1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
|
/* Analysis Utilities for Loop Vectorization.
Copyright (C) 2006-2022 Free Software Foundation, Inc.
Contributed by Dorit Nuzman <dorit@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "expmed.h"
#include "optabs-tree.h"
#include "insn-config.h"
#include "recog.h" /* FIXME: for insn_data */
#include "fold-const.h"
#include "stor-layout.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "cfgloop.h"
#include "tree-vectorizer.h"
#include "dumpfile.h"
#include "builtins.h"
#include "internal-fn.h"
#include "case-cfn-macros.h"
#include "fold-const-call.h"
#include "attribs.h"
#include "cgraph.h"
#include "omp-simd-clone.h"
#include "predict.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "gimple-range.h"
/* Return true if we have a useful VR_RANGE range for VAR, storing it
in *MIN_VALUE and *MAX_VALUE if so. Note the range in the dump files. */
static bool
vect_get_range_info (tree var, wide_int *min_value, wide_int *max_value)
{
value_range vr;
get_range_query (cfun)->range_of_expr (vr, var);
if (vr.undefined_p ())
vr.set_varying (TREE_TYPE (var));
*min_value = wi::to_wide (vr.min ());
*max_value = wi::to_wide (vr.max ());
value_range_kind vr_type = vr.kind ();
wide_int nonzero = get_nonzero_bits (var);
signop sgn = TYPE_SIGN (TREE_TYPE (var));
if (intersect_range_with_nonzero_bits (vr_type, min_value, max_value,
nonzero, sgn) == VR_RANGE)
{
if (dump_enabled_p ())
{
dump_generic_expr_loc (MSG_NOTE, vect_location, TDF_SLIM, var);
dump_printf (MSG_NOTE, " has range [");
dump_hex (MSG_NOTE, *min_value);
dump_printf (MSG_NOTE, ", ");
dump_hex (MSG_NOTE, *max_value);
dump_printf (MSG_NOTE, "]\n");
}
return true;
}
else
{
if (dump_enabled_p ())
{
dump_generic_expr_loc (MSG_NOTE, vect_location, TDF_SLIM, var);
dump_printf (MSG_NOTE, " has no range info\n");
}
return false;
}
}
/* Report that we've found an instance of pattern PATTERN in
statement STMT. */
static void
vect_pattern_detected (const char *name, gimple *stmt)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "%s: detected: %G", name, stmt);
}
/* Associate pattern statement PATTERN_STMT with ORIG_STMT_INFO and
return the pattern statement's stmt_vec_info. Set its vector type to
VECTYPE if it doesn't have one already. */
static stmt_vec_info
vect_init_pattern_stmt (vec_info *vinfo, gimple *pattern_stmt,
stmt_vec_info orig_stmt_info, tree vectype)
{
stmt_vec_info pattern_stmt_info = vinfo->lookup_stmt (pattern_stmt);
if (pattern_stmt_info == NULL)
pattern_stmt_info = vinfo->add_stmt (pattern_stmt);
gimple_set_bb (pattern_stmt, gimple_bb (orig_stmt_info->stmt));
pattern_stmt_info->pattern_stmt_p = true;
STMT_VINFO_RELATED_STMT (pattern_stmt_info) = orig_stmt_info;
STMT_VINFO_DEF_TYPE (pattern_stmt_info)
= STMT_VINFO_DEF_TYPE (orig_stmt_info);
if (!STMT_VINFO_VECTYPE (pattern_stmt_info))
{
gcc_assert (!vectype
|| (VECTOR_BOOLEAN_TYPE_P (vectype)
== vect_use_mask_type_p (orig_stmt_info)));
STMT_VINFO_VECTYPE (pattern_stmt_info) = vectype;
pattern_stmt_info->mask_precision = orig_stmt_info->mask_precision;
}
return pattern_stmt_info;
}
/* Set the pattern statement of ORIG_STMT_INFO to PATTERN_STMT.
Also set the vector type of PATTERN_STMT to VECTYPE, if it doesn't
have one already. */
static void
vect_set_pattern_stmt (vec_info *vinfo, gimple *pattern_stmt,
stmt_vec_info orig_stmt_info, tree vectype)
{
STMT_VINFO_IN_PATTERN_P (orig_stmt_info) = true;
STMT_VINFO_RELATED_STMT (orig_stmt_info)
= vect_init_pattern_stmt (vinfo, pattern_stmt, orig_stmt_info, vectype);
}
/* Add NEW_STMT to STMT_INFO's pattern definition statements. If VECTYPE
is nonnull, record that NEW_STMT's vector type is VECTYPE, which might
be different from the vector type of the final pattern statement.
If VECTYPE is a mask type, SCALAR_TYPE_FOR_MASK is the scalar type
from which it was derived. */
static inline void
append_pattern_def_seq (vec_info *vinfo,
stmt_vec_info stmt_info, gimple *new_stmt,
tree vectype = NULL_TREE,
tree scalar_type_for_mask = NULL_TREE)
{
gcc_assert (!scalar_type_for_mask
== (!vectype || !VECTOR_BOOLEAN_TYPE_P (vectype)));
if (vectype)
{
stmt_vec_info new_stmt_info = vinfo->add_stmt (new_stmt);
STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
if (scalar_type_for_mask)
new_stmt_info->mask_precision
= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (scalar_type_for_mask));
}
gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
new_stmt);
}
/* The caller wants to perform new operations on vect_external variable
VAR, so that the result of the operations would also be vect_external.
Return the edge on which the operations can be performed, if one exists.
Return null if the operations should instead be treated as part of
the pattern that needs them. */
static edge
vect_get_external_def_edge (vec_info *vinfo, tree var)
{
edge e = NULL;
if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
{
e = loop_preheader_edge (loop_vinfo->loop);
if (!SSA_NAME_IS_DEFAULT_DEF (var))
{
basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (var));
if (bb == NULL
|| !dominated_by_p (CDI_DOMINATORS, e->dest, bb))
e = NULL;
}
}
return e;
}
/* Return true if the target supports a vector version of CODE,
where CODE is known to map to a direct optab with the given SUBTYPE.
ITYPE specifies the type of (some of) the scalar inputs and OTYPE
specifies the type of the scalar result.
If CODE allows the inputs and outputs to have different type
(such as for WIDEN_SUM_EXPR), it is the input mode rather
than the output mode that determines the appropriate target pattern.
Operand 0 of the target pattern then specifies the mode that the output
must have.
When returning true, set *VECOTYPE_OUT to the vector version of OTYPE.
Also set *VECITYPE_OUT to the vector version of ITYPE if VECITYPE_OUT
is nonnull. */
static bool
vect_supportable_direct_optab_p (vec_info *vinfo, tree otype, tree_code code,
tree itype, tree *vecotype_out,
tree *vecitype_out = NULL,
enum optab_subtype subtype = optab_default)
{
tree vecitype = get_vectype_for_scalar_type (vinfo, itype);
if (!vecitype)
return false;
tree vecotype = get_vectype_for_scalar_type (vinfo, otype);
if (!vecotype)
return false;
optab optab = optab_for_tree_code (code, vecitype, subtype);
if (!optab)
return false;
insn_code icode = optab_handler (optab, TYPE_MODE (vecitype));
if (icode == CODE_FOR_nothing
|| insn_data[icode].operand[0].mode != TYPE_MODE (vecotype))
return false;
*vecotype_out = vecotype;
if (vecitype_out)
*vecitype_out = vecitype;
return true;
}
/* Round bit precision PRECISION up to a full element. */
static unsigned int
vect_element_precision (unsigned int precision)
{
precision = 1 << ceil_log2 (precision);
return MAX (precision, BITS_PER_UNIT);
}
/* If OP is defined by a statement that's being considered for vectorization,
return information about that statement, otherwise return NULL. */
static stmt_vec_info
vect_get_internal_def (vec_info *vinfo, tree op)
{
stmt_vec_info def_stmt_info = vinfo->lookup_def (op);
if (def_stmt_info
&& STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_internal_def)
return def_stmt_info;
return NULL;
}
/* Check whether NAME, an ssa-name used in STMT_VINFO,
is a result of a type promotion, such that:
DEF_STMT: NAME = NOP (name0)
If CHECK_SIGN is TRUE, check that either both types are signed or both are
unsigned. */
static bool
type_conversion_p (vec_info *vinfo, tree name, bool check_sign,
tree *orig_type, gimple **def_stmt, bool *promotion)
{
tree type = TREE_TYPE (name);
tree oprnd0;
enum vect_def_type dt;
stmt_vec_info def_stmt_info;
if (!vect_is_simple_use (name, vinfo, &dt, &def_stmt_info, def_stmt))
return false;
if (dt != vect_internal_def
&& dt != vect_external_def && dt != vect_constant_def)
return false;
if (!*def_stmt)
return false;
if (!is_gimple_assign (*def_stmt))
return false;
if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (*def_stmt)))
return false;
oprnd0 = gimple_assign_rhs1 (*def_stmt);
*orig_type = TREE_TYPE (oprnd0);
if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*orig_type)
|| ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*orig_type)) && check_sign))
return false;
if (TYPE_PRECISION (type) >= (TYPE_PRECISION (*orig_type) * 2))
*promotion = true;
else
*promotion = false;
if (!vect_is_simple_use (oprnd0, vinfo, &dt))
return false;
return true;
}
/* Holds information about an input operand after some sign changes
and type promotions have been peeled away. */
class vect_unpromoted_value {
public:
vect_unpromoted_value ();
void set_op (tree, vect_def_type, stmt_vec_info = NULL);
/* The value obtained after peeling away zero or more casts. */
tree op;
/* The type of OP. */
tree type;
/* The definition type of OP. */
vect_def_type dt;
/* If OP is the result of peeling at least one cast, and if the cast
of OP itself is a vectorizable statement, CASTER identifies that
statement, otherwise it is null. */
stmt_vec_info caster;
};
inline vect_unpromoted_value::vect_unpromoted_value ()
: op (NULL_TREE),
type (NULL_TREE),
dt (vect_uninitialized_def),
caster (NULL)
{
}
/* Set the operand to OP_IN, its definition type to DT_IN, and the
statement that casts it to CASTER_IN. */
inline void
vect_unpromoted_value::set_op (tree op_in, vect_def_type dt_in,
stmt_vec_info caster_in)
{
op = op_in;
type = TREE_TYPE (op);
dt = dt_in;
caster = caster_in;
}
/* If OP is a vectorizable SSA name, strip a sequence of integer conversions
to reach some vectorizable inner operand OP', continuing as long as it
is possible to convert OP' back to OP using a possible sign change
followed by a possible promotion P. Return this OP', or null if OP is
not a vectorizable SSA name. If there is a promotion P, describe its
input in UNPROM, otherwise describe OP' in UNPROM. If SINGLE_USE_P
is nonnull, set *SINGLE_USE_P to false if any of the SSA names involved
have more than one user.
A successful return means that it is possible to go from OP' to OP
via UNPROM. The cast from OP' to UNPROM is at most a sign change,
whereas the cast from UNPROM to OP might be a promotion, a sign
change, or a nop.
E.g. say we have:
signed short *ptr = ...;
signed short C = *ptr;
unsigned short B = (unsigned short) C; // sign change
signed int A = (signed int) B; // unsigned promotion
...possible other uses of A...
unsigned int OP = (unsigned int) A; // sign change
In this case it's possible to go directly from C to OP using:
OP = (unsigned int) (unsigned short) C;
+------------+ +--------------+
promotion sign change
so OP' would be C. The input to the promotion is B, so UNPROM
would describe B. */
static tree
vect_look_through_possible_promotion (vec_info *vinfo, tree op,
vect_unpromoted_value *unprom,
bool *single_use_p = NULL)
{
tree res = NULL_TREE;
tree op_type = TREE_TYPE (op);
unsigned int orig_precision = TYPE_PRECISION (op_type);
unsigned int min_precision = orig_precision;
stmt_vec_info caster = NULL;
while (TREE_CODE (op) == SSA_NAME && INTEGRAL_TYPE_P (op_type))
{
/* See whether OP is simple enough to vectorize. */
stmt_vec_info def_stmt_info;
gimple *def_stmt;
vect_def_type dt;
if (!vect_is_simple_use (op, vinfo, &dt, &def_stmt_info, &def_stmt))
break;
/* If OP is the input of a demotion, skip over it to see whether
OP is itself the result of a promotion. If so, the combined
effect of the promotion and the demotion might fit the required
pattern, otherwise neither operation fits.
This copes with cases such as the result of an arithmetic
operation being truncated before being stored, and where that
arithmetic operation has been recognized as an over-widened one. */
if (TYPE_PRECISION (op_type) <= min_precision)
{
/* Use OP as the UNPROM described above if we haven't yet
found a promotion, or if using the new input preserves the
sign of the previous promotion. */
if (!res
|| TYPE_PRECISION (unprom->type) == orig_precision
|| TYPE_SIGN (unprom->type) == TYPE_SIGN (op_type))
{
unprom->set_op (op, dt, caster);
min_precision = TYPE_PRECISION (op_type);
}
/* Stop if we've already seen a promotion and if this
conversion does more than change the sign. */
else if (TYPE_PRECISION (op_type)
!= TYPE_PRECISION (unprom->type))
break;
/* The sequence now extends to OP. */
res = op;
}
/* See whether OP is defined by a cast. Record it as CASTER if
the cast is potentially vectorizable. */
if (!def_stmt)
break;
caster = def_stmt_info;
/* Ignore pattern statements, since we don't link uses for them. */
if (caster
&& single_use_p
&& !STMT_VINFO_RELATED_STMT (caster)
&& !has_single_use (res))
*single_use_p = false;
gassign *assign = dyn_cast <gassign *> (def_stmt);
if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
break;
/* Continue with the input to the cast. */
op = gimple_assign_rhs1 (def_stmt);
op_type = TREE_TYPE (op);
}
return res;
}
/* OP is an integer operand to an operation that returns TYPE, and we
want to treat the operation as a widening one. So far we can treat
it as widening from *COMMON_TYPE.
Return true if OP is suitable for such a widening operation,
either widening from *COMMON_TYPE or from some supertype of it.
Update *COMMON_TYPE to the supertype in the latter case.
SHIFT_P is true if OP is a shift amount. */
static bool
vect_joust_widened_integer (tree type, bool shift_p, tree op,
tree *common_type)
{
/* Calculate the minimum precision required by OP, without changing
the sign of either operand. */
unsigned int precision;
if (shift_p)
{
if (!wi::leu_p (wi::to_widest (op), TYPE_PRECISION (type) / 2))
return false;
precision = TREE_INT_CST_LOW (op);
}
else
{
precision = wi::min_precision (wi::to_widest (op),
TYPE_SIGN (*common_type));
if (precision * 2 > TYPE_PRECISION (type))
return false;
}
/* If OP requires a wider type, switch to that type. The checks
above ensure that this is still narrower than the result. */
precision = vect_element_precision (precision);
if (TYPE_PRECISION (*common_type) < precision)
*common_type = build_nonstandard_integer_type
(precision, TYPE_UNSIGNED (*common_type));
return true;
}
/* Return true if the common supertype of NEW_TYPE and *COMMON_TYPE
is narrower than type, storing the supertype in *COMMON_TYPE if so. */
static bool
vect_joust_widened_type (tree type, tree new_type, tree *common_type)
{
if (types_compatible_p (*common_type, new_type))
return true;
/* See if *COMMON_TYPE can hold all values of NEW_TYPE. */
if ((TYPE_PRECISION (new_type) < TYPE_PRECISION (*common_type))
&& (TYPE_UNSIGNED (new_type) || !TYPE_UNSIGNED (*common_type)))
return true;
/* See if NEW_TYPE can hold all values of *COMMON_TYPE. */
if (TYPE_PRECISION (*common_type) < TYPE_PRECISION (new_type)
&& (TYPE_UNSIGNED (*common_type) || !TYPE_UNSIGNED (new_type)))
{
*common_type = new_type;
return true;
}
/* We have mismatched signs, with the signed type being
no wider than the unsigned type. In this case we need
a wider signed type. */
unsigned int precision = MAX (TYPE_PRECISION (*common_type),
TYPE_PRECISION (new_type));
precision *= 2;
if (precision * 2 > TYPE_PRECISION (type))
return false;
*common_type = build_nonstandard_integer_type (precision, false);
return true;
}
/* Check whether STMT_INFO can be viewed as a tree of integer operations
in which each node either performs CODE or WIDENED_CODE, and where
each leaf operand is narrower than the result of STMT_INFO. MAX_NOPS
specifies the maximum number of leaf operands. SHIFT_P says whether
CODE and WIDENED_CODE are some sort of shift.
If STMT_INFO is such a tree, return the number of leaf operands
and describe them in UNPROM[0] onwards. Also set *COMMON_TYPE
to a type that (a) is narrower than the result of STMT_INFO and
(b) can hold all leaf operand values.
If SUBTYPE then allow that the signs of the operands
may differ in signs but not in precision. SUBTYPE is updated to reflect
this.
Return 0 if STMT_INFO isn't such a tree, or if no such COMMON_TYPE
exists. */
static unsigned int
vect_widened_op_tree (vec_info *vinfo, stmt_vec_info stmt_info, tree_code code,
tree_code widened_code, bool shift_p,
unsigned int max_nops,
vect_unpromoted_value *unprom, tree *common_type,
enum optab_subtype *subtype = NULL)
{
/* Check for an integer operation with the right code. */
gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
if (!assign)
return 0;
tree_code rhs_code = gimple_assign_rhs_code (assign);
if (rhs_code != code && rhs_code != widened_code)
return 0;
tree type = TREE_TYPE (gimple_assign_lhs (assign));
if (!INTEGRAL_TYPE_P (type))
return 0;
/* Assume that both operands will be leaf operands. */
max_nops -= 2;
/* Check the operands. */
unsigned int next_op = 0;
for (unsigned int i = 0; i < 2; ++i)
{
vect_unpromoted_value *this_unprom = &unprom[next_op];
unsigned int nops = 1;
tree op = gimple_op (assign, i + 1);
if (i == 1 && TREE_CODE (op) == INTEGER_CST)
{
/* We already have a common type from earlier operands.
Update it to account for OP. */
this_unprom->set_op (op, vect_constant_def);
if (!vect_joust_widened_integer (type, shift_p, op, common_type))
return 0;
}
else
{
/* Only allow shifts by constants. */
if (shift_p && i == 1)
return 0;
if (!vect_look_through_possible_promotion (vinfo, op, this_unprom))
return 0;
if (TYPE_PRECISION (this_unprom->type) == TYPE_PRECISION (type))
{
/* The operand isn't widened. If STMT_INFO has the code
for an unwidened operation, recursively check whether
this operand is a node of the tree. */
if (rhs_code != code
|| max_nops == 0
|| this_unprom->dt != vect_internal_def)
return 0;
/* Give back the leaf slot allocated above now that we're
not treating this as a leaf operand. */
max_nops += 1;
/* Recursively process the definition of the operand. */
stmt_vec_info def_stmt_info
= vinfo->lookup_def (this_unprom->op);
nops = vect_widened_op_tree (vinfo, def_stmt_info, code,
widened_code, shift_p, max_nops,
this_unprom, common_type,
subtype);
if (nops == 0)
return 0;
max_nops -= nops;
}
else
{
/* Make sure that the operand is narrower than the result. */
if (TYPE_PRECISION (this_unprom->type) * 2
> TYPE_PRECISION (type))
return 0;
/* Update COMMON_TYPE for the new operand. */
if (i == 0)
*common_type = this_unprom->type;
else if (!vect_joust_widened_type (type, this_unprom->type,
common_type))
{
if (subtype)
{
/* See if we can sign extend the smaller type. */
if (TYPE_PRECISION (this_unprom->type)
> TYPE_PRECISION (*common_type))
*common_type = this_unprom->type;
*subtype = optab_vector_mixed_sign;
}
else
return 0;
}
}
}
next_op += nops;
}
return next_op;
}
/* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
static tree
vect_recog_temp_ssa_var (tree type, gimple *stmt)
{
return make_temp_ssa_name (type, stmt, "patt");
}
/* STMT2_INFO describes a type conversion that could be split into STMT1
followed by a version of STMT2_INFO that takes NEW_RHS as its first
input. Try to do this using pattern statements, returning true on
success. */
static bool
vect_split_statement (vec_info *vinfo, stmt_vec_info stmt2_info, tree new_rhs,
gimple *stmt1, tree vectype)
{
if (is_pattern_stmt_p (stmt2_info))
{
/* STMT2_INFO is part of a pattern. Get the statement to which
the pattern is attached. */
stmt_vec_info orig_stmt2_info = STMT_VINFO_RELATED_STMT (stmt2_info);
vect_init_pattern_stmt (vinfo, stmt1, orig_stmt2_info, vectype);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Splitting pattern statement: %G", stmt2_info->stmt);
/* Since STMT2_INFO is a pattern statement, we can change it
in-situ without worrying about changing the code for the
containing block. */
gimple_assign_set_rhs1 (stmt2_info->stmt, new_rhs);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "into: %G", stmt1);
dump_printf_loc (MSG_NOTE, vect_location, "and: %G",
stmt2_info->stmt);
}
gimple_seq *def_seq = &STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt2_info);
if (STMT_VINFO_RELATED_STMT (orig_stmt2_info) == stmt2_info)
/* STMT2_INFO is the actual pattern statement. Add STMT1
to the end of the definition sequence. */
gimple_seq_add_stmt_without_update (def_seq, stmt1);
else
{
/* STMT2_INFO belongs to the definition sequence. Insert STMT1
before it. */
gimple_stmt_iterator gsi = gsi_for_stmt (stmt2_info->stmt, def_seq);
gsi_insert_before_without_update (&gsi, stmt1, GSI_SAME_STMT);
}
return true;
}
else
{
/* STMT2_INFO doesn't yet have a pattern. Try to create a
two-statement pattern now. */
gcc_assert (!STMT_VINFO_RELATED_STMT (stmt2_info));
tree lhs_type = TREE_TYPE (gimple_get_lhs (stmt2_info->stmt));
tree lhs_vectype = get_vectype_for_scalar_type (vinfo, lhs_type);
if (!lhs_vectype)
return false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Splitting statement: %G", stmt2_info->stmt);
/* Add STMT1 as a singleton pattern definition sequence. */
gimple_seq *def_seq = &STMT_VINFO_PATTERN_DEF_SEQ (stmt2_info);
vect_init_pattern_stmt (vinfo, stmt1, stmt2_info, vectype);
gimple_seq_add_stmt_without_update (def_seq, stmt1);
/* Build the second of the two pattern statements. */
tree new_lhs = vect_recog_temp_ssa_var (lhs_type, NULL);
gassign *new_stmt2 = gimple_build_assign (new_lhs, NOP_EXPR, new_rhs);
vect_set_pattern_stmt (vinfo, new_stmt2, stmt2_info, lhs_vectype);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"into pattern statements: %G", stmt1);
dump_printf_loc (MSG_NOTE, vect_location, "and: %G", new_stmt2);
}
return true;
}
}
/* Convert UNPROM to TYPE and return the result, adding new statements
to STMT_INFO's pattern definition statements if no better way is
available. VECTYPE is the vector form of TYPE.
If SUBTYPE then convert the type based on the subtype. */
static tree
vect_convert_input (vec_info *vinfo, stmt_vec_info stmt_info, tree type,
vect_unpromoted_value *unprom, tree vectype,
enum optab_subtype subtype = optab_default)
{
/* Update the type if the signs differ. */
if (subtype == optab_vector_mixed_sign
&& TYPE_SIGN (type) != TYPE_SIGN (TREE_TYPE (unprom->op)))
type = build_nonstandard_integer_type (TYPE_PRECISION (type),
TYPE_SIGN (unprom->type));
/* Check for a no-op conversion. */
if (types_compatible_p (type, TREE_TYPE (unprom->op)))
return unprom->op;
/* Allow the caller to create constant vect_unpromoted_values. */
if (TREE_CODE (unprom->op) == INTEGER_CST)
return wide_int_to_tree (type, wi::to_widest (unprom->op));
tree input = unprom->op;
if (unprom->caster)
{
tree lhs = gimple_get_lhs (unprom->caster->stmt);
tree lhs_type = TREE_TYPE (lhs);
/* If the result of the existing cast is the right width, use it
instead of the source of the cast. */
if (TYPE_PRECISION (lhs_type) == TYPE_PRECISION (type))
input = lhs;
/* If the precision we want is between the source and result
precisions of the existing cast, try splitting the cast into
two and tapping into a mid-way point. */
else if (TYPE_PRECISION (lhs_type) > TYPE_PRECISION (type)
&& TYPE_PRECISION (type) > TYPE_PRECISION (unprom->type))
{
/* In order to preserve the semantics of the original cast,
give the mid-way point the same signedness as the input value.
