* Get the loop-entry arguments. */
tree vec_initial_def = NULL_TREE;
auto_vec<tree> vec_initial_defs;
if (slp_node)
{
vec_initial_defs.reserve (vec_num);
if (nested_cycle)
{
unsigned phi_idx = loop_preheader_edge (loop)->dest_idx;
vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[phi_idx],
&vec_initial_defs);
}
else
{
gcc_assert (slp_node == slp_node_instance->reduc_phis);
vec<tree> &initial_values = reduc_info->reduc_initial_values;
vec<stmt_vec_info> &stmts = SLP_TREE_SCALAR_STMTS (slp_node);
unsigned int num_phis = stmts.length ();
if (REDUC_GROUP_FIRST_ELEMENT (reduc_stmt_info))
num_phis = 1;
initial_values.reserve (num_phis);
for (unsigned int i = 0; i < num_phis; ++i)
{
gphi *this_phi = as_a<gphi *> (stmts[i]->stmt);
initial_values.quick_push (vect_phi_initial_value (this_phi));
}
if (vec_num == 1)
vect_find_reusable_accumulator (loop_vinfo, reduc_info);
if (!initial_values.is_empty ())
{
tree initial_value
= (num_phis == 1 ? initial_values[0] : NULL_TREE);
code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
tree neutral_op
= neutral_op_for_reduction (TREE_TYPE (vectype_out),
code, initial_value);
get_initial_defs_for_reduction (loop_vinfo, reduc_info,
&vec_initial_defs, vec_num,
stmts.length (), neutral_op);
}
}
}
else
{
/* Get at the scalar def before the loop, that defines the initial
value of the reduction variable. */
tree initial_def = vect_phi_initial_value (phi);
reduc_info->reduc_initial_values.safe_push (initial_def);
/* Optimize: if initial_def is for REDUC_MAX smaller than the base
and we can't use zero for induc_val, use initial_def. Similarly
for REDUC_MIN and initial_def larger than the base. */
if (STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
{
tree induc_val = STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info);
if (TREE_CODE (initial_def) == INTEGER_CST
&& !integer_zerop (induc_val)
&& ((STMT_VINFO_REDUC_CODE (reduc_info) == MAX_EXPR
&& tree_int_cst_lt (initial_def, induc_val))
|| (STMT_VINFO_REDUC_CODE (reduc_info) == MIN_EXPR
&& tree_int_cst_lt (induc_val, initial_def))))
{
induc_val = initial_def;
/* Communicate we used the initial_def to epilouge
generation. */
STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info) = NULL_TREE;
}
vec_initial_def = build_vector_from_val (vectype_out, induc_val);
}
else if (nested_cycle)
{
/* Do not use an adjustment def as that case is not supported
correctly if ncopies is not one. */
vect_get_vec_defs_for_operand (loop_vinfo, reduc_stmt_info,
ncopies, initial_def,
&vec_initial_defs);
}
else if (STMT_VINFO_REDUC_TYPE (reduc_info) == CONST_COND_REDUCTION
|| STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION)
/* Fill the initial vector with the initial scalar value. */
vec_initial_def
= get_initial_def_for_reduction (loop_vinfo, reduc_stmt_info,
initial_def, initial_def);
else
{
if (ncopies == 1)
vect_find_reusable_accumulator (loop_vinfo, reduc_info);
if (!reduc_info->reduc_initial_values.is_empty ())
{
initial_def = reduc_info->reduc_initial_values[0];
code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
tree neutral_op
= neutral_op_for_reduction (TREE_TYPE (initial_def),
code, initial_def);
gcc_assert (neutral_op);
/* Try to simplify the vector initialization by applying an
adjustment after the reduction has been performed. */
if (!reduc_info->reused_accumulator
&& STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
&& !operand_equal_p (neutral_op, initial_def))
{
STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info)
= initial_def;
initial_def = neutral_op;
}
vec_initial_def
= get_initial_def_for_reduction (loop_vinfo, reduc_info,
initial_def, neutral_op);
}
}
}
if (vec_initial_def)
{
vec_initial_defs.create (ncopies);
for (i = 0; i < ncopies; ++i)
vec_initial_defs.quick_push (vec_initial_def);
}
if (auto *accumulator = reduc_info->reused_accumulator)
{
tree def = accumulator->reduc_input;
if (!useless_type_conversion_p (vectype_out, TREE_TYPE (def)))
{
unsigned int nreduc;
bool res = constant_multiple_p (TYPE_VECTOR_SUBPARTS
(TREE_TYPE (def)),
TYPE_VECTOR_SUBPARTS (vectype_out),
&nreduc);
gcc_assert (res);
gimple_seq stmts = NULL;
/* Reduce the single vector to a smaller one. */
if (nreduc != 1)
{
/* Perform the reduction in the appropriate type. */
tree rvectype = vectype_out;
if (!useless_type_conversion_p (TREE_TYPE (vectype_out),
TREE_TYPE (TREE_TYPE (def))))
rvectype = build_vector_type (TREE_TYPE (TREE_TYPE (def)),
TYPE_VECTOR_SUBPARTS
(vectype_out));
def = vect_create_partial_epilog (def, rvectype,
STMT_VINFO_REDUC_CODE
(reduc_info),
&stmts);
}
/* The epilogue loop might use a different vector mode, like
VNx2DI vs. V2DI. */
if (TYPE_MODE (vectype_out) != TYPE_MODE (TREE_TYPE (def)))
{
tree reduc_type = build_vector_type_for_mode
(TREE_TYPE (TREE_TYPE (def)), TYPE_MODE (vectype_out));
def = gimple_convert (&stmts, reduc_type, def);
}
/* Adjust the input so we pick up the partially reduced value
for the skip edge in vect_create_epilog_for_reduction. */
accumulator->reduc_input = def;
/* And the reduction could be carried out using a different sign. */
if (!useless_type_conversion_p (vectype_out, TREE_TYPE (def)))
def = gimple_convert (&stmts, vectype_out, def);
if (loop_vinfo->main_loop_edge)
{
/* While we'd like to insert on the edge this will split
blocks and disturb bookkeeping, we also will eventually
need this on the skip edge. Rely on sinking to
fixup optimal placement and insert in the pred. */
gimple_stmt_iterator gsi
= gsi_last_bb (loop_vinfo->main_loop_edge->src);
/* Insert before a cond that eventually skips the
epilogue. */
if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
gsi_prev (&gsi);
gsi_insert_seq_after (&gsi, stmts, GSI_CONTINUE_LINKING);
}
else
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
stmts);
}
if (loop_vinfo->main_loop_edge)
vec_initial_defs[0]
= vect_get_main_loop_result (loop_vinfo, def,
vec_initial_defs[0]);
else
vec_initial_defs.safe_push (def);
}
/* Generate the reduction PHIs upfront. */
for (i = 0; i < vec_num; i++)
{
tree vec_init_def = vec_initial_defs[i];
for (j = 0; j < ncopies; j++)
{
/* Create the reduction-phi that defines the reduction
operand. */
gphi *new_phi = create_phi_node (vec_dest, loop->header);
/* Set the loop-entry arg of the reduction-phi. */
if (j != 0 && nested_cycle)
vec_init_def = vec_initial_defs[j];
add_phi_arg (new_phi, vec_init_def, loop_preheader_edge (loop),
UNKNOWN_LOCATION);
/* The loop-latch arg is set in epilogue processing. */
if (slp_node)
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
else
{
if (j == 0)
*vec_stmt = new_phi;
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_phi);
}
}
}
return true;
}
/* Vectorizes LC PHIs. */
bool
vectorizable_lc_phi (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, gimple **vec_stmt,
slp_tree slp_node)
{
if (!loop_vinfo
|| !is_a <gphi *> (stmt_info->stmt)
|| gimple_phi_num_args (stmt_info->stmt) != 1)
return false;
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
return false;
if (!vec_stmt) /* transformation not required. */
{
/* Deal with copies from externs or constants that disguise as
loop-closed PHI nodes (PR97886). */
if (slp_node
&& !vect_maybe_update_slp_op_vectype (SLP_TREE_CHILDREN (slp_node)[0],
SLP_TREE_VECTYPE (slp_node)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for invariants\n");
return false;
}
STMT_VINFO_TYPE (stmt_info) = lc_phi_info_type;
return true;
}
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree scalar_dest = gimple_phi_result (stmt_info->stmt);
basic_block bb = gimple_bb (stmt_info->stmt);
edge e = single_pred_edge (bb);
tree vec_dest = vect_create_destination_var (scalar_dest, vectype);
auto_vec<tree> vec_oprnds;
vect_get_vec_defs (loop_vinfo, stmt_info, slp_node,
!slp_node ? vect_get_num_copies (loop_vinfo, vectype) : 1,
gimple_phi_arg_def (stmt_info->stmt, 0), &vec_oprnds);
for (unsigned i = 0; i < vec_oprnds.length (); i++)
{
/* Create the vectorized LC PHI node. */
gphi *new_phi = create_phi_node (vec_dest, bb);
add_phi_arg (new_phi, vec_oprnds[i], e, UNKNOWN_LOCATION);
if (slp_node)
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
else
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_phi);
}
if (!slp_node)
*vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0];
return true;
}
/* Vectorizes PHIs. */
bool
vectorizable_phi (vec_info *,
stmt_vec_info stmt_info, gimple **vec_stmt,
slp_tree slp_node, stmt_vector_for_cost *cost_vec)
{
if (!is_a <gphi *> (stmt_info->stmt) || !slp_node)
return false;
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
return false;
tree vectype = SLP_TREE_VECTYPE (slp_node);
if (!vec_stmt) /* transformation not required. */
{
slp_tree child;
unsigned i;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), i, child)
if (!child)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"PHI node with unvectorized backedge def\n");
return false;
}
else if (!vect_maybe_update_slp_op_vectype (child, vectype))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for invariants\n");
return false;
}
else if (SLP_TREE_DEF_TYPE (child) == vect_internal_def
&& !useless_type_conversion_p (vectype,
SLP_TREE_VECTYPE (child)))
{
/* With bools we can have mask and non-mask precision vectors
or different non-mask precisions. while pattern recog is
supposed to guarantee consistency here bugs in it can cause
mismatches (PR103489 and PR103800 for example).