It would be possible to use a signed type here instead if
TYPE is signed and UNPROM->TYPE is unsigned, but that would
make the sign of the midtype sensitive to the order in
which we process the statements, since the signedness of
TYPE is the signedness required by just one of possibly
many users. Also, unsigned promotions are usually as cheap
as or cheaper than signed ones, so it's better to keep an
unsigned promotion. */
tree midtype = build_nonstandard_integer_type
(TYPE_PRECISION (type), TYPE_UNSIGNED (unprom->type));
tree vec_midtype = get_vectype_for_scalar_type (vinfo, midtype);
if (vec_midtype)
{
input = vect_recog_temp_ssa_var (midtype, NULL);
gassign *new_stmt = gimple_build_assign (input, NOP_EXPR,
unprom->op);
if (!vect_split_statement (vinfo, unprom->caster, input, new_stmt,
vec_midtype))
append_pattern_def_seq (vinfo, stmt_info,
new_stmt, vec_midtype);
}
}
/* See if we can reuse an existing result. */
if (types_compatible_p (type, TREE_TYPE (input)))
return input;
}
/* We need a new conversion statement. */
tree new_op = vect_recog_temp_ssa_var (type, NULL);
gassign *new_stmt = gimple_build_assign (new_op, NOP_EXPR, input);
/* If OP is an external value, see if we can insert the new statement
on an incoming edge. */
if (input == unprom->op && unprom->dt == vect_external_def)
if (edge e = vect_get_external_def_edge (vinfo, input))
{
basic_block new_bb = gsi_insert_on_edge_immediate (e, new_stmt);
gcc_assert (!new_bb);
return new_op;
}
/* As a (common) last resort, add the statement to the pattern itself. */
append_pattern_def_seq (vinfo, stmt_info, new_stmt, vectype);
return new_op;
}
/* Invoke vect_convert_input for N elements of UNPROM and store the
result in the corresponding elements of RESULT.
If SUBTYPE then convert the type based on the subtype. */
static void
vect_convert_inputs (vec_info *vinfo, stmt_vec_info stmt_info, unsigned int n,
tree *result, tree type, vect_unpromoted_value *unprom,
tree vectype, enum optab_subtype subtype = optab_default)
{
for (unsigned int i = 0; i < n; ++i)
{
unsigned int j;
for (j = 0; j < i; ++j)
if (unprom[j].op == unprom[i].op)
break;
if (j < i)
result[i] = result[j];
else
result[i] = vect_convert_input (vinfo, stmt_info,
type, &unprom[i], vectype, subtype);
}
}
/* The caller has created a (possibly empty) sequence of pattern definition
statements followed by a single statement PATTERN_STMT. Cast the result
of this final statement to TYPE. If a new statement is needed, add
PATTERN_STMT to the end of STMT_INFO's pattern definition statements
and return the new statement, otherwise return PATTERN_STMT as-is.
VECITYPE is the vector form of PATTERN_STMT's result type. */
static gimple *
vect_convert_output (vec_info *vinfo, stmt_vec_info stmt_info, tree type,
gimple *pattern_stmt, tree vecitype)
{
tree lhs = gimple_get_lhs (pattern_stmt);
if (!types_compatible_p (type, TREE_TYPE (lhs)))
{
append_pattern_def_seq (vinfo, stmt_info, pattern_stmt, vecitype);
tree cast_var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign (cast_var, NOP_EXPR, lhs);
}
return pattern_stmt;
}
/* Return true if STMT_VINFO describes a reduction for which reassociation
is allowed. If STMT_INFO is part of a group, assume that it's part of
a reduction chain and optimistically assume that all statements
except the last allow reassociation.
Also require it to have code CODE and to be a reduction
in the outermost loop. When returning true, store the operands in
*OP0_OUT and *OP1_OUT. */
static bool
vect_reassociating_reduction_p (vec_info *vinfo,
stmt_vec_info stmt_info, tree_code code,
tree *op0_out, tree *op1_out)
{
loop_vec_info loop_info = dyn_cast <loop_vec_info> (vinfo);
if (!loop_info)
return false;
gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
if (!assign || gimple_assign_rhs_code (assign) != code)
return false;
/* We don't allow changing the order of the computation in the inner-loop
when doing outer-loop vectorization. */
class loop *loop = LOOP_VINFO_LOOP (loop_info);
if (loop && nested_in_vect_loop_p (loop, stmt_info))
return false;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
{
if (needs_fold_left_reduction_p (TREE_TYPE (gimple_assign_lhs (assign)),
code))
return false;
}
else if (REDUC_GROUP_FIRST_ELEMENT (stmt_info) == NULL)
return false;
*op0_out = gimple_assign_rhs1 (assign);
*op1_out = gimple_assign_rhs2 (assign);
if (commutative_tree_code (code) && STMT_VINFO_REDUC_IDX (stmt_info) == 0)
std::swap (*op0_out, *op1_out);
return true;
}
/* match.pd function to match
(cond (cmp@3 a b) (convert@1 c) (convert@2 d))
with conditions:
1) @1, @2, c, d, a, b are all integral type.
2) There's single_use for both @1 and @2.
3) a, c have same precision.
4) c and @1 have different precision.
5) c, d are the same type or they can differ in sign when convert is
truncation.
record a and c and d and @3. */
extern bool gimple_cond_expr_convert_p (tree, tree*, tree (*)(tree));
/* Function vect_recog_cond_expr_convert
Try to find the following pattern:
TYPE_AB A,B;
TYPE_CD C,D;
TYPE_E E;
TYPE_E op_true = (TYPE_E) A;
TYPE_E op_false = (TYPE_E) B;
E = C cmp D ? op_true : op_false;
where
TYPE_PRECISION (TYPE_E) != TYPE_PRECISION (TYPE_CD);
TYPE_PRECISION (TYPE_AB) == TYPE_PRECISION (TYPE_CD);
single_use of op_true and op_false.
TYPE_AB could differ in sign when (TYPE_E) A is a truncation.
Input:
* STMT_VINFO: The stmt from which the pattern search begins.
here it starts with E = c cmp D ? op_true : op_false;
Output:
TYPE1 E' = C cmp D ? A : B;
TYPE3 E = (TYPE3) E';
There may extra nop_convert for A or B to handle different signness.
* TYPE_OUT: The vector type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
E = (TYPE3)E';
E' = C cmp D ? A : B; is recorded in pattern definition statements; */
static gimple *
vect_recog_cond_expr_convert_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gassign *last_stmt = dyn_cast <gassign *> (stmt_vinfo->stmt);
tree lhs, match[4], temp, type, new_lhs, op2;
gimple *cond_stmt;
gimple *pattern_stmt;
if (!last_stmt)
return NULL;
lhs = gimple_assign_lhs (last_stmt);
/* Find E = C cmp D ? (TYPE3) A ? (TYPE3) B;
TYPE_PRECISION (A) == TYPE_PRECISION (C). */
if (!gimple_cond_expr_convert_p (lhs, &match[0], NULL))
return NULL;
vect_pattern_detected ("vect_recog_cond_expr_convert_pattern", last_stmt);
op2 = match[2];
type = TREE_TYPE (match[1]);
if (TYPE_SIGN (type) != TYPE_SIGN (TREE_TYPE (match[2])))
{
op2 = vect_recog_temp_ssa_var (type, NULL);
gimple* nop_stmt = gimple_build_assign (op2, NOP_EXPR, match[2]);
append_pattern_def_seq (vinfo, stmt_vinfo, nop_stmt,
get_vectype_for_scalar_type (vinfo, type));
}
temp = vect_recog_temp_ssa_var (type, NULL);
cond_stmt = gimple_build_assign (temp, build3 (COND_EXPR, type, match[3],
match[1], op2));
append_pattern_def_seq (vinfo, stmt_vinfo, cond_stmt,
get_vectype_for_scalar_type (vinfo, type));
new_lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
pattern_stmt = gimple_build_assign (new_lhs, NOP_EXPR, temp);
*type_out = STMT_VINFO_VECTYPE (stmt_vinfo);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"created pattern stmt: %G", pattern_stmt);
return pattern_stmt;
}
/* Function vect_recog_dot_prod_pattern
Try to find the following pattern:
type1a x_t
type1b y_t;
TYPE1 prod;
TYPE2 sum = init;
loop:
sum_0 = phi <init, sum_1>
S1 x_t = ...
S2 y_t = ...
S3 x_T = (TYPE1) x_t;
S4 y_T = (TYPE1) y_t;
S5 prod = x_T * y_T;
[S6 prod = (TYPE2) prod; #optional]
S7 sum_1 = prod + sum_0;
where 'TYPE1' is exactly double the size of type 'type1a' and 'type1b',
the sign of 'TYPE1' must be one of 'type1a' or 'type1b' but the sign of
'type1a' and 'type1b' can differ.
Input:
* STMT_VINFO: The stmt from which the pattern search begins. In the
example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7}
will be detected.
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
Note: The dot-prod idiom is a widening reduction pattern that is
vectorized without preserving all the intermediate results. It
produces only N/2 (widened) results (by summing up pairs of
intermediate results) rather than all N results. Therefore, we
cannot allow this pattern when we want to get all the results and in
the correct order (as is the case when this computation is in an
inner-loop nested in an outer-loop that us being vectorized). */
static gimple *
vect_recog_dot_prod_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
tree oprnd0, oprnd1;
gimple *last_stmt = stmt_vinfo->stmt;
tree type, half_type;
gimple *pattern_stmt;
tree var;
/* Look for the following pattern
DX = (TYPE1) X;
DY = (TYPE1) Y;
DPROD = DX * DY;
DDPROD = (TYPE2) DPROD;
sum_1 = DDPROD + sum_0;
In which
- DX is double the size of X
- DY is double the size of Y
- DX, DY, DPROD all have the same type but the sign
between X, Y and DPROD can differ.
- sum is the same size of DPROD or bigger
- sum has been recognized as a reduction variable.
This is equivalent to:
DPROD = X w* Y; #widen mult
sum_1 = DPROD w+ sum_0; #widen summation
or
DPROD = X w* Y; #widen mult
sum_1 = DPROD + sum_0; #summation
*/
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (!vect_reassociating_reduction_p (vinfo, stmt_vinfo, PLUS_EXPR,
&oprnd0, &oprnd1))
return NULL;
type = TREE_TYPE (gimple_get_lhs (last_stmt));
vect_unpromoted_value unprom_mult;
oprnd0 = vect_look_through_possible_promotion (vinfo, oprnd0, &unprom_mult);
/* So far so good. Since last_stmt was detected as a (summation) reduction,
we know that oprnd1 is the reduction variable (defined by a loop-header
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
Left to check that oprnd0 is defined by a (widen_)mult_expr */
if (!oprnd0)
return NULL;
stmt_vec_info mult_vinfo = vect_get_internal_def (vinfo, oprnd0);
if (!mult_vinfo)
return NULL;
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
inside the loop (in case we are analyzing an outer-loop). */
vect_unpromoted_value unprom0[2];
enum optab_subtype subtype = optab_vector;
if (!vect_widened_op_tree (vinfo, mult_vinfo, MULT_EXPR, WIDEN_MULT_EXPR,
false, 2, unprom0, &half_type, &subtype))
return NULL;
/* If there are two widening operations, make sure they agree on the sign
of the extension. The result of an optab_vector_mixed_sign operation
is signed; otherwise, the result has the same sign as the operands. */
if (TYPE_PRECISION (unprom_mult.type) != TYPE_PRECISION (type)
&& (subtype == optab_vector_mixed_sign
? TYPE_UNSIGNED (unprom_mult.type)
: TYPE_SIGN (unprom_mult.type) != TYPE_SIGN (half_type)))
return NULL;
vect_pattern_detected ("vect_recog_dot_prod_pattern", last_stmt);
tree half_vectype;
if (!vect_supportable_direct_optab_p (vinfo, type, DOT_PROD_EXPR, half_type,
type_out, &half_vectype, subtype))
return NULL;
/* Get the inputs in the appropriate types. */
tree mult_oprnd[2];
vect_convert_inputs (vinfo, stmt_vinfo, 2, mult_oprnd, half_type,
unprom0, half_vectype, subtype);
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign (var, DOT_PROD_EXPR,
mult_oprnd[0], mult_oprnd[1], oprnd1);
return pattern_stmt;
}
/* Function vect_recog_sad_pattern
Try to find the following Sum of Absolute Difference (SAD) pattern:
type x_t, y_t;
signed TYPE1 diff, abs_diff;
TYPE2 sum = init;
loop:
sum_0 = phi <init, sum_1>
S1 x_t = ...
S2 y_t = ...
S3 x_T = (TYPE1) x_t;
S4 y_T = (TYPE1) y_t;
S5 diff = x_T - y_T;
S6 abs_diff = ABS_EXPR <diff>;
[S7 abs_diff = (TYPE2) abs_diff; #optional]
S8 sum_1 = abs_diff + sum_0;
where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the
same size of 'TYPE1' or bigger. This is a special case of a reduction
computation.
Input:
* STMT_VINFO: The stmt from which the pattern search begins. In the
example, when this function is called with S8, the pattern
{S3,S4,S5,S6,S7,S8} will be detected.
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
SAD_EXPR <x_t, y_t, sum_0>
*/
static gimple *
vect_recog_sad_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
tree half_type;
/* Look for the following pattern
DX = (TYPE1) X;
DY = (TYPE1) Y;
DDIFF = DX - DY;
DAD = ABS_EXPR <DDIFF>;
DDPROD = (TYPE2) DPROD;
sum_1 = DAD + sum_0;
In which
- DX is at least double the size of X
- DY is at least double the size of Y
- DX, DY, DDIFF, DAD all have the same type
- sum is the same size of DAD or bigger
- sum has been recognized as a reduction variable.
This is equivalent to:
DDIFF = X w- Y; #widen sub
DAD = ABS_EXPR <DDIFF>;
sum_1 = DAD w+ sum_0; #widen summation
or
DDIFF = X w- Y; #widen sub
DAD = ABS_EXPR <DDIFF>;
sum_1 = DAD + sum_0; #summation
*/
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
tree plus_oprnd0, plus_oprnd1;
if (!vect_reassociating_reduction_p (vinfo, stmt_vinfo, PLUS_EXPR,
&plus_oprnd0, &plus_oprnd1))
return NULL;
tree sum_type = TREE_TYPE (gimple_get_lhs (last_stmt));
/* Any non-truncating sequence of conversions is OK here, since
with a successful match, the result of the ABS(U) is known to fit
within the nonnegative range of the result type. (It cannot be the
negative of the minimum signed value due to the range of the widening
MINUS_EXPR.) */
vect_unpromoted_value unprom_abs;
plus_oprnd0 = vect_look_through_possible_promotion (vinfo, plus_oprnd0,
&unprom_abs);
/* So far so good. Since last_stmt was detected as a (summation) reduction,
we know that plus_oprnd1 is the reduction variable (defined by a loop-header
phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body.
Then check that plus_oprnd0 is defined by an abs_expr. */
if (!plus_oprnd0)
return NULL;
stmt_vec_info abs_stmt_vinfo = vect_get_internal_def (vinfo, plus_oprnd0);
if (!abs_stmt_vinfo)
return NULL;
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
inside the loop (in case we are analyzing an outer-loop). */
gassign *abs_stmt = dyn_cast <gassign *> (abs_stmt_vinfo->stmt);
if (!abs_stmt
|| (gimple_assign_rhs_code (abs_stmt) != ABS_EXPR
&& gimple_assign_rhs_code (abs_stmt) != ABSU_EXPR))
return NULL;
tree abs_oprnd = gimple_assign_rhs1 (abs_stmt);
tree abs_type = TREE_TYPE (abs_oprnd);
if (TYPE_UNSIGNED (abs_type))
return NULL;
/* Peel off conversions from the ABS input. This can involve sign
changes (e.g. from an unsigned subtraction to a signed ABS input)
or signed promotion, but it can't include unsigned promotion.
(Note that ABS of an unsigned promotion should have been folded
away before now anyway.) */
vect_unpromoted_value unprom_diff;
abs_oprnd = vect_look_through_possible_promotion (vinfo, abs_oprnd,
&unprom_diff);
if (!abs_oprnd)
return NULL;
if (TYPE_PRECISION (unprom_diff.type) != TYPE_PRECISION (abs_type)
&& TYPE_UNSIGNED (unprom_diff.type))
return NULL;
/* We then detect if the operand of abs_expr is defined by a minus_expr. */
stmt_vec_info diff_stmt_vinfo = vect_get_internal_def (vinfo, abs_oprnd);
if (!diff_stmt_vinfo)
return NULL;
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
inside the loop (in case we are analyzing an outer-loop). */
vect_unpromoted_value unprom[2];
if (!vect_widened_op_tree (vinfo, diff_stmt_vinfo, MINUS_EXPR, WIDEN_MINUS_EXPR,
false, 2, unprom, &half_type))
return NULL;
vect_pattern_detected ("vect_recog_sad_pattern", last_stmt);
tree half_vectype;
if (!vect_supportable_direct_optab_p (vinfo, sum_type, SAD_EXPR, half_type,
type_out, &half_vectype))
return NULL;
/* Get the inputs to the SAD_EXPR in the appropriate types. */
tree sad_oprnd[2];
vect_convert_inputs (vinfo, stmt_vinfo, 2, sad_oprnd, half_type,
unprom, half_vectype);
tree var = vect_recog_temp_ssa_var (sum_type, NULL);
gimple *pattern_stmt = gimple_build_assign (var, SAD_EXPR, sad_oprnd[0],
sad_oprnd[1], plus_oprnd1);
return pattern_stmt;
}
/* Recognize an operation that performs ORIG_CODE on widened inputs,
so that it can be treated as though it had the form:
A_TYPE a;
B_TYPE b;
HALF_TYPE a_cast = (HALF_TYPE) a; // possible no-op
HALF_TYPE b_cast = (HALF_TYPE) b; // possible no-op
| RES_TYPE a_extend = (RES_TYPE) a_cast; // promotion from HALF_TYPE
| RES_TYPE b_extend = (RES_TYPE) b_cast; // promotion from HALF_TYPE
| RES_TYPE res = a_extend ORIG_CODE b_extend;
Try to replace the pattern with:
A_TYPE a;
B_TYPE b;
HALF_TYPE a_cast = (HALF_TYPE) a; // possible no-op
HALF_TYPE b_cast = (HALF_TYPE) b; // possible no-op
| EXT_TYPE ext = a_cast WIDE_CODE b_cast;
| RES_TYPE res = (EXT_TYPE) ext; // possible no-op
where EXT_TYPE is wider than HALF_TYPE but has the same signedness.
SHIFT_P is true if ORIG_CODE and WIDE_CODE are shifts. NAME is the
name of the pattern being matched, for dump purposes. */
static gimple *
vect_recog_widen_op_pattern (vec_info *vinfo,
stmt_vec_info last_stmt_info, tree *type_out,
tree_code orig_code, tree_code wide_code,
bool shift_p, const char *name)
{
gimple *last_stmt = last_stmt_info->stmt;
vect_unpromoted_value unprom[2];
tree half_type;
if (!vect_widened_op_tree (vinfo, last_stmt_info, orig_code, orig_code,
shift_p, 2, unprom, &half_type))
return NULL;
/* Pattern detected. */
vect_pattern_detected (name, last_stmt);
tree type = TREE_TYPE (gimple_get_lhs (last_stmt));
tree itype = type;
if (TYPE_PRECISION (type) != TYPE_PRECISION (half_type) * 2
|| TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type))
itype = build_nonstandard_integer_type (TYPE_PRECISION (half_type) * 2,
TYPE_UNSIGNED (half_type));
/* Check target support */
tree vectype = get_vectype_for_scalar_type (vinfo, half_type);
tree vecitype = get_vectype_for_scalar_type (vinfo, itype);
tree ctype = itype;
tree vecctype = vecitype;
if (orig_code == MINUS_EXPR
&& TYPE_UNSIGNED (itype)
&& TYPE_PRECISION (type) > TYPE_PRECISION (itype))
{
/* Subtraction is special, even if half_type is unsigned and no matter
whether type is signed or unsigned, if type is wider than itype,
we need to sign-extend from the widening operation result to the
result type.
Consider half_type unsigned char, operand 1 0xfe, operand 2 0xff,
itype unsigned short and type either int or unsigned int.
Widened (unsigned short) 0xfe - (unsigned short) 0xff is
(unsigned short) 0xffff, but for type int we want the result -1
and for type unsigned int 0xffffffff rather than 0xffff. */
ctype = build_nonstandard_integer_type (TYPE_PRECISION (itype), 0);
vecctype = get_vectype_for_scalar_type (vinfo, ctype);
}
enum tree_code dummy_code;
int dummy_int;
auto_vec<tree> dummy_vec;
if (!vectype
|| !vecitype
|| !vecctype
|| !supportable_widening_operation (vinfo, wide_code, last_stmt_info,
vecitype, vectype,
&dummy_code, &dummy_code,
&dummy_int, &dummy_vec))
return NULL;
*type_out = get_vectype_for_scalar_type (vinfo, type);
if (!*type_out)
return NULL;
tree oprnd[2];
vect_convert_inputs (vinfo, last_stmt_info,
2, oprnd, half_type, unprom, vectype);
tree var = vect_recog_temp_ssa_var (itype, NULL);
gimple *pattern_stmt = gimple_build_assign (var, wide_code,
oprnd[0], oprnd[1]);
if (vecctype != vecitype)
pattern_stmt = vect_convert_output (vinfo, last_stmt_info, ctype,
pattern_stmt, vecitype);
return vect_convert_output (vinfo, last_stmt_info,
type, pattern_stmt, vecctype);
}
/* Try to detect multiplication on widened inputs, converting MULT_EXPR
to WIDEN_MULT_EXPR. See vect_recog_widen_op_pattern for details. */
static gimple *
vect_recog_widen_mult_pattern (vec_info *vinfo, stmt_vec_info last_stmt_info,
tree *type_out)
{
return vect_recog_widen_op_pattern (vinfo, last_stmt_info, type_out,
MULT_EXPR, WIDEN_MULT_EXPR, false,
"vect_recog_widen_mult_pattern");
}
/* Try to detect addition on widened inputs, converting PLUS_EXPR
to WIDEN_PLUS_EXPR. See vect_recog_widen_op_pattern for details. */
static gimple *
vect_recog_widen_plus_pattern (vec_info *vinfo, stmt_vec_info last_stmt_info,
tree *type_out)
{
return vect_recog_widen_op_pattern (vinfo, last_stmt_info, type_out,
PLUS_EXPR, WIDEN_PLUS_EXPR, false,
"vect_recog_widen_plus_pattern");
}
/* Try to detect subtraction on widened inputs, converting MINUS_EXPR
to WIDEN_MINUS_EXPR. See vect_recog_widen_op_pattern for details. */
static gimple *
vect_recog_widen_minus_pattern (vec_info *vinfo, stmt_vec_info last_stmt_info,
tree *type_out)
{
return vect_recog_widen_op_pattern (vinfo, last_stmt_info, type_out,
MINUS_EXPR, WIDEN_MINUS_EXPR, false,
"vect_recog_widen_minus_pattern");
}
/* Function vect_recog_popcount_pattern
Try to find the following pattern:
UTYPE1 A;
TYPE1 B;
UTYPE2 temp_in;
TYPE3 temp_out;
temp_in = (UTYPE2)A;
temp_out = __builtin_popcount{,l,ll} (temp_in);
B = (TYPE1) temp_out;
TYPE2 may or may not be equal to TYPE3.
i.e. TYPE2 is equal to TYPE3 for __builtin_popcount
i.e. TYPE2 is not equal to TYPE3 for __builtin_popcountll
Input:
* STMT_VINFO: The stmt from which the pattern search begins.
here it starts with B = (TYPE1) temp_out;
Output:
* TYPE_OUT: The vector type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
B = .POPCOUNT (A);
*/
static gimple *
vect_recog_popcount_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gassign *last_stmt = dyn_cast <gassign *> (stmt_vinfo->stmt);
gimple *popcount_stmt, *pattern_stmt;
tree rhs_oprnd, rhs_origin, lhs_oprnd, lhs_type, vec_type, new_var;
auto_vec<tree> vargs;
/* Find B = (TYPE1) temp_out. */
if (!last_stmt)
return NULL;
tree_code code = gimple_assign_rhs_code (last_stmt);
if (!CONVERT_EXPR_CODE_P (code))
return NULL;
lhs_oprnd = gimple_assign_lhs (last_stmt);
lhs_type = TREE_TYPE (lhs_oprnd);
if (!INTEGRAL_TYPE_P (lhs_type))
return NULL;
rhs_oprnd = gimple_assign_rhs1 (last_stmt);
if (TREE_CODE (rhs_oprnd) != SSA_NAME
|| !has_single_use (rhs_oprnd))
return NULL;
popcount_stmt = SSA_NAME_DEF_STMT (rhs_oprnd);
/* Find temp_out = __builtin_popcount{,l,ll} (temp_in); */
if (!is_gimple_call (popcount_stmt))
return NULL;
switch (gimple_call_combined_fn (popcount_stmt))
{
CASE_CFN_POPCOUNT:
break;
default:
return NULL;
}
if (gimple_call_num_args (popcount_stmt) != 1)
return NULL;
rhs_oprnd = gimple_call_arg (popcount_stmt, 0);
vect_unpromoted_value unprom_diff;
rhs_origin = vect_look_through_possible_promotion (vinfo, rhs_oprnd,
&unprom_diff);
if (!rhs_origin)
return NULL;
/* Input and output of .POPCOUNT should be same-precision integer.