Deal with them here instead of ICEing later. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector type setup from "
"bool pattern detection\n");
return false;
}
/* For single-argument PHIs assume coalescing which means zero cost
for the scalar and the vector PHIs. This avoids artificially
favoring the vector path (but may pessimize it in some cases). */
if (gimple_phi_num_args (as_a <gphi *> (stmt_info->stmt)) > 1)
record_stmt_cost (cost_vec, SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node),
vector_stmt, stmt_info, vectype, 0, vect_body);
STMT_VINFO_TYPE (stmt_info) = phi_info_type;
return true;
}
tree scalar_dest = gimple_phi_result (stmt_info->stmt);
basic_block bb = gimple_bb (stmt_info->stmt);
tree vec_dest = vect_create_destination_var (scalar_dest, vectype);
auto_vec<gphi *> new_phis;
for (unsigned i = 0; i < gimple_phi_num_args (stmt_info->stmt); ++i)
{
slp_tree child = SLP_TREE_CHILDREN (slp_node)[i];
/* Skip not yet vectorized defs. */
if (SLP_TREE_DEF_TYPE (child) == vect_internal_def
&& SLP_TREE_VEC_STMTS (child).is_empty ())
continue;
auto_vec<tree> vec_oprnds;
vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[i], &vec_oprnds);
if (!new_phis.exists ())
{
new_phis.create (vec_oprnds.length ());
for (unsigned j = 0; j < vec_oprnds.length (); j++)
{
/* Create the vectorized LC PHI node. */
new_phis.quick_push (create_phi_node (vec_dest, bb));
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phis[j]);
}
}
edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt_info->stmt), i);
for (unsigned j = 0; j < vec_oprnds.length (); j++)
add_phi_arg (new_phis[j], vec_oprnds[j], e, UNKNOWN_LOCATION);
}
/* We should have at least one already vectorized child. */
gcc_assert (new_phis.exists ());
return true;
}
/* Return true if VECTYPE represents a vector that requires lowering
by the vector lowering pass. */
bool
vect_emulated_vector_p (tree vectype)
{
return (!VECTOR_MODE_P (TYPE_MODE (vectype))
&& (!VECTOR_BOOLEAN_TYPE_P (vectype)
|| TYPE_PRECISION (TREE_TYPE (vectype)) != 1));
}
/* Return true if we can emulate CODE on an integer mode representation
of a vector. */
bool
vect_can_vectorize_without_simd_p (tree_code code)
{
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
case NEGATE_EXPR:
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_NOT_EXPR:
return true;
default:
return false;
}
}
/* Likewise, but taking a code_helper. */
bool
vect_can_vectorize_without_simd_p (code_helper code)
{
return (code.is_tree_code ()
&& vect_can_vectorize_without_simd_p (tree_code (code)));
}
/* Function vectorizable_induction
Check if STMT_INFO performs an induction computation that can be vectorized.
If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
phi to replace it, put it in VEC_STMT, and add it to the same basic block.
Return true if STMT_INFO is vectorizable in this way. */
bool
vectorizable_induction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info,
gimple **vec_stmt, slp_tree slp_node,
stmt_vector_for_cost *cost_vec)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
unsigned ncopies;
bool nested_in_vect_loop = false;
class loop *iv_loop;
tree vec_def;
edge pe = loop_preheader_edge (loop);
basic_block new_bb;
tree new_vec, vec_init, vec_step, t;
tree new_name;
gimple *new_stmt;
gphi *induction_phi;
tree induc_def, vec_dest;
tree init_expr, step_expr;
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
unsigned i;
tree expr;
gimple_stmt_iterator si;
gphi *phi = dyn_cast <gphi *> (stmt_info->stmt);
if (!phi)
return false;
if (!STMT_VINFO_RELEVANT_P (stmt_info))
return false;
/* Make sure it was recognized as induction computation. */
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
return false;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
if (slp_node)
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, vectype);
gcc_assert (ncopies >= 1);
/* FORNOW. These restrictions should be relaxed. */
if (nested_in_vect_loop_p (loop, stmt_info))
{
imm_use_iterator imm_iter;
use_operand_p use_p;
gimple *exit_phi;
edge latch_e;
tree loop_arg;
if (ncopies > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"multiple types in nested loop.\n");
return false;
}
exit_phi = NULL;
latch_e = loop_latch_edge (loop->inner);
loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
{
exit_phi = use_stmt;
break;
}
}
if (exit_phi)
{
stmt_vec_info exit_phi_vinfo = loop_vinfo->lookup_stmt (exit_phi);
if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"inner-loop induction only used outside "
"of the outer vectorized loop.\n");
return false;
}
}
nested_in_vect_loop = true;
iv_loop = loop->inner;
}
else
iv_loop = loop;
gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
if (slp_node && !nunits.is_constant ())
{
/* The current SLP code creates the step value element-by-element. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"SLP induction not supported for variable-length"
" vectors.\n");
return false;
}
if (FLOAT_TYPE_P (vectype) && !param_vect_induction_float)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"floating point induction vectorization disabled\n");
return false;
}
step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
gcc_assert (step_expr != NULL_TREE);
tree step_vectype = get_same_sized_vectype (TREE_TYPE (step_expr), vectype);
/* Check for backend support of PLUS/MINUS_EXPR. */
if (!directly_supported_p (PLUS_EXPR, step_vectype)
|| !directly_supported_p (MINUS_EXPR, step_vectype))
return false;
if (!vec_stmt) /* transformation not required. */
{
unsigned inside_cost = 0, prologue_cost = 0;
if (slp_node)
{
/* We eventually need to set a vector type on invariant
arguments. */
unsigned j;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), j, child)
if (!vect_maybe_update_slp_op_vectype
(child, SLP_TREE_VECTYPE (slp_node)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for "
"invariants\n");
return false;
}
/* loop cost for vec_loop. */
inside_cost
= record_stmt_cost (cost_vec,
SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node),
vector_stmt, stmt_info, 0, vect_body);
/* prologue cost for vec_init (if not nested) and step. */
prologue_cost = record_stmt_cost (cost_vec, 1 + !nested_in_vect_loop,
scalar_to_vec,
stmt_info, 0, vect_prologue);
}
else /* if (!slp_node) */
{
/* loop cost for vec_loop. */
inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
stmt_info, 0, vect_body);
/* prologue cost for vec_init and vec_step. */
prologue_cost = record_stmt_cost (cost_vec, 2, scalar_to_vec,
stmt_info, 0, vect_prologue);
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"vect_model_induction_cost: inside_cost = %d, "
"prologue_cost = %d .\n", inside_cost,
prologue_cost);
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
DUMP_VECT_SCOPE ("vectorizable_induction");
return true;
}
/* Transform. */
/* Compute a vector variable, initialized with the first VF values of
the induction variable. E.g., for an iv with IV_PHI='X' and
evolution S, for a vector of 4 units, we want to compute:
[X, X + S, X + 2*S, X + 3*S]. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
pe = loop_preheader_edge (iv_loop);
/* Find the first insertion point in the BB. */
basic_block bb = gimple_bb (phi);
si = gsi_after_labels (bb);
/* For SLP induction we have to generate several IVs as for example
with group size 3 we need
[i0, i1, i2, i0 + S0] [i1 + S1, i2 + S2, i0 + 2*S0, i1 + 2*S1]
[i2 + 2*S2, i0 + 3*S0, i1 + 3*S1, i2 + 3*S2]. */
if (slp_node)
{
/* Enforced above. */
unsigned int const_nunits = nunits.to_constant ();
/* The initial values are vectorized, but any lanes > group_size
need adjustment. */
slp_tree init_node
= SLP_TREE_CHILDREN (slp_node)[pe->dest_idx];
/* Gather steps. Since we do not vectorize inductions as
cycles we have to reconstruct the step from SCEV data. */
unsigned group_size = SLP_TREE_LANES (slp_node);
tree *steps = XALLOCAVEC (tree, group_size);
tree *inits = XALLOCAVEC (tree, group_size);
stmt_vec_info phi_info;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (slp_node), i, phi_info)
{
steps[i] = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
if (!init_node)
inits[i] = gimple_phi_arg_def (as_a<gphi *> (phi_info->stmt),
pe->dest_idx);
}
/* Now generate the IVs. */
unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
gcc_assert ((const_nunits * nvects) % group_size == 0);
unsigned nivs;
if (nested_in_vect_loop)
nivs = nvects;
else
{
/* Compute the number of distinct IVs we need. First reduce
group_size if it is a multiple of const_nunits so we get
one IV for a group_size of 4 but const_nunits 2. */
unsigned group_sizep = group_size;
if (group_sizep % const_nunits == 0)
group_sizep = group_sizep / const_nunits;
nivs = least_common_multiple (group_sizep,
const_nunits) / const_nunits;
}
tree stept = TREE_TYPE (step_vectype);
tree lupdate_mul = NULL_TREE;
if (!nested_in_vect_loop)
{
/* The number of iterations covered in one vector iteration. */
unsigned lup_mul = (nvects * const_nunits) / group_size;
lupdate_mul
= build_vector_from_val (step_vectype,
SCALAR_FLOAT_TYPE_P (stept)