Also A should be unsigned or same precision as temp_in,
otherwise there would be sign_extend from A to temp_in. */
if (TYPE_PRECISION (unprom_diff.type) != TYPE_PRECISION (lhs_type)
|| (!TYPE_UNSIGNED (unprom_diff.type)
&& (TYPE_PRECISION (unprom_diff.type)
!= TYPE_PRECISION (TREE_TYPE (rhs_oprnd)))))
return NULL;
vargs.safe_push (unprom_diff.op);
vect_pattern_detected ("vec_regcog_popcount_pattern", popcount_stmt);
vec_type = get_vectype_for_scalar_type (vinfo, lhs_type);
/* Do it only if the backend has popcount<vector_mode>2 pattern. */
if (!vec_type
|| !direct_internal_fn_supported_p (IFN_POPCOUNT, vec_type,
OPTIMIZE_FOR_SPEED))
return NULL;
/* Create B = .POPCOUNT (A). */
new_var = vect_recog_temp_ssa_var (lhs_type, NULL);
pattern_stmt = gimple_build_call_internal_vec (IFN_POPCOUNT, vargs);
gimple_call_set_lhs (pattern_stmt, new_var);
gimple_set_location (pattern_stmt, gimple_location (last_stmt));
*type_out = vec_type;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"created pattern stmt: %G", pattern_stmt);
return pattern_stmt;
}
/* Function vect_recog_pow_pattern
Try to find the following pattern:
x = POW (y, N);
with POW being one of pow, powf, powi, powif and N being
either 2 or 0.5.
Input:
* STMT_VINFO: The stmt from which the pattern search begins.
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
x = x * x
or
x = sqrt (x)
*/
static gimple *
vect_recog_pow_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
tree base, exp;
gimple *stmt;
tree var;
if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
return NULL;
switch (gimple_call_combined_fn (last_stmt))
{
CASE_CFN_POW:
CASE_CFN_POWI:
break;
default:
return NULL;
}
base = gimple_call_arg (last_stmt, 0);
exp = gimple_call_arg (last_stmt, 1);
if (TREE_CODE (exp) != REAL_CST
&& TREE_CODE (exp) != INTEGER_CST)
{
if (flag_unsafe_math_optimizations
&& TREE_CODE (base) == REAL_CST
&& gimple_call_builtin_p (last_stmt, BUILT_IN_NORMAL))
{
combined_fn log_cfn;
built_in_function exp_bfn;
switch (DECL_FUNCTION_CODE (gimple_call_fndecl (last_stmt)))
{
case BUILT_IN_POW:
log_cfn = CFN_BUILT_IN_LOG;
exp_bfn = BUILT_IN_EXP;
break;
case BUILT_IN_POWF:
log_cfn = CFN_BUILT_IN_LOGF;
exp_bfn = BUILT_IN_EXPF;
break;
case BUILT_IN_POWL:
log_cfn = CFN_BUILT_IN_LOGL;
exp_bfn = BUILT_IN_EXPL;
break;
default:
return NULL;
}
tree logc = fold_const_call (log_cfn, TREE_TYPE (base), base);
tree exp_decl = builtin_decl_implicit (exp_bfn);
/* Optimize pow (C, x) as exp (log (C) * x). Normally match.pd
does that, but if C is a power of 2, we want to use
exp2 (log2 (C) * x) in the non-vectorized version, but for
vectorization we don't have vectorized exp2. */
if (logc
&& TREE_CODE (logc) == REAL_CST
&& exp_decl
&& lookup_attribute ("omp declare simd",
DECL_ATTRIBUTES (exp_decl)))
{
cgraph_node *node = cgraph_node::get_create (exp_decl);
if (node->simd_clones == NULL)
{
if (targetm.simd_clone.compute_vecsize_and_simdlen == NULL
|| node->definition)
return NULL;
expand_simd_clones (node);
if (node->simd_clones == NULL)
return NULL;
}
*type_out = get_vectype_for_scalar_type (vinfo, TREE_TYPE (base));
if (!*type_out)
return NULL;
tree def = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
gimple *g = gimple_build_assign (def, MULT_EXPR, exp, logc);
append_pattern_def_seq (vinfo, stmt_vinfo, g);
tree res = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
g = gimple_build_call (exp_decl, 1, def);
gimple_call_set_lhs (g, res);
return g;
}
}
return NULL;
}
/* We now have a pow or powi builtin function call with a constant
exponent. */
/* Catch squaring. */
if ((tree_fits_shwi_p (exp)
&& tree_to_shwi (exp) == 2)
|| (TREE_CODE (exp) == REAL_CST
&& real_equal (&TREE_REAL_CST (exp), &dconst2)))
{
if (!vect_supportable_direct_optab_p (vinfo, TREE_TYPE (base), MULT_EXPR,
TREE_TYPE (base), type_out))
return NULL;
var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
stmt = gimple_build_assign (var, MULT_EXPR, base, base);
return stmt;
}
/* Catch square root. */
if (TREE_CODE (exp) == REAL_CST
&& real_equal (&TREE_REAL_CST (exp), &dconsthalf))
{
*type_out = get_vectype_for_scalar_type (vinfo, TREE_TYPE (base));
if (*type_out
&& direct_internal_fn_supported_p (IFN_SQRT, *type_out,
OPTIMIZE_FOR_SPEED))
{
gcall *stmt = gimple_build_call_internal (IFN_SQRT, 1, base);
var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
gimple_call_set_lhs (stmt, var);
gimple_call_set_nothrow (stmt, true);
return stmt;
}
}
return NULL;
}
/* Function vect_recog_widen_sum_pattern
Try to find the following pattern:
type x_t;
TYPE x_T, sum = init;
loop:
sum_0 = phi <init, sum_1>
S1 x_t = *p;
S2 x_T = (TYPE) x_t;
S3 sum_1 = x_T + sum_0;
where type 'TYPE' is at least double the size of type 'type', i.e - we're
summing elements of type 'type' into an accumulator of type 'TYPE'. This is
a special case of a reduction computation.
Input:
* STMT_VINFO: The stmt from which the pattern search begins. In the example,
when this function is called with S3, the pattern {S2,S3} will be detected.
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_SUM <x_t, sum_0>
Note: The widening-sum idiom is a widening reduction pattern that is
vectorized without preserving all the intermediate results. It
produces only N/2 (widened) results (by summing up pairs of
intermediate results) rather than all N results. Therefore, we
cannot allow this pattern when we want to get all the results and in
the correct order (as is the case when this computation is in an
inner-loop nested in an outer-loop that us being vectorized). */
static gimple *
vect_recog_widen_sum_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
tree oprnd0, oprnd1;
tree type;
gimple *pattern_stmt;
tree var;
/* Look for the following pattern
DX = (TYPE) X;
sum_1 = DX + sum_0;
In which DX is at least double the size of X, and sum_1 has been
recognized as a reduction variable.
*/
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (!vect_reassociating_reduction_p (vinfo, stmt_vinfo, PLUS_EXPR,
&oprnd0, &oprnd1))
return NULL;
type = TREE_TYPE (gimple_get_lhs (last_stmt));
/* So far so good. Since last_stmt was detected as a (summation) reduction,
we know that oprnd1 is the reduction variable (defined by a loop-header
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
Left to check that oprnd0 is defined by a cast from type 'type' to type
'TYPE'. */
vect_unpromoted_value unprom0;
if (!vect_look_through_possible_promotion (vinfo, oprnd0, &unprom0)
|| TYPE_PRECISION (unprom0.type) * 2 > TYPE_PRECISION (type))
return NULL;
vect_pattern_detected ("vect_recog_widen_sum_pattern", last_stmt);
if (!vect_supportable_direct_optab_p (vinfo, type, WIDEN_SUM_EXPR,
unprom0.type, type_out))
return NULL;
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign (var, WIDEN_SUM_EXPR, unprom0.op, oprnd1);
return pattern_stmt;
}
/* Recognize cases in which an operation is performed in one type WTYPE
but could be done more efficiently in a narrower type NTYPE. For example,
if we have:
ATYPE a; // narrower than NTYPE
BTYPE b; // narrower than NTYPE
WTYPE aw = (WTYPE) a;
WTYPE bw = (WTYPE) b;
WTYPE res = aw + bw; // only uses of aw and bw
then it would be more efficient to do:
NTYPE an = (NTYPE) a;
NTYPE bn = (NTYPE) b;
NTYPE resn = an + bn;
WTYPE res = (WTYPE) resn;
Other situations include things like:
ATYPE a; // NTYPE or narrower
WTYPE aw = (WTYPE) a;
WTYPE res = aw + b;
when only "(NTYPE) res" is significant. In that case it's more efficient
to truncate "b" and do the operation on NTYPE instead:
NTYPE an = (NTYPE) a;
NTYPE bn = (NTYPE) b; // truncation
NTYPE resn = an + bn;
WTYPE res = (WTYPE) resn;
All users of "res" should then use "resn" instead, making the final
statement dead (not marked as relevant). The final statement is still
needed to maintain the type correctness of the IR.
vect_determine_precisions has already determined the minimum
precison of the operation and the minimum precision required
by users of the result. */
static gimple *
vect_recog_over_widening_pattern (vec_info *vinfo,
stmt_vec_info last_stmt_info, tree *type_out)
{
gassign *last_stmt = dyn_cast <gassign *> (last_stmt_info->stmt);
if (!last_stmt)
return NULL;
/* See whether we have found that this operation can be done on a
narrower type without changing its semantics. */
unsigned int new_precision = last_stmt_info->operation_precision;
if (!new_precision)
return NULL;
tree lhs = gimple_assign_lhs (last_stmt);
tree type = TREE_TYPE (lhs);
tree_code code = gimple_assign_rhs_code (last_stmt);
/* Punt for reductions where we don't handle the type conversions. */
if (STMT_VINFO_DEF_TYPE (last_stmt_info) == vect_reduction_def)
return NULL;
/* Keep the first operand of a COND_EXPR as-is: only the other two
operands are interesting. */
unsigned int first_op = (code == COND_EXPR ? 2 : 1);
/* Check the operands. */
unsigned int nops = gimple_num_ops (last_stmt) - first_op;
auto_vec <vect_unpromoted_value, 3> unprom (nops);
unprom.quick_grow (nops);
unsigned int min_precision = 0;
bool single_use_p = false;
for (unsigned int i = 0; i < nops; ++i)
{
tree op = gimple_op (last_stmt, first_op + i);
if (TREE_CODE (op) == INTEGER_CST)
unprom[i].set_op (op, vect_constant_def);
else if (TREE_CODE (op) == SSA_NAME)
{
bool op_single_use_p = true;
if (!vect_look_through_possible_promotion (vinfo, op, &unprom[i],
&op_single_use_p))
return NULL;
/* If:
(1) N bits of the result are needed;
(2) all inputs are widened from M<N bits; and
(3) one operand OP is a single-use SSA name
we can shift the M->N widening from OP to the output
without changing the number or type of extensions involved.
This then reduces the number of copies of STMT_INFO.
If instead of (3) more than one operand is a single-use SSA name,
shifting the extension to the output is even more of a win.
If instead:
(1) N bits of the result are needed;
(2) one operand OP2 is widened from M2<N bits;
(3) another operand OP1 is widened from M1<M2 bits; and
(4) both OP1 and OP2 are single-use
the choice is between:
(a) truncating OP2 to M1, doing the operation on M1,
and then widening the result to N
(b) widening OP1 to M2, doing the operation on M2, and then
widening the result to N
Both shift the M2->N widening of the inputs to the output.
(a) additionally shifts the M1->M2 widening to the output;
it requires fewer copies of STMT_INFO but requires an extra
M2->M1 truncation.
Which is better will depend on the complexity and cost of
STMT_INFO, which is hard to predict at this stage. However,
a clear tie-breaker in favor of (b) is the fact that the
truncation in (a) increases the length of the operation chain.
If instead of (4) only one of OP1 or OP2 is single-use,
(b) is still a win over doing the operation in N bits:
it still shifts the M2->N widening on the single-use operand
to the output and reduces the number of STMT_INFO copies.
If neither operand is single-use then operating on fewer than
N bits might lead to more extensions overall. Whether it does
or not depends on global information about the vectorization
region, and whether that's a good trade-off would again
depend on the complexity and cost of the statements involved,
as well as things like register pressure that are not normally
modelled at this stage. We therefore ignore these cases
and just optimize the clear single-use wins above.
Thus we take the maximum precision of the unpromoted operands
and record whether any operand is single-use. */
if (unprom[i].dt == vect_internal_def)
{
min_precision = MAX (min_precision,
TYPE_PRECISION (unprom[i].type));
single_use_p |= op_single_use_p;
}
}
else
return NULL;
}
/* Although the operation could be done in operation_precision, we have
to balance that against introducing extra truncations or extensions.
Calculate the minimum precision that can be handled efficiently.
The loop above determined that the operation could be handled
efficiently in MIN_PRECISION if SINGLE_USE_P; this would shift an
extension from the inputs to the output without introducing more
instructions, and would reduce the number of instructions required
for STMT_INFO itself.
vect_determine_precisions has also determined that the result only
needs min_output_precision bits. Truncating by a factor of N times
requires a tree of N - 1 instructions, so if TYPE is N times wider
than min_output_precision, doing the operation in TYPE and truncating
the result requires N + (N - 1) = 2N - 1 instructions per output vector.
In contrast:
- truncating the input to a unary operation and doing the operation
in the new type requires at most N - 1 + 1 = N instructions per
output vector
- doing the same for a binary operation requires at most
(N - 1) * 2 + 1 = 2N - 1 instructions per output vector
Both unary and binary operations require fewer instructions than
this if the operands were extended from a suitable truncated form.
Thus there is usually nothing to lose by doing operations in
min_output_precision bits, but there can be something to gain. */
if (!single_use_p)
min_precision = last_stmt_info->min_output_precision;
else
min_precision = MIN (min_precision, last_stmt_info->min_output_precision);
/* Apply the minimum efficient precision we just calculated. */
if (new_precision < min_precision)
new_precision = min_precision;
new_precision = vect_element_precision (new_precision);
if (new_precision >= TYPE_PRECISION (type))
return NULL;
vect_pattern_detected ("vect_recog_over_widening_pattern", last_stmt);
*type_out = get_vectype_for_scalar_type (vinfo, type);
if (!*type_out)
return NULL;
/* We've found a viable pattern. Get the new type of the operation. */
bool unsigned_p = (last_stmt_info->operation_sign == UNSIGNED);
tree new_type = build_nonstandard_integer_type (new_precision, unsigned_p);
/* If we're truncating an operation, we need to make sure that we
don't introduce new undefined overflow. The codes tested here are
a subset of those accepted by vect_truncatable_operation_p. */
tree op_type = new_type;
if (TYPE_OVERFLOW_UNDEFINED (new_type)
&& (code == PLUS_EXPR || code == MINUS_EXPR || code == MULT_EXPR))
op_type = build_nonstandard_integer_type (new_precision, true);
/* We specifically don't check here whether the target supports the
new operation, since it might be something that a later pattern
wants to rewrite anyway. If targets have a minimum element size
for some optabs, we should pattern-match smaller ops to larger ops
where beneficial. */
tree new_vectype = get_vectype_for_scalar_type (vinfo, new_type);
tree op_vectype = get_vectype_for_scalar_type (vinfo, op_type);
if (!new_vectype || !op_vectype)
return NULL;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "demoting %T to %T\n",
type, new_type);
/* Calculate the rhs operands for an operation on OP_TYPE. */
tree ops[3] = {};
for (unsigned int i = 1; i < first_op; ++i)
ops[i - 1] = gimple_op (last_stmt, i);
vect_convert_inputs (vinfo, last_stmt_info, nops, &ops[first_op - 1],
op_type, &unprom[0], op_vectype);
/* Use the operation to produce a result of type OP_TYPE. */
tree new_var = vect_recog_temp_ssa_var (op_type, NULL);
gimple *pattern_stmt = gimple_build_assign (new_var, code,
ops[0], ops[1], ops[2]);
gimple_set_location (pattern_stmt, gimple_location (last_stmt));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"created pattern stmt: %G", pattern_stmt);
/* Convert back to the original signedness, if OP_TYPE is different
from NEW_TYPE. */
if (op_type != new_type)
pattern_stmt = vect_convert_output (vinfo, last_stmt_info, new_type,
pattern_stmt, op_vectype);
/* Promote the result to the original type. */
pattern_stmt = vect_convert_output (vinfo, last_stmt_info, type,
pattern_stmt, new_vectype);
return pattern_stmt;
}
/* Recognize the following patterns:
ATYPE a; // narrower than TYPE
BTYPE b; // narrower than TYPE
1) Multiply high with scaling
TYPE res = ((TYPE) a * (TYPE) b) >> c;
Here, c is bitsize (TYPE) / 2 - 1.
2) ... or also with rounding
TYPE res = (((TYPE) a * (TYPE) b) >> d + 1) >> 1;
Here, d is bitsize (TYPE) / 2 - 2.
3) Normal multiply high
TYPE res = ((TYPE) a * (TYPE) b) >> e;
Here, e is bitsize (TYPE) / 2.
where only the bottom half of res is used. */
static gimple *
vect_recog_mulhs_pattern (vec_info *vinfo,
stmt_vec_info last_stmt_info, tree *type_out)
{
/* Check for a right shift. */
gassign *last_stmt = dyn_cast <gassign *> (last_stmt_info->stmt);
if (!last_stmt
|| gimple_assign_rhs_code (last_stmt) != RSHIFT_EXPR)
return NULL;
/* Check that the shift result is wider than the users of the
result need (i.e. that narrowing would be a natural choice). */
tree lhs_type = TREE_TYPE (gimple_assign_lhs (last_stmt));
unsigned int target_precision
= vect_element_precision (last_stmt_info->min_output_precision);
if (!INTEGRAL_TYPE_P (lhs_type)
|| target_precision >= TYPE_PRECISION (lhs_type))
return NULL;
/* Look through any change in sign on the outer shift input. */
vect_unpromoted_value unprom_rshift_input;
tree rshift_input = vect_look_through_possible_promotion
(vinfo, gimple_assign_rhs1 (last_stmt), &unprom_rshift_input);
if (!rshift_input
|| TYPE_PRECISION (TREE_TYPE (rshift_input))
!= TYPE_PRECISION (lhs_type))
return NULL;
/* Get the definition of the shift input. */
stmt_vec_info rshift_input_stmt_info
= vect_get_internal_def (vinfo, rshift_input);
if (!rshift_input_stmt_info)
return NULL;
gassign *rshift_input_stmt
= dyn_cast <gassign *> (rshift_input_stmt_info->stmt);
if (!rshift_input_stmt)
return NULL;
stmt_vec_info mulh_stmt_info;
tree scale_term;
bool rounding_p = false;
/* Check for the presence of the rounding term. */
if (gimple_assign_rhs_code (rshift_input_stmt) == PLUS_EXPR)
{
/* Check that the outer shift was by 1. */
if (!integer_onep (gimple_assign_rhs2 (last_stmt)))
return NULL;
/* Check that the second operand of the PLUS_EXPR is 1. */
if (!integer_onep (gimple_assign_rhs2 (rshift_input_stmt)))
return NULL;
/* Look through any change in sign on the addition input. */
vect_unpromoted_value unprom_plus_input;
tree plus_input = vect_look_through_possible_promotion
(vinfo, gimple_assign_rhs1 (rshift_input_stmt), &unprom_plus_input);
if (!plus_input
|| TYPE_PRECISION (TREE_TYPE (plus_input))
!= TYPE_PRECISION (TREE_TYPE (rshift_input)))
return NULL;
/* Get the definition of the multiply-high-scale part. */
stmt_vec_info plus_input_stmt_info
= vect_get_internal_def (vinfo, plus_input);
if (!plus_input_stmt_info)
return NULL;
gassign *plus_input_stmt
= dyn_cast <gassign *> (plus_input_stmt_info->stmt);
if (!plus_input_stmt
|| gimple_assign_rhs_code (plus_input_stmt) != RSHIFT_EXPR)
return NULL;
/* Look through any change in sign on the scaling input. */
vect_unpromoted_value unprom_scale_input;
tree scale_input = vect_look_through_possible_promotion
(vinfo, gimple_assign_rhs1 (plus_input_stmt), &unprom_scale_input);
if (!scale_input
|| TYPE_PRECISION (TREE_TYPE (scale_input))
!= TYPE_PRECISION (TREE_TYPE (plus_input)))
return NULL;
/* Get the definition of the multiply-high part. */
mulh_stmt_info = vect_get_internal_def (vinfo, scale_input);
if (!mulh_stmt_info)
return NULL;
/* Get the scaling term. */
scale_term = gimple_assign_rhs2 (plus_input_stmt);
rounding_p = true;
}
else
{
mulh_stmt_info = rshift_input_stmt_info;
scale_term = gimple_assign_rhs2 (last_stmt);
}
/* Check that the scaling factor is constant. */
if (TREE_CODE (scale_term) != INTEGER_CST)
return NULL;
/* Check whether the scaling input term can be seen as two widened
inputs multiplied together. */
vect_unpromoted_value unprom_mult[2];
tree new_type;
unsigned int nops
= vect_widened_op_tree (vinfo, mulh_stmt_info, MULT_EXPR, WIDEN_MULT_EXPR,
false, 2, unprom_mult, &new_type);
if (nops != 2)
return NULL;
/* Adjust output precision. */
if (TYPE_PRECISION (new_type) < target_precision)
new_type = build_nonstandard_integer_type
(target_precision, TYPE_UNSIGNED (new_type));
unsigned mult_precision = TYPE_PRECISION (new_type);
internal_fn ifn;
/* Check that the scaling factor is expected. Instead of
target_precision, we should use the one that we actually
use for internal function. */
if (rounding_p)
{
/* Check pattern 2). */
if (wi::to_widest (scale_term) + mult_precision + 2
!= TYPE_PRECISION (lhs_type))
return NULL;
ifn = IFN_MULHRS;
}
else
{
/* Check for pattern 1). */
if (wi::to_widest (scale_term) + mult_precision + 1
== TYPE_PRECISION (lhs_type))
ifn = IFN_MULHS;
/* Check for pattern 3). */
else if (wi::to_widest (scale_term) + mult_precision
== TYPE_PRECISION (lhs_type))
ifn = IFN_MULH;
else
return NULL;
}
vect_pattern_detected ("vect_recog_mulhs_pattern", last_stmt);
/* Check for target support. */
tree new_vectype = get_vectype_for_scalar_type (vinfo, new_type);
if (!new_vectype
|| !direct_internal_fn_supported_p
(ifn, new_vectype, OPTIMIZE_FOR_SPEED))
return NULL;
/* The IR requires a valid vector type for the cast result, even though
it's likely to be discarded. */
*type_out = get_vectype_for_scalar_type (vinfo, lhs_type);
if (!*type_out)
return NULL;
/* Generate the IFN_MULHRS call. */
tree new_var = vect_recog_temp_ssa_var (new_type, NULL);
tree new_ops[2];
vect_convert_inputs (vinfo, last_stmt_info, 2, new_ops, new_type,
unprom_mult, new_vectype);
gcall *mulhrs_stmt
= gimple_build_call_internal (ifn, 2, new_ops[0], new_ops[1]);
gimple_call_set_lhs (mulhrs_stmt, new_var);
gimple_set_location (mulhrs_stmt, gimple_location (last_stmt));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"created pattern stmt: %G", mulhrs_stmt);
return vect_convert_output (vinfo, last_stmt_info, lhs_type,
mulhrs_stmt, new_vectype);
}
/* Recognize the patterns:
ATYPE a; // narrower than TYPE
BTYPE b; // narrower than TYPE
(1) TYPE avg = ((TYPE) a + (TYPE) b) >> 1;
or (2) TYPE avg = ((TYPE) a + (TYPE) b + 1) >> 1;
where only the bottom half of avg is used. Try to transform them into:
(1) NTYPE avg' = .AVG_FLOOR ((NTYPE) a, (NTYPE) b);
or (2) NTYPE avg' = .AVG_CEIL ((NTYPE) a, (NTYPE) b);
followed by:
TYPE avg = (TYPE) avg';
where NTYPE is no wider than half of TYPE. Since only the bottom half
of avg is used, all or part of the cast of avg' should become redundant.