? build_real_from_wide (stept, lup_mul,
UNSIGNED)
: build_int_cstu (stept, lup_mul));
}
tree peel_mul = NULL_TREE;
gimple_seq init_stmts = NULL;
if (LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo))
{
if (SCALAR_FLOAT_TYPE_P (stept))
peel_mul = gimple_build (&init_stmts, FLOAT_EXPR, stept,
LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo));
else
peel_mul = gimple_convert (&init_stmts, stept,
LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo));
peel_mul = gimple_build_vector_from_val (&init_stmts,
step_vectype, peel_mul);
}
unsigned ivn;
auto_vec<tree> vec_steps;
for (ivn = 0; ivn < nivs; ++ivn)
{
tree_vector_builder step_elts (step_vectype, const_nunits, 1);
tree_vector_builder init_elts (vectype, const_nunits, 1);
tree_vector_builder mul_elts (step_vectype, const_nunits, 1);
for (unsigned eltn = 0; eltn < const_nunits; ++eltn)
{
/* The scalar steps of the IVs. */
tree elt = steps[(ivn*const_nunits + eltn) % group_size];
elt = gimple_convert (&init_stmts, TREE_TYPE (step_vectype), elt);
step_elts.quick_push (elt);
if (!init_node)
{
/* The scalar inits of the IVs if not vectorized. */
elt = inits[(ivn*const_nunits + eltn) % group_size];
if (!useless_type_conversion_p (TREE_TYPE (vectype),
TREE_TYPE (elt)))
elt = gimple_build (&init_stmts, VIEW_CONVERT_EXPR,
TREE_TYPE (vectype), elt);
init_elts.quick_push (elt);
}
/* The number of steps to add to the initial values. */
unsigned mul_elt = (ivn*const_nunits + eltn) / group_size;
mul_elts.quick_push (SCALAR_FLOAT_TYPE_P (stept)
? build_real_from_wide (stept,
mul_elt, UNSIGNED)
: build_int_cstu (stept, mul_elt));
}
vec_step = gimple_build_vector (&init_stmts, &step_elts);
vec_steps.safe_push (vec_step);
tree step_mul = gimple_build_vector (&init_stmts, &mul_elts);
if (peel_mul)
step_mul = gimple_build (&init_stmts, PLUS_EXPR, step_vectype,
step_mul, peel_mul);
if (!init_node)
vec_init = gimple_build_vector (&init_stmts, &init_elts);
/* Create the induction-phi that defines the induction-operand. */
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var,
"vec_iv_");
induction_phi = create_phi_node (vec_dest, iv_loop->header);
induc_def = PHI_RESULT (induction_phi);
/* Create the iv update inside the loop */
tree up = vec_step;
if (lupdate_mul)
up = gimple_build (&init_stmts, MULT_EXPR, step_vectype,
vec_step, lupdate_mul);
gimple_seq stmts = NULL;
vec_def = gimple_convert (&stmts, step_vectype, induc_def);
vec_def = gimple_build (&stmts,
PLUS_EXPR, step_vectype, vec_def, up);
vec_def = gimple_convert (&stmts, vectype, vec_def);
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
UNKNOWN_LOCATION);
if (init_node)
vec_init = vect_get_slp_vect_def (init_node, ivn);
if (!nested_in_vect_loop
&& !integer_zerop (step_mul))
{
vec_def = gimple_convert (&init_stmts, step_vectype, vec_init);
up = gimple_build (&init_stmts, MULT_EXPR, step_vectype,
vec_step, step_mul);
vec_def = gimple_build (&init_stmts, PLUS_EXPR, step_vectype,
vec_def, up);
vec_init = gimple_convert (&init_stmts, vectype, vec_def);
}
/* Set the arguments of the phi node: */
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
}
if (!nested_in_vect_loop)
{
/* Fill up to the number of vectors we need for the whole group. */
nivs = least_common_multiple (group_size,
const_nunits) / const_nunits;
vec_steps.reserve (nivs-ivn);
for (; ivn < nivs; ++ivn)
{
SLP_TREE_VEC_STMTS (slp_node)
.quick_push (SLP_TREE_VEC_STMTS (slp_node)[0]);
vec_steps.quick_push (vec_steps[0]);
}
}
/* Re-use IVs when we can. We are generating further vector
stmts by adding VF' * stride to the IVs generated above. */
if (ivn < nvects)
{
unsigned vfp
= least_common_multiple (group_size, const_nunits) / group_size;
tree lupdate_mul
= build_vector_from_val (step_vectype,
SCALAR_FLOAT_TYPE_P (stept)
? build_real_from_wide (stept,
vfp, UNSIGNED)
: build_int_cstu (stept, vfp));
for (; ivn < nvects; ++ivn)
{
gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
tree def = gimple_get_lhs (iv);
if (ivn < 2*nivs)
vec_steps[ivn - nivs]
= gimple_build (&init_stmts, MULT_EXPR, step_vectype,
vec_steps[ivn - nivs], lupdate_mul);
gimple_seq stmts = NULL;
def = gimple_convert (&stmts, step_vectype, def);
def = gimple_build (&stmts, PLUS_EXPR, step_vectype,
def, vec_steps[ivn % nivs]);
def = gimple_convert (&stmts, vectype, def);
if (gimple_code (iv) == GIMPLE_PHI)
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
else
{
gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
gsi_insert_seq_after (&tgsi, stmts, GSI_CONTINUE_LINKING);
}
SLP_TREE_VEC_STMTS (slp_node)
.quick_push (SSA_NAME_DEF_STMT (def));
}
}
new_bb = gsi_insert_seq_on_edge_immediate (pe, init_stmts);
gcc_assert (!new_bb);
return true;
}
init_expr = vect_phi_initial_value (phi);
gimple_seq stmts = NULL;
if (!nested_in_vect_loop)
{
/* Convert the initial value to the IV update type. */
tree new_type = TREE_TYPE (step_expr);
init_expr = gimple_convert (&stmts, new_type, init_expr);
/* If we are using the loop mask to "peel" for alignment then we need
to adjust the start value here. */
tree skip_niters = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
if (skip_niters != NULL_TREE)
{
if (FLOAT_TYPE_P (vectype))
skip_niters = gimple_build (&stmts, FLOAT_EXPR, new_type,
skip_niters);
else
skip_niters = gimple_convert (&stmts, new_type, skip_niters);
tree skip_step = gimple_build (&stmts, MULT_EXPR, new_type,
skip_niters, step_expr);
init_expr = gimple_build (&stmts, MINUS_EXPR, new_type,
init_expr, skip_step);
}
}
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
/* Create the vector that holds the initial_value of the induction. */
if (nested_in_vect_loop)
{
/* iv_loop is nested in the loop to be vectorized. init_expr had already
been created during vectorization of previous stmts. We obtain it
from the STMT_VINFO_VEC_STMT of the defining stmt. */
auto_vec<tree> vec_inits;
vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
init_expr, &vec_inits);
vec_init = vec_inits[0];
/* If the initial value is not of proper type, convert it. */
if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
{
new_stmt
= gimple_build_assign (vect_get_new_ssa_name (vectype,
vect_simple_var,
"vec_iv_"),
VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR, vectype,
vec_init));
vec_init = gimple_assign_lhs (new_stmt);
new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
new_stmt);
gcc_assert (!new_bb);
}
}
else
{
/* iv_loop is the loop to be vectorized. Create:
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
stmts = NULL;
new_name = gimple_convert (&stmts, TREE_TYPE (step_expr), init_expr);
unsigned HOST_WIDE_INT const_nunits;
if (nunits.is_constant (&const_nunits))
{
tree_vector_builder elts (step_vectype, const_nunits, 1);
elts.quick_push (new_name);
for (i = 1; i < const_nunits; i++)
{
/* Create: new_name_i = new_name + step_expr */
new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
new_name, step_expr);
elts.quick_push (new_name);
}
/* Create a vector from [new_name_0, new_name_1, ...,
new_name_nunits-1] */
vec_init = gimple_build_vector (&stmts, &elts);
}
else if (INTEGRAL_TYPE_P (TREE_TYPE (step_expr)))
/* Build the initial value directly from a VEC_SERIES_EXPR. */
vec_init = gimple_build (&stmts, VEC_SERIES_EXPR, step_vectype,
new_name, step_expr);
else
{
/* Build:
[base, base, base, ...]
+ (vectype) [0, 1, 2, ...] * [step, step, step, ...]. */
gcc_assert (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)));
gcc_assert (flag_associative_math);
tree index = build_index_vector (step_vectype, 0, 1);
tree base_vec = gimple_build_vector_from_val (&stmts, step_vectype,
new_name);
tree step_vec = gimple_build_vector_from_val (&stmts, step_vectype,
step_expr);
vec_init = gimple_build (&stmts, FLOAT_EXPR, step_vectype, index);
vec_init = gimple_build (&stmts, MULT_EXPR, step_vectype,
vec_init, step_vec);
vec_init = gimple_build (&stmts, PLUS_EXPR, step_vectype,
vec_init, base_vec);
}
vec_init = gimple_convert (&stmts, vectype, vec_init);
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
}
/* Create the vector that holds the step of the induction. */
if (nested_in_vect_loop)
/* iv_loop is nested in the loop to be vectorized. Generate:
vec_step = [S, S, S, S] */
new_name = step_expr;
else
{
/* iv_loop is the loop to be vectorized. Generate:
vec_step = [VF*S, VF*S, VF*S, VF*S] */
gimple_seq seq = NULL;
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
{
expr = build_int_cst (integer_type_node, vf);
expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
}
else
expr = build_int_cst (TREE_TYPE (step_expr), vf);
new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
if (seq)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
gcc_assert (!new_bb);
}
}
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name)
|| TREE_CODE (new_name) == SSA_NAME);
new_vec = build_vector_from_val (step_vectype, t);
vec_step = vect_init_vector (loop_vinfo, stmt_info,
new_vec, step_vectype, NULL);
/* Create the following def-use cycle:
loop prolog:
vec_init = ...
vec_step = ...
loop:
vec_iv = PHI <vec_init, vec_loop>
...
STMT
...
vec_loop = vec_iv + vec_step; */
/* Create the induction-phi that defines the induction-operand. */
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
induction_phi = create_phi_node (vec_dest, iv_loop->header);
induc_def = PHI_RESULT (induction_phi);
/* Create the iv update inside the loop */
stmts = NULL;
vec_def = gimple_convert (&stmts, step_vectype, induc_def);
vec_def = gimple_build (&stmts, PLUS_EXPR, step_vectype, vec_def, vec_step);
vec_def = gimple_convert (&stmts, vectype, vec_def);
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
new_stmt = SSA_NAME_DEF_STMT (vec_def);
/* Set the arguments of the phi node: */
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
UNKNOWN_LOCATION);
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (induction_phi);
*vec_stmt = induction_phi;
/* In case that vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
if (ncopies > 1)
{
gimple_seq seq = NULL;
/* FORNOW. This restriction should be relaxed. */
gcc_assert (!nested_in_vect_loop);
/* Create the vector that holds the step of the induction. */
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
{
expr = build_int_cst (integer_type_node, nunits);
expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
}
else
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
if (seq)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
gcc_assert (!new_bb);
}
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name)
|| TREE_CODE (new_name) == SSA_NAME);
new_vec = build_vector_from_val (step_vectype, t);
vec_step = vect_init_vector (loop_vinfo, stmt_info,
new_vec, step_vectype, NULL);
vec_def = induc_def;
for (i = 1; i < ncopies; i++)
{
/* vec_i = vec_prev + vec_step */
gimple_seq stmts = NULL;
vec_def = gimple_convert (&stmts, step_vectype, vec_def);
vec_def = gimple_build (&stmts,
PLUS_EXPR, step_vectype, vec_def, vec_step);
vec_def = gimple_convert (&stmts, vectype, vec_def);
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
new_stmt = SSA_NAME_DEF_STMT (vec_def);
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
}
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"transform induction: created def-use cycle: %G%G",
induction_phi, SSA_NAME_DEF_STMT (vec_def));
return true;
}
/* Function vectorizable_live_operation.
STMT_INFO computes a value that is used outside the loop. Check if
it can be supported. */
bool
vectorizable_live_operation (vec_info *vinfo,
stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi,
slp_tree slp_node, slp_instance slp_node_instance,
int slp_index, bool vec_stmt_p,
stmt_vector_for_cost *cost_vec)
{
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
imm_use_iterator imm_iter;
tree lhs, lhs_type, bitsize;
tree vectype = (slp_node
? SLP_TREE_VECTYPE (slp_node)
: STMT_VINFO_VECTYPE (stmt_info));
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
int ncopies;
gimple *use_stmt;
auto_vec<tree> vec_oprnds;
int vec_entry = 0;
poly_uint64 vec_index = 0;
gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
/* If a stmt of a reduction is live, vectorize it via
vect_create_epilog_for_reduction. vectorizable_reduction assessed
validity so just trigger the transform here. */
if (STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info)))
{
if (!vec_stmt_p)
return true;
if (slp_node)
{
/* For reduction chains the meta-info is attached to
the group leader. */
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
stmt_info = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
/* For SLP reductions we vectorize the epilogue for
all involved stmts together. */
else if (slp_index != 0)
return true;
}
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
gcc_assert (reduc_info->is_reduc_info);
if (STMT_VINFO_REDUC_TYPE (reduc_info) == FOLD_LEFT_REDUCTION
|| STMT_VINFO_REDUC_TYPE (reduc_info) == EXTRACT_LAST_REDUCTION)
return true;
vect_create_epilog_for_reduction (loop_vinfo, stmt_info, slp_node,
slp_node_instance);
return true;
}
/* If STMT is not relevant and it is a simple assignment and its inputs are
invariant then it can remain in place, unvectorized. The original last
scalar value that it computes will be used. */
if (!STMT_VINFO_RELEVANT_P (stmt_info))
{
gcc_assert (is_simple_and_all_uses_invariant (stmt_info, loop_vinfo));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"statement is simple and uses invariant. Leaving in "
"place.\n");
return true;
}
if (slp_node)
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, vectype);
if (slp_node)
{
gcc_assert (slp_index >= 0);
/* Get the last occurrence of the scalar index from the concatenation of
all the slp vectors. Calculate which slp vector it is and the index
within. */
int num_scalar = SLP_TREE_LANES (slp_node);
int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
poly_uint64 pos = (num_vec * nunits) - num_scalar + slp_index;
/* Calculate which vector contains the result, and which lane of
that vector we need. */
if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Cannot determine which vector holds the"
" final result.\n");
return false;
}
}
if (!vec_stmt_p)
{
/* No transformation required. */
if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo))
{
if (!direct_internal_fn_supported_p (IFN_EXTRACT_LAST, vectype,
OPTIMIZE_FOR_SPEED))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors "
"because the target doesn't support extract "
"last reduction.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else if (slp_node)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors "
"because an SLP statement is live after "
"the loop.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else if (ncopies > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors "
"because ncopies is greater than 1.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else
{
gcc_assert (ncopies == 1 && !slp_node);
vect_record_loop_mask (loop_vinfo,
&LOOP_VINFO_MASKS (loop_vinfo),
1, vectype, NULL);
}
}
/* ??? Enable for loop costing as well. */
if (!loop_vinfo)
record_stmt_cost (cost_vec, 1, vec_to_scalar, stmt_info, NULL_TREE,
0, vect_epilogue);
return true;
}
/* Use the lhs of the original scalar statement. */
gimple *stmt = vect_orig_stmt (stmt_info)->stmt;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "extracting lane for live "
"stmt %G", stmt);
lhs = gimple_get_lhs (stmt);
lhs_type = TREE_TYPE (lhs);
bitsize = vector_element_bits_tree (vectype);
/* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
tree vec_lhs, bitstart;
gimple *vec_stmt;
if (slp_node)
{
gcc_assert (!loop_vinfo || !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo));
/* Get the correct slp vectorized stmt. */
vec_stmt = SLP_TREE_VEC_STMTS (slp_node)[vec_entry];
vec_lhs = gimple_get_lhs (vec_stmt);
/* Get entry to use. */
bitstart = bitsize_int (vec_index);
bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
}
else
{
/* For multiple copies, get the last copy. */
vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info).last ();
vec_lhs = gimple_get_lhs (vec_stmt);
/* Get the last lane in the vector. */
bitstart = int_const_binop (MULT_EXPR, bitsize, bitsize_int (nunits - 1));
}
if (loop_vinfo)
{
/* Ensure the VEC_LHS for lane extraction stmts satisfy loop-closed PHI
requirement, insert one phi node for it. It looks like:
loop;
BB:
# lhs' = PHI <lhs>
==>
loop;
BB:
# vec_lhs' = PHI <vec_lhs>
new_tree = lane_extract <vec_lhs', ...>;
lhs' = new_tree; */
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block exit_bb = single_exit (loop)->dest;
gcc_assert (single_pred_p (exit_bb));
tree vec_lhs_phi = copy_ssa_name (vec_lhs);
gimple *phi = create_phi_node (vec_lhs_phi, exit_bb);
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, vec_lhs);
gimple_seq stmts = NULL;
tree new_tree;
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
{
/* Emit:
SCALAR_RES = EXTRACT_LAST <VEC_LHS, MASK>
where VEC_LHS is the vectorized live-out result and MASK is
the loop mask for the final iteration. */
gcc_assert (ncopies == 1 && !slp_node);
tree scalar_type = TREE_TYPE (STMT_VINFO_VECTYPE (stmt_info));
tree mask = vect_get_loop_mask (gsi, &LOOP_VINFO_MASKS (loop_vinfo),
1, vectype, 0);
tree scalar_res = gimple_build (&stmts, CFN_EXTRACT_LAST, scalar_type,
mask, vec_lhs_phi);
/* Convert the extracted vector element to the scalar type. */
new_tree = gimple_convert (&stmts, lhs_type, scalar_res);
}
else
{
tree bftype = TREE_TYPE (vectype);
if (VECTOR_BOOLEAN_TYPE_P (vectype))
bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
new_tree = build3 (BIT_FIELD_REF, bftype,
vec_lhs_phi, bitsize, bitstart);
new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
&stmts, true, NULL_TREE);
}
if (stmts)
{
gimple_stmt_iterator exit_gsi = gsi_after_labels (exit_bb);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
/* Remove existing phi from lhs and create one copy from new_tree. */
tree lhs_phi = NULL_TREE;
gimple_stmt_iterator gsi;
for (gsi = gsi_start_phis (exit_bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *phi = gsi_stmt (gsi);
if ((gimple_phi_arg_def (phi, 0) == lhs))
{
remove_phi_node (&gsi, false);
lhs_phi = gimple_phi_result (phi);
gimple *copy = gimple_build_assign (lhs_phi, new_tree);
gsi_insert_before (&exit_gsi, copy, GSI_SAME_STMT);
break;
}
}
}
/* Replace use of lhs with newly computed result. If the use stmt is a
single arg PHI, just replace all uses of PHI result. It's necessary
because lcssa PHI defining lhs may be before newly inserted stmt. */
use_operand_p use_p;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
&& !is_gimple_debug (use_stmt))
{
if (gimple_code (use_stmt) == GIMPLE_PHI
&& gimple_phi_num_args (use_stmt) == 1)
{
replace_uses_by (gimple_phi_result (use_stmt), new_tree);
}
else
{
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, new_tree);
}
update_stmt (use_stmt);
}
}
else
{
/* For basic-block vectorization simply insert the lane-extraction. */
tree bftype = TREE_TYPE (vectype);
if (VECTOR_BOOLEAN_TYPE_P (vectype))
bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
tree new_tree = build3 (BIT_FIELD_REF, bftype,
vec_lhs, bitsize, bitstart);
gimple_seq stmts = NULL;
new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
&stmts, true, NULL_TREE);
if (TREE_CODE (new_tree) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree) = 1;
if (is_a <gphi *> (vec_stmt))
{
gimple_stmt_iterator si = gsi_after_labels (gimple_bb (vec_stmt));
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
}
else
{
gimple_stmt_iterator si = gsi_for_stmt (vec_stmt);
gsi_insert_seq_after (&si, stmts, GSI_SAME_STMT);
}
/* Replace use of lhs with newly computed result. If the use stmt is a
single arg PHI, just replace all uses of PHI result. It's necessary
because lcssa PHI defining lhs may be before newly inserted stmt. */
use_operand_p use_p;
stmt_vec_info use_stmt_info;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
if (!is_gimple_debug (use_stmt)
&& (!(use_stmt_info = vinfo->lookup_stmt (use_stmt))
|| !PURE_SLP_STMT (vect_stmt_to_vectorize (use_stmt_info))))
{
/* ??? This can happen when the live lane ends up being
used in a vector construction code-generated by an
external SLP node (and code-generation for that already
happened). See gcc.dg/vect/bb-slp-47.c.