If there is no target support available, generate code to distribute rshift
over plus and add a carry. */
static gimple *
vect_recog_average_pattern (vec_info *vinfo,
stmt_vec_info last_stmt_info, tree *type_out)
{
/* Check for a shift right by one bit. */
gassign *last_stmt = dyn_cast <gassign *> (last_stmt_info->stmt);
if (!last_stmt
|| gimple_assign_rhs_code (last_stmt) != RSHIFT_EXPR
|| !integer_onep (gimple_assign_rhs2 (last_stmt)))
return NULL;
/* Check that the shift result is wider than the users of the
result need (i.e. that narrowing would be a natural choice). */
tree lhs = gimple_assign_lhs (last_stmt);
tree type = TREE_TYPE (lhs);
unsigned int target_precision
= vect_element_precision (last_stmt_info->min_output_precision);
if (!INTEGRAL_TYPE_P (type) || target_precision >= TYPE_PRECISION (type))
return NULL;
/* Look through any change in sign on the shift input. */
tree rshift_rhs = gimple_assign_rhs1 (last_stmt);
vect_unpromoted_value unprom_plus;
rshift_rhs = vect_look_through_possible_promotion (vinfo, rshift_rhs,
&unprom_plus);
if (!rshift_rhs
|| TYPE_PRECISION (TREE_TYPE (rshift_rhs)) != TYPE_PRECISION (type))
return NULL;
/* Get the definition of the shift input. */
stmt_vec_info plus_stmt_info = vect_get_internal_def (vinfo, rshift_rhs);
if (!plus_stmt_info)
return NULL;
/* Check whether the shift input can be seen as a tree of additions on
2 or 3 widened inputs.
Note that the pattern should be a win even if the result of one or
more additions is reused elsewhere: if the pattern matches, we'd be
replacing 2N RSHIFT_EXPRs and N VEC_PACK_*s with N IFN_AVG_*s. */
internal_fn ifn = IFN_AVG_FLOOR;
vect_unpromoted_value unprom[3];
tree new_type;
unsigned int nops = vect_widened_op_tree (vinfo, plus_stmt_info, PLUS_EXPR,
WIDEN_PLUS_EXPR, false, 3,
unprom, &new_type);
if (nops == 0)
return NULL;
if (nops == 3)
{
/* Check that one operand is 1. */
unsigned int i;
for (i = 0; i < 3; ++i)
if (integer_onep (unprom[i].op))
break;
if (i == 3)
return NULL;
/* Throw away the 1 operand and keep the other two. */
if (i < 2)
unprom[i] = unprom[2];
ifn = IFN_AVG_CEIL;
}
vect_pattern_detected ("vect_recog_average_pattern", last_stmt);
/* We know that:
(a) the operation can be viewed as:
TYPE widened0 = (TYPE) UNPROM[0];
TYPE widened1 = (TYPE) UNPROM[1];
TYPE tmp1 = widened0 + widened1 {+ 1};
TYPE tmp2 = tmp1 >> 1; // LAST_STMT_INFO
(b) the first two statements are equivalent to:
TYPE widened0 = (TYPE) (NEW_TYPE) UNPROM[0];
TYPE widened1 = (TYPE) (NEW_TYPE) UNPROM[1];
(c) vect_recog_over_widening_pattern has already tried to narrow TYPE
where sensible;
(d) all the operations can be performed correctly at twice the width of
NEW_TYPE, due to the nature of the average operation; and
(e) users of the result of the right shift need only TARGET_PRECISION
bits, where TARGET_PRECISION is no more than half of TYPE's
precision.
Under these circumstances, the only situation in which NEW_TYPE
could be narrower than TARGET_PRECISION is if widened0, widened1
and an addition result are all used more than once. Thus we can
treat any widening of UNPROM[0] and UNPROM[1] to TARGET_PRECISION
as "free", whereas widening the result of the average instruction
from NEW_TYPE to TARGET_PRECISION would be a new operation. It's
therefore better not to go narrower than TARGET_PRECISION. */
if (TYPE_PRECISION (new_type) < target_precision)
new_type = build_nonstandard_integer_type (target_precision,
TYPE_UNSIGNED (new_type));
/* Check for target support. */
tree new_vectype = get_vectype_for_scalar_type (vinfo, new_type);
if (!new_vectype)
return NULL;
bool fallback_p = false;
if (direct_internal_fn_supported_p (ifn, new_vectype, OPTIMIZE_FOR_SPEED))
;
else if (TYPE_UNSIGNED (new_type)
&& optab_for_tree_code (RSHIFT_EXPR, new_vectype, optab_scalar)
&& optab_for_tree_code (PLUS_EXPR, new_vectype, optab_default)
&& optab_for_tree_code (BIT_IOR_EXPR, new_vectype, optab_default)
&& optab_for_tree_code (BIT_AND_EXPR, new_vectype, optab_default))
fallback_p = true;
else
return NULL;
/* The IR requires a valid vector type for the cast result, even though
it's likely to be discarded. */
*type_out = get_vectype_for_scalar_type (vinfo, type);
if (!*type_out)
return NULL;
tree new_var = vect_recog_temp_ssa_var (new_type, NULL);
tree new_ops[2];
vect_convert_inputs (vinfo, last_stmt_info, 2, new_ops, new_type,
unprom, new_vectype);
if (fallback_p)
{
/* As a fallback, generate code for following sequence:
shifted_op0 = new_ops[0] >> 1;
shifted_op1 = new_ops[1] >> 1;
sum_of_shifted = shifted_op0 + shifted_op1;
unmasked_carry = new_ops[0] and/or new_ops[1];
carry = unmasked_carry & 1;
new_var = sum_of_shifted + carry;
*/
tree one_cst = build_one_cst (new_type);
gassign *g;
tree shifted_op0 = vect_recog_temp_ssa_var (new_type, NULL);
g = gimple_build_assign (shifted_op0, RSHIFT_EXPR, new_ops[0], one_cst);
append_pattern_def_seq (vinfo, last_stmt_info, g, new_vectype);
tree shifted_op1 = vect_recog_temp_ssa_var (new_type, NULL);
g = gimple_build_assign (shifted_op1, RSHIFT_EXPR, new_ops[1], one_cst);
append_pattern_def_seq (vinfo, last_stmt_info, g, new_vectype);
tree sum_of_shifted = vect_recog_temp_ssa_var (new_type, NULL);
g = gimple_build_assign (sum_of_shifted, PLUS_EXPR,
shifted_op0, shifted_op1);
append_pattern_def_seq (vinfo, last_stmt_info, g, new_vectype);
tree unmasked_carry = vect_recog_temp_ssa_var (new_type, NULL);
tree_code c = (ifn == IFN_AVG_CEIL) ? BIT_IOR_EXPR : BIT_AND_EXPR;
g = gimple_build_assign (unmasked_carry, c, new_ops[0], new_ops[1]);
append_pattern_def_seq (vinfo, last_stmt_info, g, new_vectype);
tree carry = vect_recog_temp_ssa_var (new_type, NULL);
g = gimple_build_assign (carry, BIT_AND_EXPR, unmasked_carry, one_cst);
append_pattern_def_seq (vinfo, last_stmt_info, g, new_vectype);
g = gimple_build_assign (new_var, PLUS_EXPR, sum_of_shifted, carry);
return vect_convert_output (vinfo, last_stmt_info, type, g, new_vectype);
}
/* Generate the IFN_AVG* call. */
gcall *average_stmt = gimple_build_call_internal (ifn, 2, new_ops[0],
new_ops[1]);
gimple_call_set_lhs (average_stmt, new_var);
gimple_set_location (average_stmt, gimple_location (last_stmt));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"created pattern stmt: %G", average_stmt);
return vect_convert_output (vinfo, last_stmt_info,
type, average_stmt, new_vectype);
}
/* Recognize cases in which the input to a cast is wider than its
output, and the input is fed by a widening operation. Fold this
by removing the unnecessary intermediate widening. E.g.:
unsigned char a;
unsigned int b = (unsigned int) a;
unsigned short c = (unsigned short) b;
-->
unsigned short c = (unsigned short) a;
Although this is rare in input IR, it is an expected side-effect
of the over-widening pattern above.
This is beneficial also for integer-to-float conversions, if the
widened integer has more bits than the float, and if the unwidened
input doesn't. */
static gimple *
vect_recog_cast_forwprop_pattern (vec_info *vinfo,
stmt_vec_info last_stmt_info, tree *type_out)
{
/* Check for a cast, including an integer-to-float conversion. */
gassign *last_stmt = dyn_cast <gassign *> (last_stmt_info->stmt);
if (!last_stmt)
return NULL;
tree_code code = gimple_assign_rhs_code (last_stmt);
if (!CONVERT_EXPR_CODE_P (code) && code != FLOAT_EXPR)
return NULL;
/* Make sure that the rhs is a scalar with a natural bitsize. */
tree lhs = gimple_assign_lhs (last_stmt);
if (!lhs)
return NULL;
tree lhs_type = TREE_TYPE (lhs);
scalar_mode lhs_mode;
if (VECT_SCALAR_BOOLEAN_TYPE_P (lhs_type)
|| !is_a <scalar_mode> (TYPE_MODE (lhs_type), &lhs_mode))
return NULL;
/* Check for a narrowing operation (from a vector point of view). */
tree rhs = gimple_assign_rhs1 (last_stmt);
tree rhs_type = TREE_TYPE (rhs);
if (!INTEGRAL_TYPE_P (rhs_type)
|| VECT_SCALAR_BOOLEAN_TYPE_P (rhs_type)
|| TYPE_PRECISION (rhs_type) <= GET_MODE_BITSIZE (lhs_mode))
return NULL;
/* Try to find an unpromoted input. */
vect_unpromoted_value unprom;
if (!vect_look_through_possible_promotion (vinfo, rhs, &unprom)
|| TYPE_PRECISION (unprom.type) >= TYPE_PRECISION (rhs_type))
return NULL;
/* If the bits above RHS_TYPE matter, make sure that they're the
same when extending from UNPROM as they are when extending from RHS. */
if (!INTEGRAL_TYPE_P (lhs_type)
&& TYPE_SIGN (rhs_type) != TYPE_SIGN (unprom.type))
return NULL;
/* We can get the same result by casting UNPROM directly, to avoid
the unnecessary widening and narrowing. */
vect_pattern_detected ("vect_recog_cast_forwprop_pattern", last_stmt);
*type_out = get_vectype_for_scalar_type (vinfo, lhs_type);
if (!*type_out)
return NULL;
tree new_var = vect_recog_temp_ssa_var (lhs_type, NULL);
gimple *pattern_stmt = gimple_build_assign (new_var, code, unprom.op);
gimple_set_location (pattern_stmt, gimple_location (last_stmt));
return pattern_stmt;
}
/* Try to detect a shift left of a widened input, converting LSHIFT_EXPR
to WIDEN_LSHIFT_EXPR. See vect_recog_widen_op_pattern for details. */
static gimple *
vect_recog_widen_shift_pattern (vec_info *vinfo,
stmt_vec_info last_stmt_info, tree *type_out)
{
return vect_recog_widen_op_pattern (vinfo, last_stmt_info, type_out,
LSHIFT_EXPR, WIDEN_LSHIFT_EXPR, true,
"vect_recog_widen_shift_pattern");
}
/* Detect a rotate pattern wouldn't be otherwise vectorized:
type a_t, b_t, c_t;
S0 a_t = b_t r<< c_t;
Input/Output:
* STMT_VINFO: The stmt from which the pattern search begins,
i.e. the shift/rotate stmt. The original stmt (S0) is replaced
with a sequence:
S1 d_t = -c_t;
S2 e_t = d_t & (B - 1);
S3 f_t = b_t << c_t;
S4 g_t = b_t >> e_t;
S0 a_t = f_t | g_t;
where B is element bitsize of type.
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the rotate
S0 stmt. */
static gimple *
vect_recog_rotate_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
tree oprnd0, oprnd1, lhs, var, var1, var2, vectype, type, stype, def, def2;
gimple *pattern_stmt, *def_stmt;
enum tree_code rhs_code;
enum vect_def_type dt;
optab optab1, optab2;
edge ext_def = NULL;
bool bswap16_p = false;
if (is_gimple_assign (last_stmt))
{
rhs_code = gimple_assign_rhs_code (last_stmt);
switch (rhs_code)
{
case LROTATE_EXPR:
case RROTATE_EXPR:
break;
default:
return NULL;
}
lhs = gimple_assign_lhs (last_stmt);
oprnd0 = gimple_assign_rhs1 (last_stmt);
type = TREE_TYPE (oprnd0);
oprnd1 = gimple_assign_rhs2 (last_stmt);
}
else if (gimple_call_builtin_p (last_stmt, BUILT_IN_BSWAP16))
{
/* __builtin_bswap16 (x) is another form of x r>> 8.
The vectorizer has bswap support, but only if the argument isn't
promoted. */
lhs = gimple_call_lhs (last_stmt);
oprnd0 = gimple_call_arg (last_stmt, 0);
type = TREE_TYPE (oprnd0);
if (!lhs
|| TYPE_PRECISION (TREE_TYPE (lhs)) != 16
|| TYPE_PRECISION (type) <= 16
|| TREE_CODE (oprnd0) != SSA_NAME
|| BITS_PER_UNIT != 8
|| !TYPE_UNSIGNED (TREE_TYPE (lhs)))
return NULL;
stmt_vec_info def_stmt_info;
if (!vect_is_simple_use (oprnd0, vinfo, &dt, &def_stmt_info, &def_stmt))
return NULL;
if (dt != vect_internal_def)
return NULL;
if (gimple_assign_cast_p (def_stmt))
{
def = gimple_assign_rhs1 (def_stmt);
if (INTEGRAL_TYPE_P (TREE_TYPE (def))
&& TYPE_PRECISION (TREE_TYPE (def)) == 16)
oprnd0 = def;
}
type = TREE_TYPE (lhs);
vectype = get_vectype_for_scalar_type (vinfo, type);
if (vectype == NULL_TREE)
return NULL;
if (tree char_vectype = get_same_sized_vectype (char_type_node, vectype))
{
/* The encoding uses one stepped pattern for each byte in the
16-bit word. */
vec_perm_builder elts (TYPE_VECTOR_SUBPARTS (char_vectype), 2, 3);
for (unsigned i = 0; i < 3; ++i)
for (unsigned j = 0; j < 2; ++j)
elts.quick_push ((i + 1) * 2 - j - 1);
vec_perm_indices indices (elts, 1,
TYPE_VECTOR_SUBPARTS (char_vectype));
if (can_vec_perm_const_p (TYPE_MODE (char_vectype), indices))
{
/* vectorizable_bswap can handle the __builtin_bswap16 if we
undo the argument promotion. */
if (!useless_type_conversion_p (type, TREE_TYPE (oprnd0)))
{
def = vect_recog_temp_ssa_var (type, NULL);
def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd0);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
oprnd0 = def;
}
/* Pattern detected. */
vect_pattern_detected ("vect_recog_rotate_pattern", last_stmt);
*type_out = vectype;
/* Pattern supported. Create a stmt to be used to replace the
pattern, with the unpromoted argument. */
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_call (gimple_call_fndecl (last_stmt),
1, oprnd0);
gimple_call_set_lhs (pattern_stmt, var);
gimple_call_set_fntype (as_a <gcall *> (pattern_stmt),
gimple_call_fntype (last_stmt));
return pattern_stmt;
}
}
oprnd1 = build_int_cst (integer_type_node, 8);
rhs_code = LROTATE_EXPR;
bswap16_p = true;
}
else
return NULL;
if (TREE_CODE (oprnd0) != SSA_NAME
|| TYPE_PRECISION (TREE_TYPE (lhs)) != TYPE_PRECISION (type)
|| !INTEGRAL_TYPE_P (type)
|| !TYPE_UNSIGNED (type))
return NULL;
stmt_vec_info def_stmt_info;
if (!vect_is_simple_use (oprnd1, vinfo, &dt, &def_stmt_info, &def_stmt))
return NULL;
if (dt != vect_internal_def
&& dt != vect_constant_def
&& dt != vect_external_def)
return NULL;
vectype = get_vectype_for_scalar_type (vinfo, type);
if (vectype == NULL_TREE)
return NULL;
/* If vector/vector or vector/scalar rotate is supported by the target,
don't do anything here. */
optab1 = optab_for_tree_code (rhs_code, vectype, optab_vector);
if (optab1
&& optab_handler (optab1, TYPE_MODE (vectype)) != CODE_FOR_nothing)
{
use_rotate:
if (bswap16_p)
{
if (!useless_type_conversion_p (type, TREE_TYPE (oprnd0)))
{
def = vect_recog_temp_ssa_var (type, NULL);
def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd0);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
oprnd0 = def;
}
/* Pattern detected. */
vect_pattern_detected ("vect_recog_rotate_pattern", last_stmt);
*type_out = vectype;
/* Pattern supported. Create a stmt to be used to replace the
pattern. */
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign (var, LROTATE_EXPR, oprnd0,
oprnd1);
return pattern_stmt;
}
return NULL;
}
if (is_a <bb_vec_info> (vinfo) || dt != vect_internal_def)
{
optab2 = optab_for_tree_code (rhs_code, vectype, optab_scalar);
if (optab2
&& optab_handler (optab2, TYPE_MODE (vectype)) != CODE_FOR_nothing)
goto use_rotate;
}
/* If vector/vector or vector/scalar shifts aren't supported by the target,
don't do anything here either. */
optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_vector);
if (!optab1
|| optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
|| !optab2
|| optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
{
if (! is_a <bb_vec_info> (vinfo) && dt == vect_internal_def)
return NULL;
optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_scalar);
optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_scalar);
if (!optab1
|| optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
|| !optab2
|| optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
return NULL;
}
*type_out = vectype;
if (bswap16_p && !useless_type_conversion_p (type, TREE_TYPE (oprnd0)))
{
def = vect_recog_temp_ssa_var (type, NULL);
def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd0);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
oprnd0 = def;
}
if (dt == vect_external_def && TREE_CODE (oprnd1) == SSA_NAME)
ext_def = vect_get_external_def_edge (vinfo, oprnd1);
def = NULL_TREE;
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
if (dt != vect_internal_def || TYPE_MODE (TREE_TYPE (oprnd1)) == mode)
def = oprnd1;
else if (def_stmt && gimple_assign_cast_p (def_stmt))
{
tree rhs1 = gimple_assign_rhs1 (def_stmt);
if (TYPE_MODE (TREE_TYPE (rhs1)) == mode
&& TYPE_PRECISION (TREE_TYPE (rhs1))
== TYPE_PRECISION (type))
def = rhs1;
}
if (def == NULL_TREE)
{
def = vect_recog_temp_ssa_var (type, NULL);
def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
}
stype = TREE_TYPE (def);
if (TREE_CODE (def) == INTEGER_CST)
{
if (!tree_fits_uhwi_p (def)
|| tree_to_uhwi (def) >= GET_MODE_PRECISION (mode)
|| integer_zerop (def))
return NULL;
def2 = build_int_cst (stype,
GET_MODE_PRECISION (mode) - tree_to_uhwi (def));
}
else
{
tree vecstype = get_vectype_for_scalar_type (vinfo, stype);
if (vecstype == NULL_TREE)
return NULL;
def2 = vect_recog_temp_ssa_var (stype, NULL);
def_stmt = gimple_build_assign (def2, NEGATE_EXPR, def);
if (ext_def)
{
basic_block new_bb
= gsi_insert_on_edge_immediate (ext_def, def_stmt);
gcc_assert (!new_bb);
}
else
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt, vecstype);
def2 = vect_recog_temp_ssa_var (stype, NULL);
tree mask = build_int_cst (stype, GET_MODE_PRECISION (mode) - 1);
def_stmt = gimple_build_assign (def2, BIT_AND_EXPR,
gimple_assign_lhs (def_stmt), mask);
if (ext_def)
{
basic_block new_bb
= gsi_insert_on_edge_immediate (ext_def, def_stmt);
gcc_assert (!new_bb);
}
else
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt, vecstype);
}
var1 = vect_recog_temp_ssa_var (type, NULL);
def_stmt = gimple_build_assign (var1, rhs_code == LROTATE_EXPR
? LSHIFT_EXPR : RSHIFT_EXPR,
oprnd0, def);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
var2 = vect_recog_temp_ssa_var (type, NULL);
def_stmt = gimple_build_assign (var2, rhs_code == LROTATE_EXPR
? RSHIFT_EXPR : LSHIFT_EXPR,
oprnd0, def2);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
/* Pattern detected. */
vect_pattern_detected ("vect_recog_rotate_pattern", last_stmt);
/* Pattern supported. Create a stmt to be used to replace the pattern. */
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign (var, BIT_IOR_EXPR, var1, var2);
return pattern_stmt;
}
/* Detect a vector by vector shift pattern that wouldn't be otherwise
vectorized:
type a_t;
TYPE b_T, res_T;
S1 a_t = ;
S2 b_T = ;
S3 res_T = b_T op a_t;
where type 'TYPE' is a type with different size than 'type',
and op is <<, >> or rotate.
Also detect cases:
type a_t;
TYPE b_T, c_T, res_T;
S0 c_T = ;
S1 a_t = (type) c_T;
S2 b_T = ;
S3 res_T = b_T op a_t;
Input/Output:
* STMT_VINFO: The stmt from which the pattern search begins,
i.e. the shift/rotate stmt. The original stmt (S3) is replaced
with a shift/rotate which has same type on both operands, in the
second case just b_T op c_T, in the first case with added cast
from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ.