Doing this is what would happen if that vector CTOR
were not code-generated yet so it is not too bad.
??? In fact we'd likely want to avoid this situation
in the first place. */
if (TREE_CODE (new_tree) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (new_tree)
&& gimple_code (use_stmt) != GIMPLE_PHI
&& !vect_stmt_dominates_stmt_p (SSA_NAME_DEF_STMT (new_tree),
use_stmt))
{
enum tree_code code = gimple_assign_rhs_code (use_stmt);
gcc_assert (code == CONSTRUCTOR
|| code == VIEW_CONVERT_EXPR
|| CONVERT_EXPR_CODE_P (code));
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Using original scalar computation for "
"live lane because use preceeds vector "
"def\n");
continue;
}
/* ??? It can also happen that we end up pulling a def into
a loop where replacing out-of-loop uses would require
a new LC SSA PHI node. Retain the original scalar in
those cases as well. PR98064. */
if (TREE_CODE (new_tree) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (new_tree)
&& (gimple_bb (use_stmt)->loop_father
!= gimple_bb (vec_stmt)->loop_father)
&& !flow_loop_nested_p (gimple_bb (vec_stmt)->loop_father,
gimple_bb (use_stmt)->loop_father))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Using original scalar computation for "
"live lane because there is an out-of-loop "
"definition for it\n");
continue;
}
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, new_tree);
update_stmt (use_stmt);
}
}
return true;
}
/* Kill any debug uses outside LOOP of SSA names defined in STMT_INFO. */
static void
vect_loop_kill_debug_uses (class loop *loop, stmt_vec_info stmt_info)
{
ssa_op_iter op_iter;
imm_use_iterator imm_iter;
def_operand_p def_p;
gimple *ustmt;
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt_info->stmt, op_iter, SSA_OP_DEF)
{
FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
{
basic_block bb;
if (!is_gimple_debug (ustmt))
continue;
bb = gimple_bb (ustmt);
if (!flow_bb_inside_loop_p (loop, bb))
{
if (gimple_debug_bind_p (ustmt))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"killing debug use\n");
gimple_debug_bind_reset_value (ustmt);
update_stmt (ustmt);
}
else
gcc_unreachable ();
}
}
}
}
/* Given loop represented by LOOP_VINFO, return true if computation of
LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
otherwise. */
static bool
loop_niters_no_overflow (loop_vec_info loop_vinfo)
{
/* Constant case. */
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
return true;
}
widest_int max;
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Check the upper bound of loop niters. */
if (get_max_loop_iterations (loop, &max))
{
tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
signop sgn = TYPE_SIGN (type);
widest_int type_max = widest_int::from (wi::max_value (type), sgn);
if (max < type_max)
return true;
}
return false;
}
/* Return a mask type with half the number of elements as OLD_TYPE,
given that it should have mode NEW_MODE. */
tree
vect_halve_mask_nunits (tree old_type, machine_mode new_mode)
{
poly_uint64 nunits = exact_div (TYPE_VECTOR_SUBPARTS (old_type), 2);
return build_truth_vector_type_for_mode (nunits, new_mode);
}
/* Return a mask type with twice as many elements as OLD_TYPE,
given that it should have mode NEW_MODE. */
tree
vect_double_mask_nunits (tree old_type, machine_mode new_mode)
{
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (old_type) * 2;
return build_truth_vector_type_for_mode (nunits, new_mode);
}
/* Record that a fully-masked version of LOOP_VINFO would need MASKS to
contain a sequence of NVECTORS masks that each control a vector of type
VECTYPE. If SCALAR_MASK is nonnull, the fully-masked loop would AND
these vector masks with the vector version of SCALAR_MASK. */
void
vect_record_loop_mask (loop_vec_info loop_vinfo, vec_loop_masks *masks,
unsigned int nvectors, tree vectype, tree scalar_mask)
{
gcc_assert (nvectors != 0);
if (masks->length () < nvectors)
masks->safe_grow_cleared (nvectors, true);
rgroup_controls *rgm = &(*masks)[nvectors - 1];
/* The number of scalars per iteration and the number of vectors are
both compile-time constants. */
unsigned int nscalars_per_iter
= exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
if (scalar_mask)
{
scalar_cond_masked_key cond (scalar_mask, nvectors);
loop_vinfo->scalar_cond_masked_set.add (cond);
}
if (rgm->max_nscalars_per_iter < nscalars_per_iter)
{
rgm->max_nscalars_per_iter = nscalars_per_iter;
rgm->type = truth_type_for (vectype);
rgm->factor = 1;
}
}
/* Given a complete set of masks MASKS, extract mask number INDEX
for an rgroup that operates on NVECTORS vectors of type VECTYPE,
where 0 <= INDEX < NVECTORS. Insert any set-up statements before GSI.
See the comment above vec_loop_masks for more details about the mask
arrangement. */
tree
vect_get_loop_mask (gimple_stmt_iterator *gsi, vec_loop_masks *masks,
unsigned int nvectors, tree vectype, unsigned int index)
{
rgroup_controls *rgm = &(*masks)[nvectors - 1];
tree mask_type = rgm->type;
/* Populate the rgroup's mask array, if this is the first time we've
used it. */
if (rgm->controls.is_empty ())
{
rgm->controls.safe_grow_cleared (nvectors, true);
for (unsigned int i = 0; i < nvectors; ++i)
{
tree mask = make_temp_ssa_name (mask_type, NULL, "loop_mask");
/* Provide a dummy definition until the real one is available. */
SSA_NAME_DEF_STMT (mask) = gimple_build_nop ();
rgm->controls[i] = mask;
}
}
tree mask = rgm->controls[index];
if (maybe_ne (TYPE_VECTOR_SUBPARTS (mask_type),
TYPE_VECTOR_SUBPARTS (vectype)))
{
/* A loop mask for data type X can be reused for data type Y
if X has N times more elements than Y and if Y's elements
are N times bigger than X's. In this case each sequence
of N elements in the loop mask will be all-zero or all-one.
We can then view-convert the mask so that each sequence of
N elements is replaced by a single element. */
gcc_assert (multiple_p (TYPE_VECTOR_SUBPARTS (mask_type),
TYPE_VECTOR_SUBPARTS (vectype)));
gimple_seq seq = NULL;
mask_type = truth_type_for (vectype);
mask = gimple_build (&seq, VIEW_CONVERT_EXPR, mask_type, mask);
if (seq)
gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
}
return mask;
}
/* Record that LOOP_VINFO would need LENS to contain a sequence of NVECTORS
lengths for controlling an operation on VECTYPE. The operation splits
each element of VECTYPE into FACTOR separate subelements, measuring the
length as a number of these subelements. */
void
vect_record_loop_len (loop_vec_info loop_vinfo, vec_loop_lens *lens,
unsigned int nvectors, tree vectype, unsigned int factor)
{
gcc_assert (nvectors != 0);
if (lens->length () < nvectors)
lens->safe_grow_cleared (nvectors, true);
rgroup_controls *rgl = &(*lens)[nvectors - 1];
/* The number of scalars per iteration, scalar occupied bytes and
the number of vectors are both compile-time constants. */
unsigned int nscalars_per_iter
= exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
if (rgl->max_nscalars_per_iter < nscalars_per_iter)
{
/* For now, we only support cases in which all loads and stores fall back
to VnQI or none do. */
gcc_assert (!rgl->max_nscalars_per_iter
|| (rgl->factor == 1 && factor == 1)
|| (rgl->max_nscalars_per_iter * rgl->factor
== nscalars_per_iter * factor));
rgl->max_nscalars_per_iter = nscalars_per_iter;
rgl->type = vectype;
rgl->factor = factor;
}
}
/* Given a complete set of length LENS, extract length number INDEX for an
rgroup that operates on NVECTORS vectors, where 0 <= INDEX < NVECTORS. */
tree
vect_get_loop_len (loop_vec_info loop_vinfo, vec_loop_lens *lens,
unsigned int nvectors, unsigned int index)
{
rgroup_controls *rgl = &(*lens)[nvectors - 1];
bool use_bias_adjusted_len =
LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo) != 0;
/* Populate the rgroup's len array, if this is the first time we've
used it. */
if (rgl->controls.is_empty ())
{
rgl->controls.safe_grow_cleared (nvectors, true);
for (unsigned int i = 0; i < nvectors; ++i)
{
tree len_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
gcc_assert (len_type != NULL_TREE);
tree len = make_temp_ssa_name (len_type, NULL, "loop_len");
/* Provide a dummy definition until the real one is available. */
SSA_NAME_DEF_STMT (len) = gimple_build_nop ();
rgl->controls[i] = len;
if (use_bias_adjusted_len)
{
gcc_assert (i == 0);
tree adjusted_len =
make_temp_ssa_name (len_type, NULL, "adjusted_loop_len");
SSA_NAME_DEF_STMT (adjusted_len) = gimple_build_nop ();
rgl->bias_adjusted_ctrl = adjusted_len;
}
}
}
if (use_bias_adjusted_len)
return rgl->bias_adjusted_ctrl;
else
return rgl->controls[index];
}
/* Scale profiling counters by estimation for LOOP which is vectorized
by factor VF. */
static void
scale_profile_for_vect_loop (class loop *loop, unsigned vf)
{
edge preheader = loop_preheader_edge (loop);
/* Reduce loop iterations by the vectorization factor. */
gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
profile_count freq_h = loop->header->count, freq_e = preheader->count ();
if (freq_h.nonzero_p ())
{
profile_probability p;
/* Avoid dropping loop body profile counter to 0 because of zero count
in loop's preheader. */
if (!(freq_e == profile_count::zero ()))
freq_e = freq_e.force_nonzero ();
p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
scale_loop_frequencies (loop, p);
}
edge exit_e = single_exit (loop);
exit_e->probability = profile_probability::always ()
.apply_scale (1, new_est_niter + 1);
edge exit_l = single_pred_edge (loop->latch);
profile_probability prob = exit_l->probability;
exit_l->probability = exit_e->probability.invert ();
if (prob.initialized_p () && exit_l->probability.initialized_p ())
scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
}
/* For a vectorized stmt DEF_STMT_INFO adjust all vectorized PHI
latch edge values originally defined by it. */
static void
maybe_set_vectorized_backedge_value (loop_vec_info loop_vinfo,
stmt_vec_info def_stmt_info)
{
tree def = gimple_get_lhs (vect_orig_stmt (def_stmt_info)->stmt);
if (!def || TREE_CODE (def) != SSA_NAME)
return;
stmt_vec_info phi_info;
imm_use_iterator iter;
use_operand_p use_p;
FOR_EACH_IMM_USE_FAST (use_p, iter, def)
if (gphi *phi = dyn_cast <gphi *> (USE_STMT (use_p)))
if (gimple_bb (phi)->loop_father->header == gimple_bb (phi)
&& (phi_info = loop_vinfo->lookup_stmt (phi))
&& STMT_VINFO_RELEVANT_P (phi_info)
&& VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (phi_info))
&& STMT_VINFO_REDUC_TYPE (phi_info) != FOLD_LEFT_REDUCTION
&& STMT_VINFO_REDUC_TYPE (phi_info) != EXTRACT_LAST_REDUCTION)
{
loop_p loop = gimple_bb (phi)->loop_father;
edge e = loop_latch_edge (loop);
if (PHI_ARG_DEF_FROM_EDGE (phi, e) == def)
{
vec<gimple *> &phi_defs = STMT_VINFO_VEC_STMTS (phi_info);
vec<gimple *> &latch_defs = STMT_VINFO_VEC_STMTS (def_stmt_info);
gcc_assert (phi_defs.length () == latch_defs.length ());
for (unsigned i = 0; i < phi_defs.length (); ++i)
add_phi_arg (as_a <gphi *> (phi_defs[i]),
gimple_get_lhs (latch_defs[i]), e,
gimple_phi_arg_location (phi, e->dest_idx));
}
}
}
/* Vectorize STMT_INFO if relevant, inserting any new instructions before GSI.