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the shift/rotate
S3 stmt. */
static gimple *
vect_recog_vector_vector_shift_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo,
tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
tree oprnd0, oprnd1, lhs, var;
gimple *pattern_stmt;
enum tree_code rhs_code;
if (!is_gimple_assign (last_stmt))
return NULL;
rhs_code = gimple_assign_rhs_code (last_stmt);
switch (rhs_code)
{
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
break;
default:
return NULL;
}
lhs = gimple_assign_lhs (last_stmt);
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
if (TREE_CODE (oprnd0) != SSA_NAME
|| TREE_CODE (oprnd1) != SSA_NAME
|| TYPE_MODE (TREE_TYPE (oprnd0)) == TYPE_MODE (TREE_TYPE (oprnd1))
|| !type_has_mode_precision_p (TREE_TYPE (oprnd1))
|| TYPE_PRECISION (TREE_TYPE (lhs))
!= TYPE_PRECISION (TREE_TYPE (oprnd0)))
return NULL;
stmt_vec_info def_vinfo = vect_get_internal_def (vinfo, oprnd1);
if (!def_vinfo)
return NULL;
*type_out = get_vectype_for_scalar_type (vinfo, TREE_TYPE (oprnd0));
if (*type_out == NULL_TREE)
return NULL;
tree def = NULL_TREE;
gassign *def_stmt = dyn_cast <gassign *> (def_vinfo->stmt);
if (def_stmt && gimple_assign_cast_p (def_stmt))
{
tree rhs1 = gimple_assign_rhs1 (def_stmt);
if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (TREE_TYPE (oprnd0))
&& TYPE_PRECISION (TREE_TYPE (rhs1))
== TYPE_PRECISION (TREE_TYPE (oprnd0)))
{
if (TYPE_PRECISION (TREE_TYPE (oprnd1))
>= TYPE_PRECISION (TREE_TYPE (rhs1)))
def = rhs1;
else
{
tree mask
= build_low_bits_mask (TREE_TYPE (rhs1),
TYPE_PRECISION (TREE_TYPE (oprnd1)));
def = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
def_stmt = gimple_build_assign (def, BIT_AND_EXPR, rhs1, mask);
tree vecstype = get_vectype_for_scalar_type (vinfo,
TREE_TYPE (rhs1));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt, vecstype);
}
}
}
if (def == NULL_TREE)
{
def = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
}
/* Pattern detected. */
vect_pattern_detected ("vect_recog_vector_vector_shift_pattern", last_stmt);
/* Pattern supported. Create a stmt to be used to replace the pattern. */
var = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
pattern_stmt = gimple_build_assign (var, rhs_code, oprnd0, def);
return pattern_stmt;
}
/* Return true iff the target has a vector optab implementing the operation
CODE on type VECTYPE. */
static bool
target_has_vecop_for_code (tree_code code, tree vectype)
{
optab voptab = optab_for_tree_code (code, vectype, optab_vector);
return voptab
&& optab_handler (voptab, TYPE_MODE (vectype)) != CODE_FOR_nothing;
}
/* Verify that the target has optabs of VECTYPE to perform all the steps
needed by the multiplication-by-immediate synthesis algorithm described by
ALG and VAR. If SYNTH_SHIFT_P is true ensure that vector addition is
present. Return true iff the target supports all the steps. */
static bool
target_supports_mult_synth_alg (struct algorithm *alg, mult_variant var,
tree vectype, bool synth_shift_p)
{
if (alg->op[0] != alg_zero && alg->op[0] != alg_m)
return false;
bool supports_vminus = target_has_vecop_for_code (MINUS_EXPR, vectype);
bool supports_vplus = target_has_vecop_for_code (PLUS_EXPR, vectype);
if (var == negate_variant
&& !target_has_vecop_for_code (NEGATE_EXPR, vectype))
return false;
/* If we must synthesize shifts with additions make sure that vector
addition is available. */
if ((var == add_variant || synth_shift_p) && !supports_vplus)
return false;
for (int i = 1; i < alg->ops; i++)
{
switch (alg->op[i])
{
case alg_shift:
break;
case alg_add_t_m2:
case alg_add_t2_m:
case alg_add_factor:
if (!supports_vplus)
return false;
break;
case alg_sub_t_m2:
case alg_sub_t2_m:
case alg_sub_factor:
if (!supports_vminus)
return false;
break;
case alg_unknown:
case alg_m:
case alg_zero:
case alg_impossible:
return false;
default:
gcc_unreachable ();
}
}
return true;
}
/* Synthesize a left shift of OP by AMNT bits using a series of additions and
putting the final result in DEST. Append all statements but the last into
VINFO. Return the last statement. */
static gimple *
synth_lshift_by_additions (vec_info *vinfo,
tree dest, tree op, HOST_WIDE_INT amnt,
stmt_vec_info stmt_info)
{
HOST_WIDE_INT i;
tree itype = TREE_TYPE (op);
tree prev_res = op;
gcc_assert (amnt >= 0);
for (i = 0; i < amnt; i++)
{
tree tmp_var = (i < amnt - 1) ? vect_recog_temp_ssa_var (itype, NULL)
: dest;
gimple *stmt
= gimple_build_assign (tmp_var, PLUS_EXPR, prev_res, prev_res);
prev_res = tmp_var;
if (i < amnt - 1)
append_pattern_def_seq (vinfo, stmt_info, stmt);
else
return stmt;
}
gcc_unreachable ();
return NULL;
}
/* Helper for vect_synth_mult_by_constant. Apply a binary operation
CODE to operands OP1 and OP2, creating a new temporary SSA var in
the process if necessary. Append the resulting assignment statements
to the sequence in STMT_VINFO. Return the SSA variable that holds the
result of the binary operation. If SYNTH_SHIFT_P is true synthesize
left shifts using additions. */
static tree
apply_binop_and_append_stmt (vec_info *vinfo,
tree_code code, tree op1, tree op2,
stmt_vec_info stmt_vinfo, bool synth_shift_p)
{
if (integer_zerop (op2)
&& (code == LSHIFT_EXPR
|| code == PLUS_EXPR))
{
gcc_assert (TREE_CODE (op1) == SSA_NAME);
return op1;
}
gimple *stmt;
tree itype = TREE_TYPE (op1);
tree tmp_var = vect_recog_temp_ssa_var (itype, NULL);
if (code == LSHIFT_EXPR
&& synth_shift_p)
{
stmt = synth_lshift_by_additions (vinfo, tmp_var, op1,
TREE_INT_CST_LOW (op2), stmt_vinfo);
append_pattern_def_seq (vinfo, stmt_vinfo, stmt);
return tmp_var;
}
stmt = gimple_build_assign (tmp_var, code, op1, op2);
append_pattern_def_seq (vinfo, stmt_vinfo, stmt);
return tmp_var;
}
/* Synthesize a multiplication of OP by an INTEGER_CST VAL using shifts
and simple arithmetic operations to be vectorized. Record the statements
produced in STMT_VINFO and return the last statement in the sequence or
NULL if it's not possible to synthesize such a multiplication.
This function mirrors the behavior of expand_mult_const in expmed.cc but
works on tree-ssa form. */
static gimple *
vect_synth_mult_by_constant (vec_info *vinfo, tree op, tree val,
stmt_vec_info stmt_vinfo)
{
tree itype = TREE_TYPE (op);
machine_mode mode = TYPE_MODE (itype);
struct algorithm alg;
mult_variant variant;
if (!tree_fits_shwi_p (val))
return NULL;
/* Multiplication synthesis by shifts, adds and subs can introduce
signed overflow where the original operation didn't. Perform the
operations on an unsigned type and cast back to avoid this.
In the future we may want to relax this for synthesis algorithms
that we can prove do not cause unexpected overflow. */
bool cast_to_unsigned_p = !TYPE_OVERFLOW_WRAPS (itype);
tree multtype = cast_to_unsigned_p ? unsigned_type_for (itype) : itype;
tree vectype = get_vectype_for_scalar_type (vinfo, multtype);
if (!vectype)
return NULL;
/* Targets that don't support vector shifts but support vector additions
can synthesize shifts that way. */
bool synth_shift_p = !vect_supportable_shift (vinfo, LSHIFT_EXPR, multtype);
HOST_WIDE_INT hwval = tree_to_shwi (val);
/* Use MAX_COST here as we don't want to limit the sequence on rtx costs.
The vectorizer's benefit analysis will decide whether it's beneficial
to do this. */
bool possible = choose_mult_variant (VECTOR_MODE_P (TYPE_MODE (vectype))
? TYPE_MODE (vectype) : mode,
hwval, &alg, &variant, MAX_COST);
if (!possible)
return NULL;
if (!target_supports_mult_synth_alg (&alg, variant, vectype, synth_shift_p))
return NULL;
tree accumulator;
/* Clear out the sequence of statements so we can populate it below. */
gimple *stmt = NULL;
if (cast_to_unsigned_p)
{
tree tmp_op = vect_recog_temp_ssa_var (multtype, NULL);
stmt = gimple_build_assign (tmp_op, CONVERT_EXPR, op);
append_pattern_def_seq (vinfo, stmt_vinfo, stmt);
op = tmp_op;
}
if (alg.op[0] == alg_zero)
accumulator = build_int_cst (multtype, 0);
else
accumulator = op;
bool needs_fixup = (variant == negate_variant)
|| (variant == add_variant);
for (int i = 1; i < alg.ops; i++)
{
tree shft_log = build_int_cst (multtype, alg.log[i]);
tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL);
tree tmp_var = NULL_TREE;
switch (alg.op[i])
{
case alg_shift:
if (synth_shift_p)
stmt
= synth_lshift_by_additions (vinfo, accum_tmp, accumulator,
alg.log[i], stmt_vinfo);
else
stmt = gimple_build_assign (accum_tmp, LSHIFT_EXPR, accumulator,
shft_log);
break;
case alg_add_t_m2:
tmp_var
= apply_binop_and_append_stmt (vinfo, LSHIFT_EXPR, op, shft_log,
stmt_vinfo, synth_shift_p);
stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator,
tmp_var);
break;
case alg_sub_t_m2:
tmp_var = apply_binop_and_append_stmt (vinfo, LSHIFT_EXPR, op,
shft_log, stmt_vinfo,
synth_shift_p);
/* In some algorithms the first step involves zeroing the
accumulator. If subtracting from such an accumulator
just emit the negation directly. */
if (integer_zerop (accumulator))
stmt = gimple_build_assign (accum_tmp, NEGATE_EXPR, tmp_var);
else
stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, accumulator,
tmp_var);
break;
case alg_add_t2_m:
tmp_var
= apply_binop_and_append_stmt (vinfo, LSHIFT_EXPR, accumulator,
shft_log, stmt_vinfo, synth_shift_p);
stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, tmp_var, op);
break;
case alg_sub_t2_m:
tmp_var
= apply_binop_and_append_stmt (vinfo, LSHIFT_EXPR, accumulator,
shft_log, stmt_vinfo, synth_shift_p);
stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, tmp_var, op);
break;
case alg_add_factor:
tmp_var
= apply_binop_and_append_stmt (vinfo, LSHIFT_EXPR, accumulator,
shft_log, stmt_vinfo, synth_shift_p);
stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator,
tmp_var);
break;
case alg_sub_factor:
tmp_var
= apply_binop_and_append_stmt (vinfo, LSHIFT_EXPR, accumulator,
shft_log, stmt_vinfo, synth_shift_p);
stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, tmp_var,
accumulator);
break;
default:
gcc_unreachable ();
}
/* We don't want to append the last stmt in the sequence to stmt_vinfo
but rather return it directly. */
if ((i < alg.ops - 1) || needs_fixup || cast_to_unsigned_p)
append_pattern_def_seq (vinfo, stmt_vinfo, stmt);
accumulator = accum_tmp;
}
if (variant == negate_variant)
{
tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL);
stmt = gimple_build_assign (accum_tmp, NEGATE_EXPR, accumulator);
accumulator = accum_tmp;
if (cast_to_unsigned_p)
append_pattern_def_seq (vinfo, stmt_vinfo, stmt);
}
else if (variant == add_variant)
{
tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL);
stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator, op);
accumulator = accum_tmp;
if (cast_to_unsigned_p)
append_pattern_def_seq (vinfo, stmt_vinfo, stmt);
}
/* Move back to a signed if needed. */
if (cast_to_unsigned_p)
{
tree accum_tmp = vect_recog_temp_ssa_var (itype, NULL);
stmt = gimple_build_assign (accum_tmp, CONVERT_EXPR, accumulator);
}
return stmt;
}
/* Detect multiplication by constant and convert it into a sequence of
shifts and additions, subtractions, negations. We reuse the
choose_mult_variant algorithms from expmed.cc
Input/Output:
STMT_VINFO: The stmt from which the pattern search begins,
i.e. the mult stmt.
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace
the multiplication. */
static gimple *
vect_recog_mult_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
tree oprnd0, oprnd1, vectype, itype;
gimple *pattern_stmt;
if (!is_gimple_assign (last_stmt))
return NULL;
if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
return NULL;
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
itype = TREE_TYPE (oprnd0);
if (TREE_CODE (oprnd0) != SSA_NAME
|| TREE_CODE (oprnd1) != INTEGER_CST
|| !INTEGRAL_TYPE_P (itype)
|| !type_has_mode_precision_p (itype))
return NULL;
vectype = get_vectype_for_scalar_type (vinfo, itype);
if (vectype == NULL_TREE)
return NULL;
/* If the target can handle vectorized multiplication natively,
don't attempt to optimize this. */
optab mul_optab = optab_for_tree_code (MULT_EXPR, vectype, optab_default);
if (mul_optab != unknown_optab)
{
machine_mode vec_mode = TYPE_MODE (vectype);
int icode = (int) optab_handler (mul_optab, vec_mode);
if (icode != CODE_FOR_nothing)
return NULL;
}
pattern_stmt = vect_synth_mult_by_constant (vinfo,
oprnd0, oprnd1, stmt_vinfo);
if (!pattern_stmt)
return NULL;
/* Pattern detected. */
vect_pattern_detected ("vect_recog_mult_pattern", last_stmt);
*type_out = vectype;
return pattern_stmt;
}
/* Detect a signed division by a constant that wouldn't be
otherwise vectorized:
type a_t, b_t;
S1 a_t = b_t / N;
where type 'type' is an integral type and N is a constant.
Similarly handle modulo by a constant:
S4 a_t = b_t % N;
Input/Output:
* STMT_VINFO: The stmt from which the pattern search begins,
i.e. the division stmt. S1 is replaced by if N is a power
of two constant and type is signed:
S3 y_t = b_t < 0 ? N - 1 : 0;
S2 x_t = b_t + y_t;
S1' a_t = x_t >> log2 (N);
S4 is replaced if N is a power of two constant and
type is signed by (where *_T temporaries have unsigned type):
S9 y_T = b_t < 0 ? -1U : 0U;
S8 z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N));
S7 z_t = (type) z_T;
S6 w_t = b_t + z_t;
S5 x_t = w_t & (N - 1);
S4' a_t = x_t - z_t;
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the division
S1 or modulo S4 stmt. */
static gimple *
vect_recog_divmod_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
tree oprnd0, oprnd1, vectype, itype, cond;
gimple *pattern_stmt, *def_stmt;
enum tree_code rhs_code;
optab optab;
tree q;
int dummy_int, prec;
if (!is_gimple_assign (last_stmt))
return NULL;
rhs_code = gimple_assign_rhs_code (last_stmt);
switch (rhs_code)
{
case TRUNC_DIV_EXPR:
case EXACT_DIV_EXPR:
case TRUNC_MOD_EXPR:
break;
default:
return NULL;
}
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
itype = TREE_TYPE (oprnd0);
if (TREE_CODE (oprnd0) != SSA_NAME
|| TREE_CODE (oprnd1) != INTEGER_CST
|| TREE_CODE (itype) != INTEGER_TYPE
|| !type_has_mode_precision_p (itype))
return NULL;
scalar_int_mode itype_mode = SCALAR_INT_TYPE_MODE (itype);
vectype = get_vectype_for_scalar_type (vinfo, itype);
if (vectype == NULL_TREE)
return NULL;
if (optimize_bb_for_size_p (gimple_bb (last_stmt)))
{
/* If the target can handle vectorized division or modulo natively,
don't attempt to optimize this, since native division is likely
to give smaller code. */
optab = optab_for_tree_code (rhs_code, vectype, optab_default);
if (optab != unknown_optab)
{
machine_mode vec_mode = TYPE_MODE (vectype);
int icode = (int) optab_handler (optab, vec_mode);
if (icode != CODE_FOR_nothing)
return NULL;
}
}
prec = TYPE_PRECISION (itype);
if (integer_pow2p (oprnd1))
{
if (TYPE_UNSIGNED (itype) || tree_int_cst_sgn (oprnd1) != 1)
return NULL;
/* Pattern detected. */
vect_pattern_detected ("vect_recog_divmod_pattern", last_stmt);
*type_out = vectype;
/* Check if the target supports this internal function. */
internal_fn ifn = IFN_DIV_POW2;
if (direct_internal_fn_supported_p (ifn, vectype, OPTIMIZE_FOR_SPEED))
{
tree shift = build_int_cst (itype, tree_log2 (oprnd1));
tree var_div = vect_recog_temp_ssa_var (itype, NULL);
gimple *div_stmt = gimple_build_call_internal (ifn, 2, oprnd0, shift);
gimple_call_set_lhs (div_stmt, var_div);
if (rhs_code == TRUNC_MOD_EXPR)
{
append_pattern_def_seq (vinfo, stmt_vinfo, div_stmt);
def_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
LSHIFT_EXPR, var_div, shift);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
pattern_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
MINUS_EXPR, oprnd0,
gimple_assign_lhs (def_stmt));
}
else
pattern_stmt = div_stmt;
gimple_set_location (pattern_stmt, gimple_location (last_stmt));
return pattern_stmt;
}
cond = build2 (LT_EXPR, boolean_type_node, oprnd0,
build_int_cst (itype, 0));
if (rhs_code == TRUNC_DIV_EXPR
|| rhs_code == EXACT_DIV_EXPR)
{
tree var = vect_recog_temp_ssa_var (itype, NULL);
tree shift;
def_stmt
= gimple_build_assign (var, COND_EXPR, cond,
fold_build2 (MINUS_EXPR, itype, oprnd1,
build_int_cst (itype, 1)),
build_int_cst (itype, 0));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
var = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign (var, PLUS_EXPR, oprnd0,
gimple_assign_lhs (def_stmt));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
shift = build_int_cst (itype, tree_log2 (oprnd1));
pattern_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
RSHIFT_EXPR, var, shift);
}
else
{
tree signmask;
if (compare_tree_int (oprnd1, 2) == 0)
{
signmask = vect_recog_temp_ssa_var (itype, NULL);
def_stmt = gimple_build_assign (signmask, COND_EXPR, cond,
build_int_cst (itype, 1),
build_int_cst (itype, 0));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
}
else
{
tree utype
= build_nonstandard_integer_type (prec, 1);
tree vecutype = get_vectype_for_scalar_type (vinfo, utype);
tree shift
= build_int_cst (utype, GET_MODE_BITSIZE (itype_mode)
- tree_log2 (oprnd1));
tree var = vect_recog_temp_ssa_var (utype, NULL);
def_stmt = gimple_build_assign (var, COND_EXPR, cond,
build_int_cst (utype, -1),
build_int_cst (utype, 0));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt, vecutype);
var = vect_recog_temp_ssa_var (utype, NULL);
def_stmt = gimple_build_assign (var, RSHIFT_EXPR,
gimple_assign_lhs (def_stmt),
shift);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt, vecutype);
signmask = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign (signmask, NOP_EXPR, var);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
}
def_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
PLUS_EXPR, oprnd0, signmask);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
def_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
BIT_AND_EXPR, gimple_assign_lhs (def_stmt),
fold_build2 (MINUS_EXPR, itype, oprnd1,
build_int_cst (itype, 1)));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
pattern_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
MINUS_EXPR, gimple_assign_lhs (def_stmt),
signmask);
}
return pattern_stmt;
}
if (prec > HOST_BITS_PER_WIDE_INT
|| integer_zerop (oprnd1))
return NULL;
if (!can_mult_highpart_p (TYPE_MODE (vectype), TYPE_UNSIGNED (itype)))
return NULL;
if (TYPE_UNSIGNED (itype))
{
unsigned HOST_WIDE_INT mh, ml;
int pre_shift, post_shift;
unsigned HOST_WIDE_INT d = (TREE_INT_CST_LOW (oprnd1)
& GET_MODE_MASK (itype_mode));
tree t1, t2, t3, t4;
if (d >= (HOST_WIDE_INT_1U << (prec - 1)))
/* FIXME: Can transform this into oprnd0 >= oprnd1 ? 1 : 0. */
return NULL;
/* Find a suitable multiplier and right shift count
instead of multiplying with D. */
mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);
/* If the suggested multiplier is more than SIZE bits, we can do better
for even divisors, using an initial right shift. */
if (mh != 0 && (d & 1) == 0)
{
pre_shift = ctz_or_zero (d);
mh = choose_multiplier (d >> pre_shift, prec, prec - pre_shift,
&ml, &post_shift, &dummy_int);
gcc_assert (!mh);
}
else
pre_shift = 0;
if (mh != 0)
{
if (post_shift - 1 >= prec)
return NULL;
/* t1 = oprnd0 h* ml;
t2 = oprnd0 - t1;
t3 = t2 >> 1;
t4 = t1 + t3;
q = t4 >> (post_shift - 1); */
t1 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
build_int_cst (itype, ml));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
t2 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign (t2, MINUS_EXPR, oprnd0, t1);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
t3 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign (t3, RSHIFT_EXPR, t2, integer_one_node);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
t4 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign (t4, PLUS_EXPR, t1, t3);
if (post_shift != 1)
{
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
q = vect_recog_temp_ssa_var (itype, NULL);
pattern_stmt
= gimple_build_assign (q, RSHIFT_EXPR, t4,
build_int_cst (itype, post_shift - 1));
}
else
{
q = t4;
pattern_stmt = def_stmt;
}
}
else
{
if (pre_shift >= prec || post_shift >= prec)
return NULL;
/* t1 = oprnd0 >> pre_shift;
t2 = t1 h* ml;
q = t2 >> post_shift; */
if (pre_shift)
{
t1 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign (t1, RSHIFT_EXPR, oprnd0,
build_int_cst (NULL, pre_shift));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
}
else
t1 = oprnd0;
t2 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt = gimple_build_assign (t2, MULT_HIGHPART_EXPR, t1,
build_int_cst (itype, ml));
if (post_shift)
{
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
q = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign (q, RSHIFT_EXPR, t2,
build_int_cst (itype, post_shift));
}
else
q = t2;
pattern_stmt = def_stmt;
}
}
else
{
unsigned HOST_WIDE_INT ml;
int post_shift;
HOST_WIDE_INT d = TREE_INT_CST_LOW (oprnd1);
unsigned HOST_WIDE_INT abs_d;
bool add = false;
tree t1, t2, t3, t4;
/* Give up for -1. */
if (d == -1)
return NULL;
/* Since d might be INT_MIN, we have to cast to
unsigned HOST_WIDE_INT before negating to avoid
undefined signed overflow. */
abs_d = (d >= 0
? (unsigned HOST_WIDE_INT) d
: - (unsigned HOST_WIDE_INT) d);
/* n rem d = n rem -d */
if (rhs_code == TRUNC_MOD_EXPR && d < 0)
{
d = abs_d;
oprnd1 = build_int_cst (itype, abs_d);
}
if (HOST_BITS_PER_WIDE_INT >= prec
&& abs_d == HOST_WIDE_INT_1U << (prec - 1))
/* This case is not handled correctly below. */
return NULL;
choose_multiplier (abs_d, prec, prec - 1, &ml, &post_shift, &dummy_int);
if (ml >= HOST_WIDE_INT_1U << (prec - 1))
{
add = true;
ml |= HOST_WIDE_INT_M1U << (prec - 1);
}
if (post_shift >= prec)
return NULL;
/* t1 = oprnd0 h* ml; */
t1 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
build_int_cst (itype, ml));
if (add)
{
/* t2 = t1 + oprnd0; */
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
t2 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt = gimple_build_assign (t2, PLUS_EXPR, t1, oprnd0);
}
else
t2 = t1;
if (post_shift)
{
/* t3 = t2 >> post_shift; */
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
t3 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt = gimple_build_assign (t3, RSHIFT_EXPR, t2,
build_int_cst (itype, post_shift));
}
else
t3 = t2;
int msb = 1;
value_range r;
get_range_query (cfun)->range_of_expr (r, oprnd0);
if (r.kind () == VR_RANGE)
{
if (!wi::neg_p (r.lower_bound (), TYPE_SIGN (itype)))
msb = 0;
else if (wi::neg_p (r.upper_bound (), TYPE_SIGN (itype)))
msb = -1;
}
if (msb == 0 && d >= 0)
{
/* q = t3; */
q = t3;
pattern_stmt = def_stmt;
}
else
{
/* t4 = oprnd0 >> (prec - 1);
or if we know from VRP that oprnd0 >= 0
t4 = 0;
or if we know from VRP that oprnd0 < 0
t4 = -1; */
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
t4 = vect_recog_temp_ssa_var (itype, NULL);
if (msb != 1)
def_stmt = gimple_build_assign (t4, INTEGER_CST,
build_int_cst (itype, msb));
else
def_stmt = gimple_build_assign (t4, RSHIFT_EXPR, oprnd0,
build_int_cst (itype, prec - 1));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
/* q = t3 - t4; or q = t4 - t3; */
q = vect_recog_temp_ssa_var (itype, NULL);
pattern_stmt = gimple_build_assign (q, MINUS_EXPR, d < 0 ? t4 : t3,
d < 0 ? t3 : t4);
}
}
if (rhs_code == TRUNC_MOD_EXPR)
{
tree r, t1;
/* We divided. Now finish by:
t1 = q * oprnd1;
r = oprnd0 - t1; */
append_pattern_def_seq (vinfo, stmt_vinfo, pattern_stmt);
t1 = vect_recog_temp_ssa_var (itype, NULL);
def_stmt = gimple_build_assign (t1, MULT_EXPR, q, oprnd1);
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt);
r = vect_recog_temp_ssa_var (itype, NULL);
pattern_stmt = gimple_build_assign (r, MINUS_EXPR, oprnd0, t1);
}
/* Pattern detected. */
vect_pattern_detected ("vect_recog_divmod_pattern", last_stmt);
*type_out = vectype;
return pattern_stmt;
}
/* Function vect_recog_mixed_size_cond_pattern
Try to find the following pattern:
type x_t, y_t;
TYPE a_T, b_T, c_T;
loop:
S1 a_T = x_t CMP y_t ? b_T : c_T;
where type 'TYPE' is an integral type which has different size
from 'type'. b_T and c_T are either constants (and if 'TYPE' is wider
than 'type', the constants need to fit into an integer type
with the same width as 'type') or results of conversion from 'type'.