When vectorizing STMT_INFO as a store, set *SEEN_STORE to its
stmt_vec_info. */
static bool
vect_transform_loop_stmt (loop_vec_info loop_vinfo, stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi, stmt_vec_info *seen_store)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"------>vectorizing statement: %G", stmt_info->stmt);
if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
vect_loop_kill_debug_uses (loop, stmt_info);
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
return false;
if (STMT_VINFO_VECTYPE (stmt_info))
{
poly_uint64 nunits
= TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
if (!STMT_SLP_TYPE (stmt_info)
&& maybe_ne (nunits, vf)
&& dump_enabled_p ())
/* For SLP VF is set according to unrolling factor, and not
to vector size, hence for SLP this print is not valid. */
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
}
/* Pure SLP statements have already been vectorized. We still need
to apply loop vectorization to hybrid SLP statements. */
if (PURE_SLP_STMT (stmt_info))
return false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
if (vect_transform_stmt (loop_vinfo, stmt_info, gsi, NULL, NULL))
*seen_store = stmt_info;
return true;
}
/* Helper function to pass to simplify_replace_tree to enable replacing tree's
in the hash_map with its corresponding values. */
static tree
find_in_mapping (tree t, void *context)
{
hash_map<tree,tree>* mapping = (hash_map<tree, tree>*) context;
tree *value = mapping->get (t);
return value ? *value : t;
}
/* Update EPILOGUE's loop_vec_info. EPILOGUE was constructed as a copy of the
original loop that has now been vectorized.
The inits of the data_references need to be advanced with the number of
iterations of the main loop. This has been computed in vect_do_peeling and
is stored in parameter ADVANCE. We first restore the data_references
initial offset with the values recored in ORIG_DRS_INIT.
Since the loop_vec_info of this EPILOGUE was constructed for the original
loop, its stmt_vec_infos all point to the original statements. These need
to be updated to point to their corresponding copies as well as the SSA_NAMES
in their PATTERN_DEF_SEQs and RELATED_STMTs.
The data_reference's connections also need to be updated. Their
corresponding dr_vec_info need to be reconnected to the EPILOGUE's
stmt_vec_infos, their statements need to point to their corresponding copy,
if they are gather loads or scatter stores then their reference needs to be
updated to point to its corresponding copy and finally we set
'base_misaligned' to false as we have already peeled for alignment in the
prologue of the main loop. */
static void
update_epilogue_loop_vinfo (class loop *epilogue, tree advance)
{
loop_vec_info epilogue_vinfo = loop_vec_info_for_loop (epilogue);
auto_vec<gimple *> stmt_worklist;
hash_map<tree,tree> mapping;
gimple *orig_stmt, *new_stmt;
gimple_stmt_iterator epilogue_gsi;
gphi_iterator epilogue_phi_gsi;
stmt_vec_info stmt_vinfo = NULL, related_vinfo;
basic_block *epilogue_bbs = get_loop_body (epilogue);
unsigned i;
free (LOOP_VINFO_BBS (epilogue_vinfo));
LOOP_VINFO_BBS (epilogue_vinfo) = epilogue_bbs;
/* Advance data_reference's with the number of iterations of the previous
loop and its prologue. */
vect_update_inits_of_drs (epilogue_vinfo, advance, PLUS_EXPR);
/* The EPILOGUE loop is a copy of the original loop so they share the same
gimple UIDs. In this loop we update the loop_vec_info of the EPILOGUE to
point to the copied statements. We also create a mapping of all LHS' in
the original loop and all the LHS' in the EPILOGUE and create worklists to
update teh STMT_VINFO_PATTERN_DEF_SEQs and STMT_VINFO_RELATED_STMTs. */
for (unsigned i = 0; i < epilogue->num_nodes; ++i)
{
for (epilogue_phi_gsi = gsi_start_phis (epilogue_bbs[i]);
!gsi_end_p (epilogue_phi_gsi); gsi_next (&epilogue_phi_gsi))
{
new_stmt = epilogue_phi_gsi.phi ();
gcc_assert (gimple_uid (new_stmt) > 0);
stmt_vinfo
= epilogue_vinfo->stmt_vec_infos[gimple_uid (new_stmt) - 1];
orig_stmt = STMT_VINFO_STMT (stmt_vinfo);
STMT_VINFO_STMT (stmt_vinfo) = new_stmt;
mapping.put (gimple_phi_result (orig_stmt),
gimple_phi_result (new_stmt));
/* PHI nodes can not have patterns or related statements. */
gcc_assert (STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) == NULL
&& STMT_VINFO_RELATED_STMT (stmt_vinfo) == NULL);
}
for (epilogue_gsi = gsi_start_bb (epilogue_bbs[i]);
!gsi_end_p (epilogue_gsi); gsi_next (&epilogue_gsi))
{
new_stmt = gsi_stmt (epilogue_gsi);
if (is_gimple_debug (new_stmt))
continue;
gcc_assert (gimple_uid (new_stmt) > 0);
stmt_vinfo
= epilogue_vinfo->stmt_vec_infos[gimple_uid (new_stmt) - 1];
orig_stmt = STMT_VINFO_STMT (stmt_vinfo);
STMT_VINFO_STMT (stmt_vinfo) = new_stmt;
if (tree old_lhs = gimple_get_lhs (orig_stmt))
mapping.put (old_lhs, gimple_get_lhs (new_stmt));
if (STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo))
{
gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo);
for (gimple_stmt_iterator gsi = gsi_start (seq);
!gsi_end_p (gsi); gsi_next (&gsi))
stmt_worklist.safe_push (gsi_stmt (gsi));
}
related_vinfo = STMT_VINFO_RELATED_STMT (stmt_vinfo);
if (related_vinfo != NULL && related_vinfo != stmt_vinfo)
{
gimple *stmt = STMT_VINFO_STMT (related_vinfo);
stmt_worklist.safe_push (stmt);
/* Set BB such that the assert in
'get_initial_def_for_reduction' is able to determine that
the BB of the related stmt is inside this loop. */
gimple_set_bb (stmt,
gimple_bb (new_stmt));
related_vinfo = STMT_VINFO_RELATED_STMT (related_vinfo);
gcc_assert (related_vinfo == NULL
|| related_vinfo == stmt_vinfo);
}
}
}
/* The PATTERN_DEF_SEQs and RELATED_STMTs in the epilogue were constructed
using the original main loop and thus need to be updated to refer to the
cloned variables used in the epilogue. */
for (unsigned i = 0; i < stmt_worklist.length (); ++i)
{
gimple *stmt = stmt_worklist[i];
tree *new_op;
for (unsigned j = 1; j < gimple_num_ops (stmt); ++j)
{
tree op = gimple_op (stmt, j);
if ((new_op = mapping.get(op)))
gimple_set_op (stmt, j, *new_op);
else
{
/* PR92429: The last argument of simplify_replace_tree disables
folding when replacing arguments. This is required as
otherwise you might end up with different statements than the
ones analyzed in vect_loop_analyze, leading to different
vectorization. */
op = simplify_replace_tree (op, NULL_TREE, NULL_TREE,
&find_in_mapping, &mapping, false);
gimple_set_op (stmt, j, op);
}
}
}
struct data_reference *dr;
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (epilogue_vinfo);
FOR_EACH_VEC_ELT (datarefs, i, dr)
{
orig_stmt = DR_STMT (dr);
gcc_assert (gimple_uid (orig_stmt) > 0);
stmt_vinfo = epilogue_vinfo->stmt_vec_infos[gimple_uid (orig_stmt) - 1];
/* Data references for gather loads and scatter stores do not use the
updated offset we set using ADVANCE. Instead we have to make sure the
reference in the data references point to the corresponding copy of
the original in the epilogue. */
if (STMT_VINFO_MEMORY_ACCESS_TYPE (vect_stmt_to_vectorize (stmt_vinfo))
== VMAT_GATHER_SCATTER)
{
DR_REF (dr)
= simplify_replace_tree (DR_REF (dr), NULL_TREE, NULL_TREE,
&find_in_mapping, &mapping);
DR_BASE_ADDRESS (dr)
= simplify_replace_tree (DR_BASE_ADDRESS (dr), NULL_TREE, NULL_TREE,
&find_in_mapping, &mapping);
}
DR_STMT (dr) = STMT_VINFO_STMT (stmt_vinfo);
stmt_vinfo->dr_aux.stmt = stmt_vinfo;
/* The vector size of the epilogue is smaller than that of the main loop
so the alignment is either the same or lower. This means the dr will
thus by definition be aligned. */
STMT_VINFO_DR_INFO (stmt_vinfo)->base_misaligned = false;
}
epilogue_vinfo->shared->datarefs_copy.release ();
epilogue_vinfo->shared->save_datarefs ();
}
/* Function vect_transform_loop.
The analysis phase has determined that the loop is vectorizable.
Vectorize the loop - created vectorized stmts to replace the scalar
stmts in the loop, and update the loop exit condition.
Returns scalar epilogue loop if any. */
class loop *
vect_transform_loop (loop_vec_info loop_vinfo, gimple *loop_vectorized_call)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
class loop *epilogue = NULL;
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
int i;
tree niters_vector = NULL_TREE;
tree step_vector = NULL_TREE;
tree niters_vector_mult_vf = NULL_TREE;
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
unsigned int lowest_vf = constant_lower_bound (vf);
gimple *stmt;
bool check_profitability = false;
unsigned int th;
DUMP_VECT_SCOPE ("vec_transform_loop");
loop_vinfo->shared->check_datarefs ();
/* Use the more conservative vectorization threshold. If the number
of iterations is constant assume the cost check has been performed
by our caller. If the threshold makes all loops profitable that
run at least the (estimated) vectorization factor number of times
checking is pointless, too. */
th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
if (vect_apply_runtime_profitability_check_p (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Profitability threshold is %d loop iterations.\n",
th);
check_profitability = true;
}
/* Make sure there exists a single-predecessor exit bb. Do this before
versioning. */
edge e = single_exit (loop);
if (! single_pred_p (e->dest))
{
split_loop_exit_edge (e, true);
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "split exit edge\n");
}
/* Version the loop first, if required, so the profitability check
comes first. */
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
{
class loop *sloop
= vect_loop_versioning (loop_vinfo, loop_vectorized_call);
sloop->force_vectorize = false;
check_profitability = false;
}
/* Make sure there exists a single-predecessor exit bb also on the
scalar loop copy. Do this after versioning but before peeling
so CFG structure is fine for both scalar and if-converted loop
to make slpeel_duplicate_current_defs_from_edges face matched
loop closed PHI nodes on the exit. */
if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
{
e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
if (! single_pred_p (e->dest))
{
split_loop_exit_edge (e, true);
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
}
}
tree niters = vect_build_loop_niters (loop_vinfo);
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
tree advance;
drs_init_vec orig_drs_init;
epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector,
&step_vector, &niters_vector_mult_vf, th,
check_profitability, niters_no_overflow,
&advance);
if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo)
&& LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo).initialized_p ())
scale_loop_frequencies (LOOP_VINFO_SCALAR_LOOP (loop_vinfo),
LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo));
if (niters_vector == NULL_TREE)
{
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
&& known_eq (lowest_vf, vf))
{
niters_vector
= build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
LOOP_VINFO_INT_NITERS (loop_vinfo) / lowest_vf);
step_vector = build_one_cst (TREE_TYPE (niters));
}
else if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
&step_vector, niters_no_overflow);
else
/* vect_do_peeling subtracted the number of peeled prologue
iterations from LOOP_VINFO_NITERS. */
vect_gen_vector_loop_niters (loop_vinfo, LOOP_VINFO_NITERS (loop_vinfo),
&niters_vector, &step_vector,
niters_no_overflow);
}
/* 1) Make sure the loop header has exactly two entries
2) Make sure we have a preheader basic block. */
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
split_edge (loop_preheader_edge (loop));
if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
/* This will deal with any possible peeling. */
vect_prepare_for_masked_peels (loop_vinfo);
/* Schedule the SLP instances first, then handle loop vectorization
below. */
if (!loop_vinfo->slp_instances.is_empty ())
{
DUMP_VECT_SCOPE ("scheduling SLP instances");
vect_schedule_slp (loop_vinfo, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
}
/* FORNOW: the vectorizer supports only loops which body consist
of one basic block (header + empty latch). When the vectorizer will
support more involved loop forms, the order by which the BBs are
traversed need to be reconsidered. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
stmt_vec_info stmt_info;
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
gphi *phi = si.phi ();
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"------>vectorizing phi: %G", phi);
stmt_info = loop_vinfo->lookup_stmt (phi);
if (!stmt_info)
continue;
if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
vect_loop_kill_debug_uses (loop, stmt_info);
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
continue;
if (STMT_VINFO_VECTYPE (stmt_info)
&& (maybe_ne
(TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info)), vf))
&& dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def)
&& ! PURE_SLP_STMT (stmt_info))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
vect_transform_stmt (loop_vinfo, stmt_info, NULL, NULL, NULL);
}
}
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
gphi *phi = si.phi ();
stmt_info = loop_vinfo->lookup_stmt (phi);
if (!stmt_info)
continue;
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
continue;
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def)
&& ! PURE_SLP_STMT (stmt_info))
maybe_set_vectorized_backedge_value (loop_vinfo, stmt_info);
}
for (gimple_stmt_iterator si = gsi_start_bb (bb);
!gsi_end_p (si);)
{
stmt = gsi_stmt (si);
/* During vectorization remove existing clobber stmts. */
if (gimple_clobber_p (stmt))
{
unlink_stmt_vdef (stmt);
gsi_remove (&si, true);
release_defs (stmt);
}
else
{
/* Ignore vector stmts created in the outer loop. */
stmt_info = loop_vinfo->lookup_stmt (stmt);
/* vector stmts created in the outer-loop during vectorization of
stmts in an inner-loop may not have a stmt_info, and do not
need to be vectorized. */
stmt_vec_info seen_store = NULL;
if (stmt_info)
{
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
{
gimple *def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
for (gimple_stmt_iterator subsi = gsi_start (def_seq);
!gsi_end_p (subsi); gsi_next (&subsi))
{
stmt_vec_info pat_stmt_info
= loop_vinfo->lookup_stmt (gsi_stmt (subsi));
vect_transform_loop_stmt (loop_vinfo, pat_stmt_info,
&si, &seen_store);
}
stmt_vec_info pat_stmt_info
= STMT_VINFO_RELATED_STMT (stmt_info);
if (vect_transform_loop_stmt (loop_vinfo, pat_stmt_info,
&si, &seen_store))
maybe_set_vectorized_backedge_value (loop_vinfo,
pat_stmt_info);
}
else
{
if (vect_transform_loop_stmt (loop_vinfo, stmt_info, &si,
&seen_store))
maybe_set_vectorized_backedge_value (loop_vinfo,
stmt_info);
}
}
gsi_next (&si);
if (seen_store)
{
if (STMT_VINFO_GROUPED_ACCESS (seen_store))
/* Interleaving. If IS_STORE is TRUE, the
vectorization of the interleaving chain was
completed - free all the stores in the chain. */
vect_remove_stores (loop_vinfo,
DR_GROUP_FIRST_ELEMENT (seen_store));
else
/* Free the attached stmt_vec_info and remove the stmt. */
loop_vinfo->remove_stmt (stmt_info);
}
}
}
/* Stub out scalar statements that must not survive vectorization.
Doing this here helps with grouped statements, or statements that
are involved in patterns. */
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
if (!call || !gimple_call_internal_p (call))
continue;
internal_fn ifn = gimple_call_internal_fn (call);
if (ifn == IFN_MASK_LOAD)
{
tree lhs = gimple_get_lhs (call);
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
{
tree zero = build_zero_cst (TREE_TYPE (lhs));
gimple *new_stmt = gimple_build_assign (lhs, zero);
gsi_replace (&gsi, new_stmt, true);
}
}
else if (conditional_internal_fn_code (ifn) != ERROR_MARK)
{
tree lhs = gimple_get_lhs (call);
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
{
tree else_arg
= gimple_call_arg (call, gimple_call_num_args (call) - 1);
gimple *new_stmt = gimple_build_assign (lhs, else_arg);
gsi_replace (&gsi, new_stmt, true);
}
}
}
} /* BBs in loop */
/* The vectorization factor is always > 1, so if we use an IV increment of 1.
a zero NITERS becomes a nonzero NITERS_VECTOR. */
if (integer_onep (step_vector))
niters_no_overflow = true;
vect_set_loop_condition (loop, loop_vinfo, niters_vector, step_vector,
niters_vector_mult_vf, !niters_no_overflow);
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
scale_profile_for_vect_loop (loop, assumed_vf);
/* True if the final iteration might not handle a full vector's
worth of scalar iterations. */
bool final_iter_may_be_partial
= LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo);
/* The minimum number of iterations performed by the epilogue. This
is 1 when peeling for gaps because we always need a final scalar
iteration. */
int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
/* +1 to convert latch counts to loop iteration counts,
-min_epilogue_iters to remove iterations that cannot be performed
by the vector code. */
int bias_for_lowest = 1 - min_epilogue_iters;
int bias_for_assumed = bias_for_lowest;
int alignment_npeels = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
if (alignment_npeels && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* When the amount of peeling is known at compile time, the first
iteration will have exactly alignment_npeels active elements.