Input:
* STMT_VINFO: The stmt from which the pattern search begins.
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the pattern.
Additionally a def_stmt is added.
a_it = x_t CMP y_t ? b_it : c_it;
a_T = (TYPE) a_it; */
static gimple *
vect_recog_mixed_size_cond_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
tree cond_expr, then_clause, else_clause;
tree type, vectype, comp_vectype, itype = NULL_TREE, vecitype;
gimple *pattern_stmt, *def_stmt;
tree orig_type0 = NULL_TREE, orig_type1 = NULL_TREE;
gimple *def_stmt0 = NULL, *def_stmt1 = NULL;
bool promotion;
tree comp_scalar_type;
if (!is_gimple_assign (last_stmt)
|| gimple_assign_rhs_code (last_stmt) != COND_EXPR
|| STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
return NULL;
cond_expr = gimple_assign_rhs1 (last_stmt);
then_clause = gimple_assign_rhs2 (last_stmt);
else_clause = gimple_assign_rhs3 (last_stmt);
if (!COMPARISON_CLASS_P (cond_expr))
return NULL;
comp_scalar_type = TREE_TYPE (TREE_OPERAND (cond_expr, 0));
comp_vectype = get_vectype_for_scalar_type (vinfo, comp_scalar_type);
if (comp_vectype == NULL_TREE)
return NULL;
type = TREE_TYPE (gimple_assign_lhs (last_stmt));
if (types_compatible_p (type, comp_scalar_type)
|| ((TREE_CODE (then_clause) != INTEGER_CST
|| TREE_CODE (else_clause) != INTEGER_CST)
&& !INTEGRAL_TYPE_P (comp_scalar_type))
|| !INTEGRAL_TYPE_P (type))
return NULL;
if ((TREE_CODE (then_clause) != INTEGER_CST
&& !type_conversion_p (vinfo, then_clause, false,
&orig_type0, &def_stmt0, &promotion))
|| (TREE_CODE (else_clause) != INTEGER_CST
&& !type_conversion_p (vinfo, else_clause, false,
&orig_type1, &def_stmt1, &promotion)))
return NULL;
if (orig_type0 && orig_type1
&& !types_compatible_p (orig_type0, orig_type1))
return NULL;
if (orig_type0)
{
if (!types_compatible_p (orig_type0, comp_scalar_type))
return NULL;
then_clause = gimple_assign_rhs1 (def_stmt0);
itype = orig_type0;
}
if (orig_type1)
{
if (!types_compatible_p (orig_type1, comp_scalar_type))
return NULL;
else_clause = gimple_assign_rhs1 (def_stmt1);
itype = orig_type1;
}
HOST_WIDE_INT cmp_mode_size
= GET_MODE_UNIT_BITSIZE (TYPE_MODE (comp_vectype));
scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
if (GET_MODE_BITSIZE (type_mode) == cmp_mode_size)
return NULL;
vectype = get_vectype_for_scalar_type (vinfo, type);
if (vectype == NULL_TREE)
return NULL;
if (expand_vec_cond_expr_p (vectype, comp_vectype, TREE_CODE (cond_expr)))
return NULL;
if (itype == NULL_TREE)
itype = build_nonstandard_integer_type (cmp_mode_size,
TYPE_UNSIGNED (type));
if (itype == NULL_TREE
|| GET_MODE_BITSIZE (SCALAR_TYPE_MODE (itype)) != cmp_mode_size)
return NULL;
vecitype = get_vectype_for_scalar_type (vinfo, itype);
if (vecitype == NULL_TREE)
return NULL;
if (!expand_vec_cond_expr_p (vecitype, comp_vectype, TREE_CODE (cond_expr)))
return NULL;
if (GET_MODE_BITSIZE (type_mode) > cmp_mode_size)
{
if ((TREE_CODE (then_clause) == INTEGER_CST
&& !int_fits_type_p (then_clause, itype))
|| (TREE_CODE (else_clause) == INTEGER_CST
&& !int_fits_type_p (else_clause, itype)))
return NULL;
}
def_stmt = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
COND_EXPR, unshare_expr (cond_expr),
fold_convert (itype, then_clause),
fold_convert (itype, else_clause));
pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
NOP_EXPR, gimple_assign_lhs (def_stmt));
append_pattern_def_seq (vinfo, stmt_vinfo, def_stmt, vecitype);
*type_out = vectype;
vect_pattern_detected ("vect_recog_mixed_size_cond_pattern", last_stmt);
return pattern_stmt;
}
/* Helper function of vect_recog_bool_pattern. Called recursively, return
true if bool VAR can and should be optimized that way. Assume it shouldn't
in case it's a result of a comparison which can be directly vectorized into
a vector comparison. Fills in STMTS with all stmts visited during the
walk. */
static bool
check_bool_pattern (tree var, vec_info *vinfo, hash_set<gimple *> &stmts)
{
tree rhs1;
enum tree_code rhs_code;
stmt_vec_info def_stmt_info = vect_get_internal_def (vinfo, var);
if (!def_stmt_info)
return false;
gassign *def_stmt = dyn_cast <gassign *> (def_stmt_info->stmt);
if (!def_stmt)
return false;
if (stmts.contains (def_stmt))
return true;
rhs1 = gimple_assign_rhs1 (def_stmt);
rhs_code = gimple_assign_rhs_code (def_stmt);
switch (rhs_code)
{
case SSA_NAME:
if (! check_bool_pattern (rhs1, vinfo, stmts))
return false;
break;
CASE_CONVERT:
if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (rhs1)))
return false;
if (! check_bool_pattern (rhs1, vinfo, stmts))
return false;
break;
case BIT_NOT_EXPR:
if (! check_bool_pattern (rhs1, vinfo, stmts))
return false;
break;
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
if (! check_bool_pattern (rhs1, vinfo, stmts)
|| ! check_bool_pattern (gimple_assign_rhs2 (def_stmt), vinfo, stmts))
return false;
break;
default:
if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
{
tree vecitype, comp_vectype;
/* If the comparison can throw, then is_gimple_condexpr will be
false and we can't make a COND_EXPR/VEC_COND_EXPR out of it. */
if (stmt_could_throw_p (cfun, def_stmt))
return false;
comp_vectype = get_vectype_for_scalar_type (vinfo, TREE_TYPE (rhs1));
if (comp_vectype == NULL_TREE)
return false;
tree mask_type = get_mask_type_for_scalar_type (vinfo,
TREE_TYPE (rhs1));
if (mask_type
&& expand_vec_cmp_expr_p (comp_vectype, mask_type, rhs_code))
return false;
if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE)
{
scalar_mode mode = SCALAR_TYPE_MODE (TREE_TYPE (rhs1));
tree itype
= build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
vecitype = get_vectype_for_scalar_type (vinfo, itype);
if (vecitype == NULL_TREE)
return false;
}
else
vecitype = comp_vectype;
if (! expand_vec_cond_expr_p (vecitype, comp_vectype, rhs_code))
return false;
}
else
return false;
break;
}
bool res = stmts.add (def_stmt);
/* We can't end up recursing when just visiting SSA defs but not PHIs. */
gcc_assert (!res);
return true;
}
/* Helper function of adjust_bool_pattern. Add a cast to TYPE to a previous
stmt (SSA_NAME_DEF_STMT of VAR) adding a cast to STMT_INFOs
pattern sequence. */
static tree
adjust_bool_pattern_cast (vec_info *vinfo,
tree type, tree var, stmt_vec_info stmt_info)
{
gimple *cast_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
NOP_EXPR, var);
append_pattern_def_seq (vinfo, stmt_info, cast_stmt,
get_vectype_for_scalar_type (vinfo, type));
return gimple_assign_lhs (cast_stmt);
}
/* Helper function of vect_recog_bool_pattern. Do the actual transformations.
VAR is an SSA_NAME that should be transformed from bool to a wider integer
type, OUT_TYPE is the desired final integer type of the whole pattern.
STMT_INFO is the info of the pattern root and is where pattern stmts should
be associated with. DEFS is a map of pattern defs. */
static void
adjust_bool_pattern (vec_info *vinfo, tree var, tree out_type,
stmt_vec_info stmt_info, hash_map <tree, tree> &defs)
{
gimple *stmt = SSA_NAME_DEF_STMT (var);
enum tree_code rhs_code, def_rhs_code;
tree itype, cond_expr, rhs1, rhs2, irhs1, irhs2;
location_t loc;
gimple *pattern_stmt, *def_stmt;
tree trueval = NULL_TREE;
rhs1 = gimple_assign_rhs1 (stmt);
rhs2 = gimple_assign_rhs2 (stmt);
rhs_code = gimple_assign_rhs_code (stmt);
loc = gimple_location (stmt);
switch (rhs_code)
{
case SSA_NAME:
CASE_CONVERT:
irhs1 = *defs.get (rhs1);
itype = TREE_TYPE (irhs1);
pattern_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
SSA_NAME, irhs1);
break;
case BIT_NOT_EXPR:
irhs1 = *defs.get (rhs1);
itype = TREE_TYPE (irhs1);
pattern_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
BIT_XOR_EXPR, irhs1, build_int_cst (itype, 1));
break;
case BIT_AND_EXPR:
/* Try to optimize x = y & (a < b ? 1 : 0); into
x = (a < b ? y : 0);
E.g. for:
bool a_b, b_b, c_b;
TYPE d_T;
S1 a_b = x1 CMP1 y1;
S2 b_b = x2 CMP2 y2;
S3 c_b = a_b & b_b;
S4 d_T = (TYPE) c_b;
we would normally emit:
S1' a_T = x1 CMP1 y1 ? 1 : 0;
S2' b_T = x2 CMP2 y2 ? 1 : 0;
S3' c_T = a_T & b_T;
S4' d_T = c_T;
but we can save one stmt by using the
result of one of the COND_EXPRs in the other COND_EXPR and leave
BIT_AND_EXPR stmt out:
S1' a_T = x1 CMP1 y1 ? 1 : 0;
S3' c_T = x2 CMP2 y2 ? a_T : 0;
S4' f_T = c_T;
At least when VEC_COND_EXPR is implemented using masks
cond ? 1 : 0 is as expensive as cond ? var : 0, in both cases it
computes the comparison masks and ands it, in one case with
all ones vector, in the other case with a vector register.
Don't do this for BIT_IOR_EXPR, because cond ? 1 : var; is
often more expensive. */
def_stmt = SSA_NAME_DEF_STMT (rhs2);
def_rhs_code = gimple_assign_rhs_code (def_stmt);
if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
{
irhs1 = *defs.get (rhs1);
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
if (TYPE_PRECISION (TREE_TYPE (irhs1))
== GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (def_rhs1))))
{
rhs_code = def_rhs_code;
rhs1 = def_rhs1;
rhs2 = gimple_assign_rhs2 (def_stmt);
trueval = irhs1;
goto do_compare;
}
else
irhs2 = *defs.get (rhs2);
goto and_ior_xor;
}
def_stmt = SSA_NAME_DEF_STMT (rhs1);
def_rhs_code = gimple_assign_rhs_code (def_stmt);
if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
{
irhs2 = *defs.get (rhs2);
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
if (TYPE_PRECISION (TREE_TYPE (irhs2))
== GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (def_rhs1))))
{
rhs_code = def_rhs_code;
rhs1 = def_rhs1;
rhs2 = gimple_assign_rhs2 (def_stmt);
trueval = irhs2;
goto do_compare;
}
else
irhs1 = *defs.get (rhs1);
goto and_ior_xor;
}
/* FALLTHRU */
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
irhs1 = *defs.get (rhs1);
irhs2 = *defs.get (rhs2);
and_ior_xor:
if (TYPE_PRECISION (TREE_TYPE (irhs1))
!= TYPE_PRECISION (TREE_TYPE (irhs2)))
{
int prec1 = TYPE_PRECISION (TREE_TYPE (irhs1));
int prec2 = TYPE_PRECISION (TREE_TYPE (irhs2));
int out_prec = TYPE_PRECISION (out_type);
if (absu_hwi (out_prec - prec1) < absu_hwi (out_prec - prec2))
irhs2 = adjust_bool_pattern_cast (vinfo, TREE_TYPE (irhs1), irhs2,
stmt_info);
else if (absu_hwi (out_prec - prec1) > absu_hwi (out_prec - prec2))
irhs1 = adjust_bool_pattern_cast (vinfo, TREE_TYPE (irhs2), irhs1,
stmt_info);
else
{
irhs1 = adjust_bool_pattern_cast (vinfo,
out_type, irhs1, stmt_info);
irhs2 = adjust_bool_pattern_cast (vinfo,
out_type, irhs2, stmt_info);
}
}
itype = TREE_TYPE (irhs1);
pattern_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
rhs_code, irhs1, irhs2);
break;
default:
do_compare:
gcc_assert (TREE_CODE_CLASS (rhs_code) == tcc_comparison);
if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
|| !TYPE_UNSIGNED (TREE_TYPE (rhs1))
|| maybe_ne (TYPE_PRECISION (TREE_TYPE (rhs1)),
GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1)))))
{
scalar_mode mode = SCALAR_TYPE_MODE (TREE_TYPE (rhs1));
itype
= build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
}
else
itype = TREE_TYPE (rhs1);
cond_expr = build2_loc (loc, rhs_code, itype, rhs1, rhs2);
if (trueval == NULL_TREE)
trueval = build_int_cst (itype, 1);
else
gcc_checking_assert (useless_type_conversion_p (itype,
TREE_TYPE (trueval)));
pattern_stmt
= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
COND_EXPR, cond_expr, trueval,
build_int_cst (itype, 0));
break;
}
gimple_set_location (pattern_stmt, loc);
append_pattern_def_seq (vinfo, stmt_info, pattern_stmt,
get_vectype_for_scalar_type (vinfo, itype));
defs.put (var, gimple_assign_lhs (pattern_stmt));
}
/* Comparison function to qsort a vector of gimple stmts after UID. */
static int
sort_after_uid (const void *p1, const void *p2)
{
const gimple *stmt1 = *(const gimple * const *)p1;
const gimple *stmt2 = *(const gimple * const *)p2;
return gimple_uid (stmt1) - gimple_uid (stmt2);
}
/* Create pattern stmts for all stmts participating in the bool pattern
specified by BOOL_STMT_SET and its root STMT_INFO with the desired type
OUT_TYPE. Return the def of the pattern root. */
static tree
adjust_bool_stmts (vec_info *vinfo, hash_set <gimple *> &bool_stmt_set,
tree out_type, stmt_vec_info stmt_info)
{
/* Gather original stmts in the bool pattern in their order of appearance
in the IL. */
auto_vec<gimple *> bool_stmts (bool_stmt_set.elements ());
for (hash_set <gimple *>::iterator i = bool_stmt_set.begin ();
i != bool_stmt_set.end (); ++i)
bool_stmts.quick_push (*i);
bool_stmts.qsort (sort_after_uid);
/* Now process them in that order, producing pattern stmts. */
hash_map <tree, tree> defs;
for (unsigned i = 0; i < bool_stmts.length (); ++i)
adjust_bool_pattern (vinfo, gimple_assign_lhs (bool_stmts[i]),
out_type, stmt_info, defs);
/* Pop the last pattern seq stmt and install it as pattern root for STMT. */
gimple *pattern_stmt
= gimple_seq_last_stmt (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
return gimple_assign_lhs (pattern_stmt);
}
/* Return the proper type for converting bool VAR into
an integer value or NULL_TREE if no such type exists.
The type is chosen so that the converted value has the
same number of elements as VAR's vector type. */
static tree
integer_type_for_mask (tree var, vec_info *vinfo)
{
if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (var)))
return NULL_TREE;
stmt_vec_info def_stmt_info = vect_get_internal_def (vinfo, var);
if (!def_stmt_info || !vect_use_mask_type_p (def_stmt_info))
return NULL_TREE;
return build_nonstandard_integer_type (def_stmt_info->mask_precision, 1);
}
/* Function vect_recog_bool_pattern
Try to find pattern like following:
bool a_b, b_b, c_b, d_b, e_b;
TYPE f_T;
loop:
S1 a_b = x1 CMP1 y1;
S2 b_b = x2 CMP2 y2;
S3 c_b = a_b & b_b;
S4 d_b = x3 CMP3 y3;
S5 e_b = c_b | d_b;
S6 f_T = (TYPE) e_b;
where type 'TYPE' is an integral type. Or a similar pattern
ending in
S6 f_Y = e_b ? r_Y : s_Y;
as results from if-conversion of a complex condition.
Input:
* STMT_VINFO: The stmt at the end from which the pattern
search begins, i.e. cast of a bool to
an integer type.
Output:
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the pattern.
Assuming size of TYPE is the same as size of all comparisons
(otherwise some casts would be added where needed), the above
sequence we create related pattern stmts:
S1' a_T = x1 CMP1 y1 ? 1 : 0;
S3' c_T = x2 CMP2 y2 ? a_T : 0;
S4' d_T = x3 CMP3 y3 ? 1 : 0;
S5' e_T = c_T | d_T;
S6' f_T = e_T;
Instead of the above S3' we could emit:
S2' b_T = x2 CMP2 y2 ? 1 : 0;
S3' c_T = a_T | b_T;
but the above is more efficient. */
static gimple *
vect_recog_bool_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
enum tree_code rhs_code;
tree var, lhs, rhs, vectype;
gimple *pattern_stmt;
if (!is_gimple_assign (last_stmt))
return NULL;
var = gimple_assign_rhs1 (last_stmt);
lhs = gimple_assign_lhs (last_stmt);
rhs_code = gimple_assign_rhs_code (last_stmt);
if (rhs_code == VIEW_CONVERT_EXPR)
var = TREE_OPERAND (var, 0);
if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (var)))
return NULL;
hash_set<gimple *> bool_stmts;
if (CONVERT_EXPR_CODE_P (rhs_code)
|| rhs_code == VIEW_CONVERT_EXPR)
{
if (! INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (lhs)))
return NULL;
vectype = get_vectype_for_scalar_type (vinfo, TREE_TYPE (lhs));
if (check_bool_pattern (var, vinfo, bool_stmts))
{
rhs = adjust_bool_stmts (vinfo, bool_stmts,
TREE_TYPE (lhs), stmt_vinfo);
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
else
pattern_stmt
= gimple_build_assign (lhs, NOP_EXPR, rhs);
}
else
{
tree type = integer_type_for_mask (var, vinfo);
tree cst0, cst1, tmp;
if (!type)
return NULL;
/* We may directly use cond with narrowed type to avoid
multiple cond exprs with following result packing and
perform single cond with packed mask instead. In case
of widening we better make cond first and then extract
results. */
if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (lhs)))
type = TREE_TYPE (lhs);
cst0 = build_int_cst (type, 0);
cst1 = build_int_cst (type, 1);
tmp = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign (tmp, COND_EXPR, var, cst1, cst0);
if (!useless_type_conversion_p (type, TREE_TYPE (lhs)))
{
tree new_vectype = get_vectype_for_scalar_type (vinfo, type);
append_pattern_def_seq (vinfo, stmt_vinfo,
pattern_stmt, new_vectype);
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
pattern_stmt = gimple_build_assign (lhs, CONVERT_EXPR, tmp);
}
}
*type_out = vectype;
vect_pattern_detected ("vect_recog_bool_pattern", last_stmt);
return pattern_stmt;
}
else if (rhs_code == COND_EXPR
&& TREE_CODE (var) == SSA_NAME)
{
vectype = get_vectype_for_scalar_type (vinfo, TREE_TYPE (lhs));
if (vectype == NULL_TREE)
return NULL;
/* Build a scalar type for the boolean result that when
vectorized matches the vector type of the result in
size and number of elements. */
unsigned prec
= vector_element_size (tree_to_poly_uint64 (TYPE_SIZE (vectype)),
TYPE_VECTOR_SUBPARTS (vectype));
tree type
= build_nonstandard_integer_type (prec,
TYPE_UNSIGNED (TREE_TYPE (var)));
if (get_vectype_for_scalar_type (vinfo, type) == NULL_TREE)
return NULL;
if (!check_bool_pattern (var, vinfo, bool_stmts))
return NULL;
rhs = adjust_bool_stmts (vinfo, bool_stmts, type, stmt_vinfo);
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
pattern_stmt
= gimple_build_assign (lhs, COND_EXPR,
build2 (NE_EXPR, boolean_type_node,
rhs, build_int_cst (type, 0)),
gimple_assign_rhs2 (last_stmt),
gimple_assign_rhs3 (last_stmt));
*type_out = vectype;
vect_pattern_detected ("vect_recog_bool_pattern", last_stmt);
return pattern_stmt;
}
else if (rhs_code == SSA_NAME
&& STMT_VINFO_DATA_REF (stmt_vinfo))
{
stmt_vec_info pattern_stmt_info;
tree nunits_vectype;
if (!vect_get_vector_types_for_stmt (vinfo, stmt_vinfo, &vectype,
&nunits_vectype)
|| !VECTOR_MODE_P (TYPE_MODE (vectype)))
return NULL;
if (check_bool_pattern (var, vinfo, bool_stmts))
rhs = adjust_bool_stmts (vinfo, bool_stmts,
TREE_TYPE (vectype), stmt_vinfo);
else
{
tree type = integer_type_for_mask (var, vinfo);
tree cst0, cst1, new_vectype;
if (!type)
return NULL;
if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (vectype)))
type = TREE_TYPE (vectype);
cst0 = build_int_cst (type, 0);
cst1 = build_int_cst (type, 1);
new_vectype = get_vectype_for_scalar_type (vinfo, type);
rhs = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign (rhs, COND_EXPR, var, cst1, cst0);
append_pattern_def_seq (vinfo, stmt_vinfo, pattern_stmt, new_vectype);
}
lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vectype), lhs);
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
{
tree rhs2 = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
gimple *cast_stmt = gimple_build_assign (rhs2, NOP_EXPR, rhs);
append_pattern_def_seq (vinfo, stmt_vinfo, cast_stmt);
rhs = rhs2;
}
pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
pattern_stmt_info = vinfo->add_stmt (pattern_stmt);
vinfo->move_dr (pattern_stmt_info, stmt_vinfo);
*type_out = vectype;
vect_pattern_detected ("vect_recog_bool_pattern", last_stmt);
return pattern_stmt;
}
else
return NULL;
}
/* A helper for vect_recog_mask_conversion_pattern. Build
conversion of MASK to a type suitable for masking VECTYPE.