In the worst case it will have at least one. */
int min_first_active = (alignment_npeels > 0 ? alignment_npeels : 1);
bias_for_lowest += lowest_vf - min_first_active;
bias_for_assumed += assumed_vf - min_first_active;
}
/* In these calculations the "- 1" converts loop iteration counts
back to latch counts. */
if (loop->any_upper_bound)
{
loop_vec_info main_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
loop->nb_iterations_upper_bound
= (final_iter_may_be_partial
? wi::udiv_ceil (loop->nb_iterations_upper_bound + bias_for_lowest,
lowest_vf) - 1
: wi::udiv_floor (loop->nb_iterations_upper_bound + bias_for_lowest,
lowest_vf) - 1);
if (main_vinfo
/* Both peeling for alignment and peeling for gaps can end up
with the scalar epilogue running for more than VF-1 iterations. */
&& !main_vinfo->peeling_for_alignment
&& !main_vinfo->peeling_for_gaps)
{
unsigned int bound;
poly_uint64 main_iters
= upper_bound (LOOP_VINFO_VECT_FACTOR (main_vinfo),
LOOP_VINFO_COST_MODEL_THRESHOLD (main_vinfo));
main_iters
= upper_bound (main_iters,
LOOP_VINFO_VERSIONING_THRESHOLD (main_vinfo));
if (can_div_away_from_zero_p (main_iters,
LOOP_VINFO_VECT_FACTOR (loop_vinfo),
&bound))
loop->nb_iterations_upper_bound
= wi::umin ((widest_int) (bound - 1),
loop->nb_iterations_upper_bound);
}
}
if (loop->any_likely_upper_bound)
loop->nb_iterations_likely_upper_bound
= (final_iter_may_be_partial
? wi::udiv_ceil (loop->nb_iterations_likely_upper_bound
+ bias_for_lowest, lowest_vf) - 1
: wi::udiv_floor (loop->nb_iterations_likely_upper_bound
+ bias_for_lowest, lowest_vf) - 1);
if (loop->any_estimate)
loop->nb_iterations_estimate
= (final_iter_may_be_partial
? wi::udiv_ceil (loop->nb_iterations_estimate + bias_for_assumed,
assumed_vf) - 1
: wi::udiv_floor (loop->nb_iterations_estimate + bias_for_assumed,
assumed_vf) - 1);
if (dump_enabled_p ())
{
if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
{
dump_printf_loc (MSG_NOTE, vect_location,
"LOOP VECTORIZED\n");
if (loop->inner)
dump_printf_loc (MSG_NOTE, vect_location,
"OUTER LOOP VECTORIZED\n");
dump_printf (MSG_NOTE, "\n");
}
else
dump_printf_loc (MSG_NOTE, vect_location,
"LOOP EPILOGUE VECTORIZED (MODE=%s)\n",
GET_MODE_NAME (loop_vinfo->vector_mode));
}
/* Loops vectorized with a variable factor won't benefit from
unrolling/peeling. */
if (!vf.is_constant ())
{
loop->unroll = 1;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Disabling unrolling due to"
" variable-length vectorization factor\n");
}
/* Free SLP instances here because otherwise stmt reference counting
won't work. */
slp_instance instance;
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
vect_free_slp_instance (instance);
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
/* Clear-up safelen field since its value is invalid after vectorization
since vectorized loop can have loop-carried dependencies. */
loop->safelen = 0;
if (epilogue)
{
update_epilogue_loop_vinfo (epilogue, advance);
epilogue->simduid = loop->simduid;
epilogue->force_vectorize = loop->force_vectorize;
epilogue->dont_vectorize = false;
}
return epilogue;
}
/* The code below is trying to perform simple optimization - revert
if-conversion for masked stores, i.e. if the mask of a store is zero
do not perform it and all stored value producers also if possible.
For example,
for (i=0; i<n; i++)
if (c[i])
{
p1[i] += 1;
p2[i] = p3[i] +2;
}
this transformation will produce the following semi-hammock:
if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
{
vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
vect__12.22_172 = vect__11.19_170 + vect_cst__171;
MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
vect__19.28_184 = vect__18.25_182 + vect_cst__183;
MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
}
*/
void
optimize_mask_stores (class loop *loop)
{
basic_block *bbs = get_loop_body (loop);
unsigned nbbs = loop->num_nodes;
unsigned i;
basic_block bb;
class loop *bb_loop;
gimple_stmt_iterator gsi;
gimple *stmt;
auto_vec<gimple *> worklist;
auto_purge_vect_location sentinel;
vect_location = find_loop_location (loop);
/* Pick up all masked stores in loop if any. */
for (i = 0; i < nbbs; i++)
{
bb = bbs[i];
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
stmt = gsi_stmt (gsi);
if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
worklist.safe_push (stmt);
}
}
free (bbs);
if (worklist.is_empty ())
return;
/* Loop has masked stores. */
while (!worklist.is_empty ())
{
gimple *last, *last_store;
edge e, efalse;
tree mask;
basic_block store_bb, join_bb;
gimple_stmt_iterator gsi_to;
tree vdef, new_vdef;
gphi *phi;
tree vectype;
tree zero;
last = worklist.pop ();
mask = gimple_call_arg (last, 2);
bb = gimple_bb (last);
/* Create then_bb and if-then structure in CFG, then_bb belongs to
the same loop as if_bb. It could be different to LOOP when two
level loop-nest is vectorized and mask_store belongs to the inner
one. */
e = split_block (bb, last);
bb_loop = bb->loop_father;
gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
join_bb = e->dest;
store_bb = create_empty_bb (bb);
add_bb_to_loop (store_bb, bb_loop);
e->flags = EDGE_TRUE_VALUE;
efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
/* Put STORE_BB to likely part. */
efalse->probability = profile_probability::unlikely ();
store_bb->count = efalse->count ();
make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
if (dom_info_available_p (CDI_DOMINATORS))
set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Create new block %d to sink mask stores.",
store_bb->index);
/* Create vector comparison with boolean result. */
vectype = TREE_TYPE (mask);
zero = build_zero_cst (vectype);
stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
gsi = gsi_last_bb (bb);
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
/* Create new PHI node for vdef of the last masked store:
.MEM_2 = VDEF <.MEM_1>
will be converted to
.MEM.3 = VDEF <.MEM_1>
and new PHI node will be created in join bb
.MEM_2 = PHI <.MEM_1, .MEM_3>
*/
vdef = gimple_vdef (last);
new_vdef = make_ssa_name (gimple_vop (cfun), last);
gimple_set_vdef (last, new_vdef);
phi = create_phi_node (vdef, join_bb);
add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
/* Put all masked stores with the same mask to STORE_BB if possible. */
while (true)
{
gimple_stmt_iterator gsi_from;
gimple *stmt1 = NULL;
/* Move masked store to STORE_BB. */
last_store = last;
gsi = gsi_for_stmt (last);
gsi_from = gsi;
/* Shift GSI to the previous stmt for further traversal. */
gsi_prev (&gsi);
gsi_to = gsi_start_bb (store_bb);
gsi_move_before (&gsi_from, &gsi_to);
/* Setup GSI_TO to the non-empty block start. */
gsi_to = gsi_start_bb (store_bb);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Move stmt to created bb\n%G", last);
/* Move all stored value producers if possible. */
while (!gsi_end_p (gsi))
{
tree lhs;
imm_use_iterator imm_iter;
use_operand_p use_p;
bool res;
/* Skip debug statements. */
if (is_gimple_debug (gsi_stmt (gsi)))
{
gsi_prev (&gsi);
continue;
}
stmt1 = gsi_stmt (gsi);
/* Do not consider statements writing to memory or having
volatile operand. */
if (gimple_vdef (stmt1)
|| gimple_has_volatile_ops (stmt1))
break;
gsi_from = gsi;
gsi_prev (&gsi);
lhs = gimple_get_lhs (stmt1);
if (!lhs)
break;
/* LHS of vectorized stmt must be SSA_NAME. */
if (TREE_CODE (lhs) != SSA_NAME)
break;
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
{
/* Remove dead scalar statement. */
if (has_zero_uses (lhs))
{
gsi_remove (&gsi_from, true);
continue;
}
}
/* Check that LHS does not have uses outside of STORE_BB. */
res = true;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
gimple *use_stmt;
use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (gimple_bb (use_stmt) != store_bb)
{
res = false;
break;
}
}
if (!res)
break;
if (gimple_vuse (stmt1)
&& gimple_vuse (stmt1) != gimple_vuse (last_store))
break;
/* Can move STMT1 to STORE_BB. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Move stmt to created bb\n%G", stmt1);
gsi_move_before (&gsi_from, &gsi_to);
/* Shift GSI_TO for further insertion. */
gsi_prev (&gsi_to);
}
/* Put other masked stores with the same mask to STORE_BB. */
if (worklist.is_empty ()
|| gimple_call_arg (worklist.last (), 2) != mask
|| worklist.last () != stmt1)
break;
last = worklist.pop ();
}
add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);
}
}
/* Decide whether it is possible to use a zero-based induction variable
when vectorizing LOOP_VINFO with partial vectors. If it is, return
the value that the induction variable must be able to hold in order
to ensure that the rgroups eventually have no active vector elements.
Return -1 otherwise. */
widest_int
vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo)
{
tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);
/* Calculate the value that the induction variable must be able
to hit in order to ensure that we end the loop with an all-false mask.
This involves adding the maximum number of inactive trailing scalar
iterations. */
widest_int iv_limit = -1;
if (max_loop_iterations (loop, &iv_limit))
{
if (niters_skip)
{
/* Add the maximum number of skipped iterations to the
maximum iteration count. */
if (TREE_CODE (niters_skip) == INTEGER_CST)
iv_limit += wi::to_widest (niters_skip);
else
iv_limit += max_vf - 1;
}
else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
/* Make a conservatively-correct assumption. */
iv_limit += max_vf - 1;
/* IV_LIMIT is the maximum number of latch iterations, which is also
the maximum in-range IV value. Round this value down to the previous
vector alignment boundary and then add an extra full iteration. */
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
}
return iv_limit;
}
/* For the given rgroup_controls RGC, check whether an induction variable
would ever hit a value that produces a set of all-false masks or zero
lengths before wrapping around. Return true if it's possible to wrap
around before hitting the desirable value, otherwise return false. */
bool
vect_rgroup_iv_might_wrap_p (loop_vec_info loop_vinfo, rgroup_controls *rgc)
{
widest_int iv_limit = vect_iv_limit_for_partial_vectors (loop_vinfo);
if (iv_limit == -1)
return true;
tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
unsigned int compare_precision = TYPE_PRECISION (compare_type);
unsigned nitems = rgc->max_nscalars_per_iter * rgc->factor;
if (wi::min_precision (iv_limit * nitems, UNSIGNED) > compare_precision)
return true;
return false;
}
|