Built statement gets required vectype and is appended to
a pattern sequence of STMT_VINFO.
Return converted mask. */
static tree
build_mask_conversion (vec_info *vinfo,
tree mask, tree vectype, stmt_vec_info stmt_vinfo)
{
gimple *stmt;
tree masktype, tmp;
masktype = truth_type_for (vectype);
tmp = vect_recog_temp_ssa_var (TREE_TYPE (masktype), NULL);
stmt = gimple_build_assign (tmp, CONVERT_EXPR, mask);
append_pattern_def_seq (vinfo, stmt_vinfo,
stmt, masktype, TREE_TYPE (vectype));
return tmp;
}
/* Function vect_recog_mask_conversion_pattern
Try to find statements which require boolean type
converison. Additional conversion statements are
added to handle such cases. For example:
bool m_1, m_2, m_3;
int i_4, i_5;
double d_6, d_7;
char c_1, c_2, c_3;
S1 m_1 = i_4 > i_5;
S2 m_2 = d_6 < d_7;
S3 m_3 = m_1 & m_2;
S4 c_1 = m_3 ? c_2 : c_3;
Will be transformed into:
S1 m_1 = i_4 > i_5;
S2 m_2 = d_6 < d_7;
S3'' m_2' = (_Bool[bitsize=32])m_2
S3' m_3' = m_1 & m_2';
S4'' m_3'' = (_Bool[bitsize=8])m_3'
S4' c_1' = m_3'' ? c_2 : c_3; */
static gimple *
vect_recog_mask_conversion_pattern (vec_info *vinfo,
stmt_vec_info stmt_vinfo, tree *type_out)
{
gimple *last_stmt = stmt_vinfo->stmt;
enum tree_code rhs_code;
tree lhs = NULL_TREE, rhs1, rhs2, tmp, rhs1_type, rhs2_type;
tree vectype1, vectype2;
stmt_vec_info pattern_stmt_info;
tree rhs1_op0 = NULL_TREE, rhs1_op1 = NULL_TREE;
tree rhs1_op0_type = NULL_TREE, rhs1_op1_type = NULL_TREE;
/* Check for MASK_LOAD ans MASK_STORE calls requiring mask conversion. */
if (is_gimple_call (last_stmt)
&& gimple_call_internal_p (last_stmt))
{
gcall *pattern_stmt;
internal_fn ifn = gimple_call_internal_fn (last_stmt);
int mask_argno = internal_fn_mask_index (ifn);
if (mask_argno < 0)
return NULL;
bool store_p = internal_store_fn_p (ifn);
if (store_p)
{
int rhs_index = internal_fn_stored_value_index (ifn);
tree rhs = gimple_call_arg (last_stmt, rhs_index);
vectype1 = get_vectype_for_scalar_type (vinfo, TREE_TYPE (rhs));
}
else
{
lhs = gimple_call_lhs (last_stmt);
if (!lhs)
return NULL;
vectype1 = get_vectype_for_scalar_type (vinfo, TREE_TYPE (lhs));
}
tree mask_arg = gimple_call_arg (last_stmt, mask_argno);
tree mask_arg_type = integer_type_for_mask (mask_arg, vinfo);
if (!mask_arg_type)
return NULL;
vectype2 = get_mask_type_for_scalar_type (vinfo, mask_arg_type);
if (!vectype1 || !vectype2
|| known_eq (TYPE_VECTOR_SUBPARTS (vectype1),
TYPE_VECTOR_SUBPARTS (vectype2)))
return NULL;
tmp = build_mask_conversion (vinfo, mask_arg, vectype1, stmt_vinfo);
auto_vec<tree, 8> args;
unsigned int nargs = gimple_call_num_args (last_stmt);
args.safe_grow (nargs, true);
for (unsigned int i = 0; i < nargs; ++i)
args[i] = ((int) i == mask_argno
? tmp
: gimple_call_arg (last_stmt, i));
pattern_stmt = gimple_build_call_internal_vec (ifn, args);
if (!store_p)
{
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
gimple_call_set_lhs (pattern_stmt, lhs);
}
gimple_call_set_nothrow (pattern_stmt, true);
pattern_stmt_info = vinfo->add_stmt (pattern_stmt);
if (STMT_VINFO_DATA_REF (stmt_vinfo))
vinfo->move_dr (pattern_stmt_info, stmt_vinfo);
*type_out = vectype1;
vect_pattern_detected ("vect_recog_mask_conversion_pattern", last_stmt);
return pattern_stmt;
}
if (!is_gimple_assign (last_stmt))
return NULL;
gimple *pattern_stmt;
lhs = gimple_assign_lhs (last_stmt);
rhs1 = gimple_assign_rhs1 (last_stmt);
rhs_code = gimple_assign_rhs_code (last_stmt);
/* Check for cond expression requiring mask conversion. */
if (rhs_code == COND_EXPR)
{
vectype1 = get_vectype_for_scalar_type (vinfo, TREE_TYPE (lhs));
if (TREE_CODE (rhs1) == SSA_NAME)
{
rhs1_type = integer_type_for_mask (rhs1, vinfo);
if (!rhs1_type)
return NULL;
}
else if (COMPARISON_CLASS_P (rhs1))
{
/* Check whether we're comparing scalar booleans and (if so)
whether a better mask type exists than the mask associated
with boolean-sized elements. This avoids unnecessary packs
and unpacks if the booleans are set from comparisons of
wider types. E.g. in:
int x1, x2, x3, x4, y1, y1;
...
bool b1 = (x1 == x2);
bool b2 = (x3 == x4);
... = b1 == b2 ? y1 : y2;
it is better for b1 and b2 to use the mask type associated
with int elements rather bool (byte) elements. */
rhs1_op0 = TREE_OPERAND (rhs1, 0);
rhs1_op1 = TREE_OPERAND (rhs1, 1);
if (!rhs1_op0 || !rhs1_op1)
return NULL;
rhs1_op0_type = integer_type_for_mask (rhs1_op0, vinfo);
rhs1_op1_type = integer_type_for_mask (rhs1_op1, vinfo);
if (!rhs1_op0_type)
rhs1_type = TREE_TYPE (rhs1_op0);
else if (!rhs1_op1_type)
rhs1_type = TREE_TYPE (rhs1_op1);
else if (TYPE_PRECISION (rhs1_op0_type)
!= TYPE_PRECISION (rhs1_op1_type))
{
int tmp0 = (int) TYPE_PRECISION (rhs1_op0_type)
- (int) TYPE_PRECISION (TREE_TYPE (lhs));
int tmp1 = (int) TYPE_PRECISION (rhs1_op1_type)
- (int) TYPE_PRECISION (TREE_TYPE (lhs));
if ((tmp0 > 0 && tmp1 > 0) || (tmp0 < 0 && tmp1 < 0))
{
if (abs (tmp0) > abs (tmp1))
rhs1_type = rhs1_op1_type;
else
rhs1_type = rhs1_op0_type;
}
else
rhs1_type = build_nonstandard_integer_type
(TYPE_PRECISION (TREE_TYPE (lhs)), 1);
}
else
rhs1_type = rhs1_op0_type;
}
else
return NULL;
vectype2 = get_mask_type_for_scalar_type (vinfo, rhs1_type);
if (!vectype1 || !vectype2)
return NULL;
/* Continue if a conversion is needed. Also continue if we have
a comparison whose vector type would normally be different from
VECTYPE2 when considered in isolation. In that case we'll
replace the comparison with an SSA name (so that we can record
its vector type) and behave as though the comparison was an SSA
name from the outset. */
if (known_eq (TYPE_VECTOR_SUBPARTS (vectype1),
TYPE_VECTOR_SUBPARTS (vectype2))
&& !rhs1_op0_type
&& !rhs1_op1_type)
return NULL;
/* If rhs1 is invariant and we can promote it leave the COND_EXPR
in place, we can handle it in vectorizable_condition. This avoids
unnecessary promotion stmts and increased vectorization factor. */
if (COMPARISON_CLASS_P (rhs1)
&& INTEGRAL_TYPE_P (rhs1_type)
&& known_le (TYPE_VECTOR_SUBPARTS (vectype1),
TYPE_VECTOR_SUBPARTS (vectype2)))
{
enum vect_def_type dt;
if (vect_is_simple_use (TREE_OPERAND (rhs1, 0), vinfo, &dt)
&& dt == vect_external_def
&& vect_is_simple_use (TREE_OPERAND (rhs1, 1), vinfo, &dt)
&& (dt == vect_external_def
|| dt == vect_constant_def))
{
tree wide_scalar_type = build_nonstandard_integer_type
(vector_element_bits (vectype1), TYPE_UNSIGNED (rhs1_type));
tree vectype3 = get_vectype_for_scalar_type (vinfo,
wide_scalar_type);
if (expand_vec_cond_expr_p (vectype1, vectype3, TREE_CODE (rhs1)))
return NULL;
}
}
/* If rhs1 is a comparison we need to move it into a
separate statement. */
if (TREE_CODE (rhs1) != SSA_NAME)
{
tmp = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
if (rhs1_op0_type
&& TYPE_PRECISION (rhs1_op0_type) != TYPE_PRECISION (rhs1_type))
rhs1_op0 = build_mask_conversion (vinfo, rhs1_op0,
vectype2, stmt_vinfo);
if (rhs1_op1_type
&& TYPE_PRECISION (rhs1_op1_type) != TYPE_PRECISION (rhs1_type))
rhs1_op1 = build_mask_conversion (vinfo, rhs1_op1,
vectype2, stmt_vinfo);
pattern_stmt = gimple_build_assign (tmp, TREE_CODE (rhs1),
rhs1_op0, rhs1_op1);
rhs1 = tmp;
append_pattern_def_seq (vinfo, stmt_vinfo, pattern_stmt, vectype2,
rhs1_type);
}
if (maybe_ne (TYPE_VECTOR_SUBPARTS (vectype1),
TYPE_VECTOR_SUBPARTS (vectype2)))
tmp = build_mask_conversion (vinfo, rhs1, vectype1, stmt_vinfo);
else
tmp = rhs1;
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
pattern_stmt = gimple_build_assign (lhs, COND_EXPR, tmp,
gimple_assign_rhs2 (last_stmt),
gimple_assign_rhs3 (last_stmt));
*type_out = vectype1;
vect_pattern_detected ("vect_recog_mask_conversion_pattern", last_stmt);
return pattern_stmt;
}
/* Now check for binary boolean operations requiring conversion for
one of operands. */
if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (lhs)))
return NULL;
if (rhs_code != BIT_IOR_EXPR
&& rhs_code != BIT_XOR_EXPR
&& rhs_code != BIT_AND_EXPR
&& TREE_CODE_CLASS (rhs_code) != tcc_comparison)
return NULL;
rhs2 = gimple_assign_rhs2 (last_stmt);
rhs1_type = integer_type_for_mask (rhs1, vinfo);
rhs2_type = integer_type_for_mask (rhs2, vinfo);
if (!rhs1_type || !rhs2_type
|| TYPE_PRECISION (rhs1_type) == TYPE_PRECISION (rhs2_type))
return NULL;
if (TYPE_PRECISION (rhs1_type) < TYPE_PRECISION (rhs2_type))
{
vectype1 = get_mask_type_for_scalar_type (vinfo, rhs1_type);
if (!vectype1)
return NULL;
rhs2 = build_mask_conversion (vinfo, rhs2, vectype1, stmt_vinfo);
}
else
{
vectype1 = get_mask_type_for_scalar_type (vinfo, rhs2_type);
if (!vectype1)
return NULL;
rhs1 = build_mask_conversion (vinfo, rhs1, vectype1, stmt_vinfo);
}
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
pattern_stmt = gimple_build_assign (lhs, rhs_code, rhs1, rhs2);
*type_out = vectype1;
vect_pattern_detected ("vect_recog_mask_conversion_pattern", last_stmt);
return pattern_stmt;
}
/* STMT_INFO is a load or store. If the load or store is conditional, return
the boolean condition under which it occurs, otherwise return null. */
static tree
vect_get_load_store_mask (stmt_vec_info stmt_info)
{
if (gassign *def_assign = dyn_cast <gassign *> (stmt_info->stmt))
{
gcc_assert (gimple_assign_single_p (def_assign));
return NULL_TREE;
}
if (gcall *def_call = dyn_cast <gcall *> (stmt_info->stmt))
{
internal_fn ifn = gimple_call_internal_fn (def_call);
int mask_index = internal_fn_mask_index (ifn);
return gimple_call_arg (def_call, mask_index);
}
gcc_unreachable ();
}
/* Return MASK if MASK is suitable for masking an operation on vectors
of type VECTYPE, otherwise convert it into such a form and return
the result. Associate any conversion statements with STMT_INFO's
pattern. */
static tree
vect_convert_mask_for_vectype (tree mask, tree vectype,
stmt_vec_info stmt_info, vec_info *vinfo)
{
tree mask_type = integer_type_for_mask (mask, vinfo);
if (mask_type)
{
tree mask_vectype = get_mask_type_for_scalar_type (vinfo, mask_type);
if (mask_vectype
&& maybe_ne (TYPE_VECTOR_SUBPARTS (vectype),
TYPE_VECTOR_SUBPARTS (mask_vectype)))
mask = build_mask_conversion (vinfo, mask, vectype, stmt_info);
}
return mask;
}
/* Return the equivalent of:
fold_convert (TYPE, VALUE)
with the expectation that the operation will be vectorized.
If new statements are needed, add them as pattern statements
to STMT_INFO. */
static tree
vect_add_conversion_to_pattern (vec_info *vinfo,
tree type, tree value, stmt_vec_info stmt_info)
{
if (useless_type_conversion_p (type, TREE_TYPE (value)))
return value;
tree new_value = vect_recog_temp_ssa_var (type, NULL);
gassign *conversion = gimple_build_assign (new_value, CONVERT_EXPR, value);
append_pattern_def_seq (vinfo, stmt_info, conversion,
get_vectype_for_scalar_type (vinfo, type));
return new_value;
}
/* Try to convert STMT_INFO into a call to a gather load or scatter store
internal function. Return the final statement on success and set
*TYPE_OUT to the vector type being loaded or stored.
This function only handles gathers and scatters that were recognized
as such from the outset (indicated by STMT_VINFO_GATHER_SCATTER_P). */
static gimple *
vect_recog_gather_scatter_pattern (vec_info *vinfo,
stmt_vec_info stmt_info, tree *type_out)
{
/* Currently we only support this for loop vectorization. */
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
if (!loop_vinfo)
return NULL;
/* Make sure that we're looking at a gather load or scatter store. */
data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
if (!dr || !STMT_VINFO_GATHER_SCATTER_P (stmt_info))
return NULL;
/* Get the boolean that controls whether the load or store happens.
This is null if the operation is unconditional. */
tree mask = vect_get_load_store_mask (stmt_info);
/* Make sure that the target supports an appropriate internal
function for the gather/scatter operation. */
gather_scatter_info gs_info;
if (!vect_check_gather_scatter (stmt_info, loop_vinfo, &gs_info)
|| gs_info.ifn == IFN_LAST)
return NULL;
/* Convert the mask to the right form. */
tree gs_vectype = get_vectype_for_scalar_type (loop_vinfo,
gs_info.element_type);
if (mask)
mask = vect_convert_mask_for_vectype (mask, gs_vectype, stmt_info,
loop_vinfo);
else if (gs_info.ifn == IFN_MASK_SCATTER_STORE
|| gs_info.ifn == IFN_MASK_GATHER_LOAD)
mask = build_int_cst (TREE_TYPE (truth_type_for (gs_vectype)), -1);
/* Get the invariant base and non-invariant offset, converting the
latter to the same width as the vector elements. */
tree base = gs_info.base;
tree offset_type = TREE_TYPE (gs_info.offset_vectype);
tree offset = vect_add_conversion_to_pattern (vinfo, offset_type,
gs_info.offset, stmt_info);
/* Build the new pattern statement. */
tree scale = size_int (gs_info.scale);
gcall *pattern_stmt;
if (DR_IS_READ (dr))
{
tree zero = build_zero_cst (gs_info.element_type);
if (mask != NULL)
pattern_stmt = gimple_build_call_internal (gs_info.ifn, 5, base,
offset, scale, zero, mask);
else
pattern_stmt = gimple_build_call_internal (gs_info.ifn, 4, base,
offset, scale, zero);
tree load_lhs = vect_recog_temp_ssa_var (gs_info.element_type, NULL);
gimple_call_set_lhs (pattern_stmt, load_lhs);
}
else
{
tree rhs = vect_get_store_rhs (stmt_info);
if (mask != NULL)
pattern_stmt = gimple_build_call_internal (gs_info.ifn, 5,
base, offset, scale, rhs,
mask);
else
pattern_stmt = gimple_build_call_internal (gs_info.ifn, 4,
base, offset, scale, rhs);
}
gimple_call_set_nothrow (pattern_stmt, true);
/* Copy across relevant vectorization info and associate DR with the
new pattern statement instead of the original statement. */
stmt_vec_info pattern_stmt_info = loop_vinfo->add_stmt (pattern_stmt);
loop_vinfo->move_dr (pattern_stmt_info, stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
*type_out = vectype;
vect_pattern_detected ("gather/scatter pattern", stmt_info->stmt);
return pattern_stmt;
}
/* Return true if TYPE is a non-boolean integer type. These are the types
that we want to consider for narrowing. */
static bool
vect_narrowable_type_p (tree type)
{
return INTEGRAL_TYPE_P (type) && !VECT_SCALAR_BOOLEAN_TYPE_P (type);
}
/* Return true if the operation given by CODE can be truncated to N bits
when only N bits of the output are needed. This is only true if bit N+1
of the inputs has no effect on the low N bits of the result. */
static bool
vect_truncatable_operation_p (tree_code code)
{
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case COND_EXPR:
return true;
default:
return false;
}
}
/* Record that STMT_INFO could be changed from operating on TYPE to
operating on a type with the precision and sign given by PRECISION
and SIGN respectively. PRECISION is an arbitrary bit precision;
it might not be a whole number of bytes. */
static void
vect_set_operation_type (stmt_vec_info stmt_info, tree type,
unsigned int precision, signop sign)
{
/* Round the precision up to a whole number of bytes. */
precision = vect_element_precision (precision);
if (precision < TYPE_PRECISION (type)
&& (!stmt_info->operation_precision
|| stmt_info->operation_precision > precision))
{
stmt_info->operation_precision = precision;
stmt_info->operation_sign = sign;
}
}
/* Record that STMT_INFO only requires MIN_INPUT_PRECISION from its
non-boolean inputs, all of which have type TYPE. MIN_INPUT_PRECISION
is an arbitrary bit precision; it might not be a whole number of bytes. */
static void
vect_set_min_input_precision (stmt_vec_info stmt_info, tree type,
unsigned int min_input_precision)
{
/* This operation in isolation only requires the inputs to have
MIN_INPUT_PRECISION of precision, However, that doesn't mean
that MIN_INPUT_PRECISION is a natural precision for the chain
as a whole. E.g. consider something like:
unsigned short *x, *y;
*y = ((*x & 0xf0) >> 4) | (*y << 4);
The right shift can be done on unsigned chars, and only requires the
result of "*x & 0xf0" to be done on unsigned chars. But taking that
approach would mean turning a natural chain of single-vector unsigned
short operations into one that truncates "*x" and then extends
"(*x & 0xf0) >> 4", with two vectors for each unsigned short
operation and one vector for each unsigned char operation.
This would be a significant pessimization.
Instead only propagate the maximum of this precision and the precision
required by the users of the result. This means that we don't pessimize
the case above but continue to optimize things like:
unsigned char *y;
unsigned short *x;
*y = ((*x & 0xf0) >> 4) | (*y << 4);
Here we would truncate two vectors of *x to a single vector of
unsigned chars and use single-vector unsigned char operations for
everything else, rather than doing two unsigned short copies of
"(*x & 0xf0) >> 4" and then truncating the result. */
min_input_precision = MAX (min_input_precision,
stmt_info->min_output_precision);
if (min_input_precision < TYPE_PRECISION (type)
&& (!stmt_info->min_input_precision
|| stmt_info->min_input_precision > min_input_precision))
stmt_info->min_input_precision = min_input_precision;
}
/* Subroutine of vect_determine_min_output_precision. Return true if
we can calculate a reduced number of output bits for STMT_INFO,
whose result is LHS. */
static bool
vect_determine_min_output_precision_1 (vec_info *vinfo,
stmt_vec_info stmt_info, tree lhs)
{
/* Take the maximum precision required by users of the result. */
unsigned int precision = 0;
imm_use_iterator iter;
use_operand_p use;
FOR_EACH_IMM_USE_FAST (use, iter, lhs)
{
gimple *use_stmt = USE_STMT (use);
if (is_gimple_debug (use_stmt))
continue;
stmt_vec_info use_stmt_info = vinfo->lookup_stmt (use_stmt);
if (!use_stmt_info || !use_stmt_info->min_input_precision)
return false;
/* The input precision recorded for COND_EXPRs applies only to the
"then" and "else" values. */
gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
if (assign
&& gimple_assign_rhs_code (assign) == COND_EXPR
&& use->use != gimple_assign_rhs2_ptr (assign)
&& use->use != gimple_assign_rhs3_ptr (assign))
return false;
precision = MAX (precision, use_stmt_info->min_input_precision);
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"only the low %d bits of %T are significant\n",
precision, lhs);
stmt_info->min_output_precision = precision;
return true;
}
/* Calculate min_output_precision for STMT_INFO. */
static void
vect_determine_min_output_precision (vec_info *vinfo, stmt_vec_info stmt_info)
{
/* We're only interested in statements with a narrowable result. */
tree lhs = gimple_get_lhs (stmt_info->stmt);
if (!lhs
|| TREE_CODE (lhs) != SSA_NAME
|| !vect_narrowable_type_p (TREE_TYPE (lhs)))
return;
if (!vect_determine_min_output_precision_1 (vinfo, stmt_info, lhs))
stmt_info->min_output_precision = TYPE_PRECISION (TREE_TYPE (lhs));
}
/* Use range information to decide whether STMT (described by STMT_INFO)
could be done in a narrower type. This is effectively a forward
propagation, since it uses context-independent information that applies
to all users of an SSA name. */
static void
vect_determine_precisions_from_range (stmt_vec_info stmt_info, gassign *stmt)
{
tree lhs = gimple_assign_lhs (stmt);
if (!lhs || TREE_CODE (lhs) != SSA_NAME)
return;
tree type = TREE_TYPE (lhs);
if (!vect_narrowable_type_p (type))
return;
/* First see whether we have any useful range information for the result. */
unsigned int precision = TYPE_PRECISION (type);
signop sign = TYPE_SIGN (type);
wide_int min_value, max_value;
if (!vect_get_range_info (lhs, &min_value, &max_value))
return;
tree_code code = gimple_assign_rhs_code (stmt);
unsigned int nops = gimple_num_ops (stmt);
if (!vect_truncatable_operation_p (code))
/* Check that all relevant input operands are compatible, and update
[MIN_VALUE, MAX_VALUE] to include their ranges. */
for (unsigned int i = 1; i < nops; ++i)
{
tree op = gimple_op (stmt, i);
if (TREE_CODE (op) == INTEGER_CST)
{
/* Don't require the integer to have RHS_TYPE (which it might
not for things like shift amounts, etc.), but do require it
to fit the type. */
if (!int_fits_type_p (op, type))
return;
min_value = wi::min (min_value, wi::to_wide (op, precision), sign);
max_value = wi::max (max_value, wi::to_wide (op, precision), sign);
}
else if (TREE_CODE (op) == SSA_NAME)
{
/* Ignore codes that don't take uniform arguments. */
if (!types_compatible_p (TREE_TYPE (op), type))
return;
wide_int op_min_value, op_max_value;
if (!vect_get_range_info (op, &op_min_value, &op_max_value))
return;
min_value = wi::min (min_value, op_min_value, sign);
max_value = wi::max (max_value, op_max_value, sign);
}
else
return;
}
/* Try to switch signed types for unsigned types if we can.
This is better for two reasons. First, unsigned ops tend
to be cheaper than signed ops. Second, it means that we can
handle things like:
signed char c;
int res = (int) c & 0xff00; // range [0x0000, 0xff00]
as:
signed char c;
unsigned short res_1 = (unsigned short) c & 0xff00;
int res = (int) res_1;
where the intermediate result res_1 has unsigned rather than
signed type. */
if (sign == SIGNED && !wi::neg_p (min_value))
sign = UNSIGNED;
/* See what precision is required for MIN_VALUE and MAX_VALUE. */
unsigned int precision1 = wi::min_precision (min_value, sign);
unsigned int precision2 = wi::min_precision (max_value, sign);
unsigned int value_precision = MAX (precision1, precision2);
if (value_precision >= precision)
return;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "can narrow to %s:%d"
" without loss of precision: %G",
sign == SIGNED ? "signed" : "unsigned",
value_precision, stmt);
vect_set_operation_type (stmt_info, type, value_precision, sign);
vect_set_min_input_precision (stmt_info, type, value_precision);
}
/* Use information about the users of STMT's result to decide whether
STMT (described by STMT_INFO) could be done in a narrower type.
This is effectively a backward propagation. */
static void
vect_determine_precisions_from_users (stmt_vec_info stmt_info, gassign *stmt)
{
tree_code code = gimple_assign_rhs_code (stmt);
unsigned int opno = (code == COND_EXPR ? 2 : 1);
tree type = TREE_TYPE (gimple_op (stmt, opno));
if (!vect_narrowable_type_p (type))
return;
unsigned int precision = TYPE_PRECISION (type);
unsigned int operation_precision, min_input_precision;
switch (code)
{
CASE_CONVERT:
/* Only the bits that contribute to the output matter. Don't change
the precision of the operation itself. */
operation_precision = precision;
min_input_precision = stmt_info->min_output_precision;
break;
case LSHIFT_EXPR:
case RSHIFT_EXPR:
{
tree shift = gimple_assign_rhs2 (stmt);
if (TREE_CODE (shift) != INTEGER_CST
|| !wi::ltu_p (wi::to_widest (shift), precision))
return;
unsigned int const_shift = TREE_INT_CST_LOW (shift);
if (code == LSHIFT_EXPR)
{
/* Avoid creating an undefined shift.
??? We could instead use min_output_precision as-is and
optimize out-of-range shifts to zero. However, only
degenerate testcases shift away all their useful input data,
and it isn't natural to drop input operations in the middle
of vectorization. This sort of thing should really be
handled before vectorization. */
operation_precision = MAX (stmt_info->min_output_precision,
const_shift + 1);
/* We need CONST_SHIFT fewer bits of the input. */
min_input_precision = (MAX (operation_precision, const_shift)
- const_shift);
}
else
{
/* We need CONST_SHIFT extra bits to do the operation. */
operation_precision = (stmt_info->min_output_precision
+ const_shift);
min_input_precision = operation_precision;
}
break;
}
default:
if (vect_truncatable_operation_p (code))
{
/* Input bit N has no effect on output bits N-1 and lower. */
operation_precision = stmt_info->min_output_precision;
min_input_precision = operation_precision;
break;
}
return;
}
if (operation_precision < precision)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "can narrow to %s:%d"
" without affecting users: %G",
TYPE_UNSIGNED (type) ? "unsigned" : "signed",
operation_precision, stmt);
vect_set_operation_type (stmt_info, type, operation_precision,
TYPE_SIGN (type));
}
vect_set_min_input_precision (stmt_info, type, min_input_precision);
}
/* Return true if the statement described by STMT_INFO sets a boolean
SSA_NAME and if we know how to vectorize this kind of statement using
vector mask types. */
static bool
possible_vector_mask_operation_p (stmt_vec_info stmt_info)
{
tree lhs = gimple_get_lhs (stmt_info->stmt);
if (!lhs
|| TREE_CODE (lhs) != SSA_NAME
|| !VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (lhs)))
return false;
if (gassign *assign = dyn_cast <gassign *> (stmt_info->stmt))
{
tree_code rhs_code = gimple_assign_rhs_code (assign);
switch (rhs_code)
{
CASE_CONVERT:
case SSA_NAME:
case BIT_NOT_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
return true;
default:
return TREE_CODE_CLASS (rhs_code) == tcc_comparison;
}
}
else if (is_a <gphi *> (stmt_info->stmt))
return true;
return false;
}
/* If STMT_INFO sets a boolean SSA_NAME, see whether we should use
a vector mask type instead of a normal vector type. Record the
result in STMT_INFO->mask_precision. */
static void
vect_determine_mask_precision (vec_info *vinfo, stmt_vec_info stmt_info)
{
if (!possible_vector_mask_operation_p (stmt_info))
return;
/* If at least one boolean input uses a vector mask type,
pick the mask type with the narrowest elements.
??? This is the traditional behavior. It should always produce
the smallest number of operations, but isn't necessarily the
optimal choice. For example, if we have:
a = b & c
where:
- the user of a wants it to have a mask type for 16-bit elements (M16)
- b also uses M16
- c uses a mask type for 8-bit elements (M8)
then picking M8 gives:
- 1 M16->M8 pack for b
- 1 M8 AND for a
- 2 M8->M16 unpacks for the user of a
whereas picking M16 would have given:
- 2 M8->M16 unpacks for c
- 2 M16 ANDs for a
The number of operations are equal, but M16 would have given
a shorter dependency chain and allowed more ILP. */
unsigned int precision = ~0U;
if (gassign *assign = dyn_cast <gassign *> (stmt_info->stmt))
{
unsigned int nops = gimple_num_ops (assign);
for (unsigned int i = 1; i < nops; ++i)
{
tree rhs = gimple_op (assign, i);
if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (rhs)))
continue;
stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
if (!def_stmt_info)
/* Don't let external or constant operands influence the choice.
We can convert them to whichever vector type we pick. */
continue;
if (def_stmt_info->mask_precision)
{
if (precision > def_stmt_info->mask_precision)
precision = def_stmt_info->mask_precision;
}
}
/* If the statement compares two values that shouldn't use vector masks,
try comparing the values as normal scalars instead. */
tree_code rhs_code = gimple_assign_rhs_code (assign);
if (precision == ~0U
&& TREE_CODE_CLASS (rhs_code) == tcc_comparison)
{
tree rhs1_type = TREE_TYPE (gimple_assign_rhs1 (assign));
scalar_mode mode;
tree vectype, mask_type;
if (is_a <scalar_mode> (TYPE_MODE (rhs1_type), &mode)
&& (vectype = get_vectype_for_scalar_type (vinfo, rhs1_type))
&& (mask_type = get_mask_type_for_scalar_type (vinfo, rhs1_type))
&& expand_vec_cmp_expr_p (vectype, mask_type, rhs_code))
precision = GET_MODE_BITSIZE (mode);
}
}
else
{
gphi *phi = as_a <gphi *> (stmt_info->stmt);
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
{
tree rhs = gimple_phi_arg_def (phi, i);
stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
if (!def_stmt_info)
/* Don't let external or constant operands influence the choice.
We can convert them to whichever vector type we pick. */
continue;
if (def_stmt_info->mask_precision)
{
if (precision > def_stmt_info->mask_precision)
precision = def_stmt_info->mask_precision;
}
}
}
if (dump_enabled_p ())
{
if (precision == ~0U)
dump_printf_loc (MSG_NOTE, vect_location,
"using normal nonmask vectors for %G",
stmt_info->stmt);
else
dump_printf_loc (MSG_NOTE, vect_location,
"using boolean precision %d for %G",
precision, stmt_info->stmt);
}
stmt_info->mask_precision = precision;
}
/* Handle vect_determine_precisions for STMT_INFO, given that we
have already done so for the users of its result. */
void
vect_determine_stmt_precisions (vec_info *vinfo, stmt_vec_info stmt_info)
{
vect_determine_min_output_precision (vinfo, stmt_info);
if (gassign *stmt = dyn_cast <gassign *> (stmt_info->stmt))
{
vect_determine_precisions_from_range (stmt_info, stmt);
vect_determine_precisions_from_users (stmt_info, stmt);
}
}
/* Walk backwards through the vectorizable region to determine the
values of these fields:
- min_output_precision
- min_input_precision
- operation_precision
- operation_sign. */
void
vect_determine_precisions (vec_info *vinfo)
{
DUMP_VECT_SCOPE ("vect_determine_precisions");
if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
unsigned int nbbs = loop->num_nodes;
for (unsigned int i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (auto gsi = gsi_start_phis (bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
stmt_vec_info stmt_info = vinfo->lookup_stmt (gsi.phi ());
if (stmt_info)
vect_determine_mask_precision (vinfo, stmt_info);
}
for (auto si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
if (!is_gimple_debug (gsi_stmt (si)))
vect_determine_mask_precision
(vinfo, vinfo->lookup_stmt (gsi_stmt (si)));
}
for (unsigned int i = 0; i < nbbs; i++)
{
basic_block bb = bbs[nbbs - i - 1];
for (gimple_stmt_iterator si = gsi_last_bb (bb);
!gsi_end_p (si); gsi_prev (&si))
if (!is_gimple_debug (gsi_stmt (si)))
vect_determine_stmt_precisions
(vinfo, vinfo->lookup_stmt (gsi_stmt (si)));
for (auto gsi = gsi_start_phis (bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
stmt_vec_info stmt_info = vinfo->lookup_stmt (gsi.phi ());
if (stmt_info)
vect_determine_stmt_precisions (vinfo, stmt_info);
}
}
}
else
{
bb_vec_info bb_vinfo = as_a <bb_vec_info> (vinfo);
for (unsigned i = 0; i < bb_vinfo->bbs.length (); ++i)
{
basic_block bb = bb_vinfo->bbs[i];
for (auto gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
stmt_vec_info stmt_info = vinfo->lookup_stmt (gsi.phi ());
if (stmt_info && STMT_VINFO_VECTORIZABLE (stmt_info))
vect_determine_mask_precision (vinfo, stmt_info);
}
for (auto gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
stmt_vec_info stmt_info = vinfo->lookup_stmt (gsi_stmt (gsi));
if (stmt_info && STMT_VINFO_VECTORIZABLE (stmt_info))
vect_determine_mask_precision (vinfo, stmt_info);
}
}
for (int i = bb_vinfo->bbs.length () - 1; i != -1; --i)
{
for (gimple_stmt_iterator gsi = gsi_last_bb (bb_vinfo->bbs[i]);
!gsi_end_p (gsi); gsi_prev (&gsi))
{
stmt_vec_info stmt_info = vinfo->lookup_stmt (gsi_stmt (gsi));
if (stmt_info && STMT_VINFO_VECTORIZABLE (stmt_info))
vect_determine_stmt_precisions (vinfo, stmt_info);
}
for (auto gsi = gsi_start_phis (bb_vinfo->bbs[i]);
!gsi_end_p (gsi); gsi_next (&gsi))
{
stmt_vec_info stmt_info = vinfo->lookup_stmt (gsi.phi ());
if (stmt_info && STMT_VINFO_VECTORIZABLE (stmt_info))
vect_determine_stmt_precisions (vinfo, stmt_info);
}
}
}
}
typedef gimple *(*vect_recog_func_ptr) (vec_info *, stmt_vec_info, tree *);
struct vect_recog_func
{
vect_recog_func_ptr fn;
const char *name;
};
/* Note that ordering matters - the first pattern matching on a stmt is
taken which means usually the more complex one needs to preceed the
less comples onex (widen_sum only after dot_prod or sad for example). */
static vect_recog_func vect_vect_recog_func_ptrs[] = {
{ vect_recog_over_widening_pattern, "over_widening" },
/* Must come after over_widening, which narrows the shift as much as
possible beforehand. */
{ vect_recog_average_pattern, "average" },
{ vect_recog_cond_expr_convert_pattern, "cond_expr_convert" },
{ vect_recog_mulhs_pattern, "mult_high" },
{ vect_recog_cast_forwprop_pattern, "cast_forwprop" },
{ vect_recog_widen_mult_pattern, "widen_mult" },
{ vect_recog_dot_prod_pattern, "dot_prod" },
{ vect_recog_sad_pattern, "sad" },
{ vect_recog_widen_sum_pattern, "widen_sum" },
{ vect_recog_pow_pattern, "pow" },
{ vect_recog_popcount_pattern, "popcount" },
{ vect_recog_widen_shift_pattern, "widen_shift" },
{ vect_recog_rotate_pattern, "rotate" },
{ vect_recog_vector_vector_shift_pattern, "vector_vector_shift" },
{ vect_recog_divmod_pattern, "divmod" },
{ vect_recog_mult_pattern, "mult" },
{ vect_recog_mixed_size_cond_pattern, "mixed_size_cond" },
{ vect_recog_bool_pattern, "bool" },
/* This must come before mask conversion, and includes the parts
of mask conversion that are needed for gather and scatter
internal functions. */
{ vect_recog_gather_scatter_pattern, "gather_scatter" },
{ vect_recog_mask_conversion_pattern, "mask_conversion" },
{ vect_recog_widen_plus_pattern, "widen_plus" },
{ vect_recog_widen_minus_pattern, "widen_minus" },
};
const unsigned int NUM_PATTERNS = ARRAY_SIZE (vect_vect_recog_func_ptrs);
/* Mark statements that are involved in a pattern. */
void
vect_mark_pattern_stmts (vec_info *vinfo,
stmt_vec_info orig_stmt_info, gimple *pattern_stmt,
tree pattern_vectype)
{
stmt_vec_info orig_stmt_info_saved = orig_stmt_info;
gimple *def_seq = STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
gimple *orig_pattern_stmt = NULL;
if (is_pattern_stmt_p (orig_stmt_info))
{
/* We're replacing a statement in an existing pattern definition
sequence. */
orig_pattern_stmt = orig_stmt_info->stmt;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"replacing earlier pattern %G", orig_pattern_stmt);
/* To keep the book-keeping simple, just swap the lhs of the
old and new statements, so that the old one has a valid but
unused lhs. */
tree old_lhs = gimple_get_lhs (orig_pattern_stmt);
gimple_set_lhs (orig_pattern_stmt, gimple_get_lhs (pattern_stmt));
gimple_set_lhs (pattern_stmt, old_lhs);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "with %G", pattern_stmt);
/* Switch to the statement that ORIG replaces. */
orig_stmt_info = STMT_VINFO_RELATED_STMT (orig_stmt_info);
/* We shouldn't be replacing the main pattern statement. */
gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info)->stmt
!= orig_pattern_stmt);
}
if (def_seq)
for (gimple_stmt_iterator si = gsi_start (def_seq);
!gsi_end_p (si); gsi_next (&si))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"extra pattern stmt: %G", gsi_stmt (si));
stmt_vec_info pattern_stmt_info
= vect_init_pattern_stmt (vinfo, gsi_stmt (si),
orig_stmt_info, pattern_vectype);
/* Stmts in the def sequence are not vectorizable cycle or
induction defs, instead they should all be vect_internal_def
feeding the main pattern stmt which retains this def type. */
STMT_VINFO_DEF_TYPE (pattern_stmt_info) = vect_internal_def;
}
if (orig_pattern_stmt)
{
vect_init_pattern_stmt (vinfo, pattern_stmt,
orig_stmt_info, pattern_vectype);
/* Insert all the new pattern statements before the original one. */
gimple_seq *orig_def_seq = &STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
gimple_stmt_iterator gsi = gsi_for_stmt (orig_pattern_stmt,
orig_def_seq);
gsi_insert_seq_before_without_update (&gsi, def_seq, GSI_SAME_STMT);
gsi_insert_before_without_update (&gsi, pattern_stmt, GSI_SAME_STMT);
/* Remove the pattern statement that this new pattern replaces. */
gsi_remove (&gsi, false);
}
else
vect_set_pattern_stmt (vinfo,
pattern_stmt, orig_stmt_info, pattern_vectype);
/* Transfer reduction path info to the pattern. */
if (STMT_VINFO_REDUC_IDX (orig_stmt_info_saved) != -1)
{
gimple_match_op op;
if (!gimple_extract_op (orig_stmt_info_saved->stmt, &op))
gcc_unreachable ();
tree lookfor = op.ops[STMT_VINFO_REDUC_IDX (orig_stmt_info)];
/* Search the pattern def sequence and the main pattern stmt. Note
we may have inserted all into a containing pattern def sequence
so the following is a bit awkward. */
gimple_stmt_iterator si;
gimple *s;
if (def_seq)
{
si = gsi_start (def_seq);
s = gsi_stmt (si);
gsi_next (&si);
}
else
{
si = gsi_none ();
s = pattern_stmt;
}
do
{
bool found = false;
if (gimple_extract_op (s, &op))
for (unsigned i = 0; i < op.num_ops; ++i)
if (op.ops[i] == lookfor)
{
STMT_VINFO_REDUC_IDX (vinfo->lookup_stmt (s)) = i;
lookfor = gimple_get_lhs (s);
found = true;
break;
}
if (s == pattern_stmt)
{
if (!found && dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"failed to update reduction index.\n");
break;
}
if (gsi_end_p (si))
s = pattern_stmt;
else
{
s = gsi_stmt (si);
if (s == pattern_stmt)
/* Found the end inside a bigger pattern def seq. */
si = gsi_none ();
else
gsi_next (&si);
}
} while (1);
}
}
/* Function vect_pattern_recog_1
Input:
PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
computation pattern.
STMT_INFO: A stmt from which the pattern search should start.
If PATTERN_RECOG_FUNC successfully detected the pattern, it creates
a sequence of statements that has the same functionality and can be
used to replace STMT_INFO. It returns the last statement in the sequence
and adds any earlier statements to STMT_INFO's STMT_VINFO_PATTERN_DEF_SEQ.
PATTERN_RECOG_FUNC also sets *TYPE_OUT to the vector type of the final
statement, having first checked that the target supports the new operation
in that type.
This function also does some bookkeeping, as explained in the documentation
for vect_recog_pattern. */
static void
vect_pattern_recog_1 (vec_info *vinfo,
vect_recog_func *recog_func, stmt_vec_info stmt_info)
{
gimple *pattern_stmt;
loop_vec_info loop_vinfo;
tree pattern_vectype;
/* If this statement has already been replaced with pattern statements,
leave the original statement alone, since the first match wins.
Instead try to match against the definition statements that feed
the main pattern statement. */
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
!gsi_end_p (gsi); gsi_next (&gsi))
vect_pattern_recog_1 (vinfo, recog_func,
vinfo->lookup_stmt (gsi_stmt (gsi)));
return;
}
gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
pattern_stmt = recog_func->fn (vinfo, stmt_info, &pattern_vectype);
if (!pattern_stmt)
{
/* Clear any half-formed pattern definition sequence. */
STMT_VINFO_PATTERN_DEF_SEQ (stmt_info) = NULL;
return;
}
loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
/* Found a vectorizable pattern. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"%s pattern recognized: %G",
recog_func->name, pattern_stmt);
/* Mark the stmts that are involved in the pattern. */
vect_mark_pattern_stmts (vinfo, stmt_info, pattern_stmt, pattern_vectype);
/* Patterns cannot be vectorized using SLP, because they change the order of
computation. */
if (loop_vinfo)
{
unsigned ix, ix2;
stmt_vec_info *elem_ptr;
VEC_ORDERED_REMOVE_IF (LOOP_VINFO_REDUCTIONS (loop_vinfo), ix, ix2,
elem_ptr, *elem_ptr == stmt_info);
}
}
/* Function vect_pattern_recog
Input:
LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
computation idioms.
Output - for each computation idiom that is detected we create a new stmt
that provides the same functionality and that can be vectorized. We
also record some information in the struct_stmt_info of the relevant
stmts, as explained below:
At the entry to this function we have the following stmts, with the
following initial value in the STMT_VINFO fields:
stmt in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
S4: a_0 = ..use(a_1).. - - -
S5: ... = ..use(a_0).. - - -
Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
represented by a single stmt. We then:
- create a new stmt S6 equivalent to the pattern (the stmt is not
inserted into the code)
- fill in the STMT_VINFO fields as follows:
in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
S4: a_0 = ..use(a_1).. true S6 -
'---> S6: a_new = .... - S4 -
S5: ... = ..use(a_0).. - - -
(the last stmt in the pattern (S4) and the new pattern stmt (S6) point
to each other through the RELATED_STMT field).
S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
remain irrelevant unless used by stmts other than S4.
If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
(because they are marked as irrelevant). It will vectorize S6, and record
a pointer to the new vector stmt VS6 from S6 (as usual).
S4 will be skipped, and S5 will be vectorized as usual:
in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
> VS6: va_new = .... - - -
S4: a_0 = ..use(a_1).. true S6 VS6
'---> S6: a_new = .... - S4 VS6
> VS5: ... = ..vuse(va_new).. - - -
S5: ... = ..use(a_0).. - - -
DCE could then get rid of {S1,S2,S3,S4,S5} (if their defs are not used
elsewhere), and we'll end up with:
VS6: va_new = ....
VS5: ... = ..vuse(va_new)..
In case of more than one pattern statements, e.g., widen-mult with
intermediate type:
S1 a_t = ;
S2 a_T = (TYPE) a_t;
'--> S3: a_it = (interm_type) a_t;
S4 prod_T = a_T * CONST;
'--> S5: prod_T' = a_it w* CONST;
there may be other users of a_T outside the pattern. In that case S2 will
be marked as relevant (as well as S3), and both S2 and S3 will be analyzed
and vectorized. The vector stmt VS2 will be recorded in S2, and VS3 will
be recorded in S3. */
void
vect_pattern_recog (vec_info *vinfo)
{
class loop *loop;
basic_block *bbs;
unsigned int nbbs;
gimple_stmt_iterator si;
unsigned int i, j;
vect_determine_precisions (vinfo);
DUMP_VECT_SCOPE ("vect_pattern_recog");
if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
{
loop = LOOP_VINFO_LOOP (loop_vinfo);
bbs = LOOP_VINFO_BBS (loop_vinfo);
nbbs = loop->num_nodes;
/* Scan through the loop stmts, applying the pattern recognition
functions starting at each stmt visited: */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
if (is_gimple_debug (gsi_stmt (si)))
continue;
stmt_vec_info stmt_info = vinfo->lookup_stmt (gsi_stmt (si));
/* Scan over all generic vect_recog_xxx_pattern functions. */
for (j = 0; j < NUM_PATTERNS; j++)
vect_pattern_recog_1 (vinfo, &vect_vect_recog_func_ptrs[j],
stmt_info);
}
}
}
else
{
bb_vec_info bb_vinfo = as_a <bb_vec_info> (vinfo);
for (unsigned i = 0; i < bb_vinfo->bbs.length (); ++i)
for (gimple_stmt_iterator gsi = gsi_start_bb (bb_vinfo->bbs[i]);
!gsi_end_p (gsi); gsi_next (&gsi))
{
stmt_vec_info stmt_info = bb_vinfo->lookup_stmt (gsi_stmt (gsi));
if (!stmt_info || !STMT_VINFO_VECTORIZABLE (stmt_info))
continue;
/* Scan over all generic vect_recog_xxx_pattern functions. */
for (j = 0; j < NUM_PATTERNS; j++)
vect_pattern_recog_1 (vinfo,
&vect_vect_recog_func_ptrs[j], stmt_info);
}
}
/* After this no more add_stmt calls are allowed. */
vinfo->stmt_vec_info_ro = true;
}
|