1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
|
/* SLP - Pattern matcher on SLP trees
Copyright (C) 2020-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "insn-config.h"
#include "recog.h" /* FIXME: for insn_data */
#include "fold-const.h"
#include "stor-layout.h"
#include "gimple-iterator.h"
#include "cfgloop.h"
#include "tree-vectorizer.h"
#include "langhooks.h"
#include "gimple-walk.h"
#include "dbgcnt.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "gimple-fold.h"
#include "internal-fn.h"
/* SLP Pattern matching mechanism.
This extension to the SLP vectorizer allows one to transform the generated SLP
tree based on any pattern. The difference between this and the normal vect
pattern matcher is that unlike the former, this matcher allows you to match
with instructions that do not belong to the same SSA dominator graph.
The only requirement that this pattern matcher has is that you are only
only allowed to either match an entire group or none.
The pattern matcher currently only allows you to perform replacements to
internal functions.
Once the patterns are matched it is one way, these cannot be undone. It is
currently not supported to match patterns recursively.
To add a new pattern, implement the vect_pattern class and add the type to
slp_patterns.
*/
/*******************************************************************************
* vect_pattern class
******************************************************************************/
/* Default implementation of recognize that performs matching, validation and
replacement of nodes but that can be overriden if required. */
static bool
vect_pattern_validate_optab (internal_fn ifn, slp_tree node)
{
tree vectype = SLP_TREE_VECTYPE (node);
if (ifn == IFN_LAST || !vectype)
return false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Found %s pattern in SLP tree\n",
internal_fn_name (ifn));
if (direct_internal_fn_supported_p (ifn, vectype, OPTIMIZE_FOR_SPEED))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Target supports %s vectorization with mode %T\n",
internal_fn_name (ifn), vectype);
}
else
{
if (dump_enabled_p ())
{
if (!vectype)
dump_printf_loc (MSG_NOTE, vect_location,
"Target does not support vector type for %G\n",
STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (node)));
else
dump_printf_loc (MSG_NOTE, vect_location,
"Target does not support %s for vector type "
"%T\n", internal_fn_name (ifn), vectype);
}
return false;
}
return true;
}
/*******************************************************************************
* General helper types
******************************************************************************/
/* The COMPLEX_OPERATION enum denotes the possible pair of operations that can
be matched when looking for expressions that we are interested matching for
complex numbers addition and mla. */
typedef enum _complex_operation : unsigned {
PLUS_PLUS,
MINUS_PLUS,
PLUS_MINUS,
MULT_MULT,
CMPLX_NONE
} complex_operation_t;
/*******************************************************************************
* General helper functions
******************************************************************************/
/* Helper function of linear_loads_p that checks to see if the load permutation
is sequential and in monotonically increasing order of loads with no gaps.
*/
static inline complex_perm_kinds_t
is_linear_load_p (load_permutation_t loads)
{
if (loads.length() == 0)
return PERM_UNKNOWN;
unsigned load, i;
complex_perm_kinds_t candidates[4]
= { PERM_ODDODD
, PERM_EVENEVEN
, PERM_EVENODD
, PERM_ODDEVEN
};
int valid_patterns = 4;
FOR_EACH_VEC_ELT (loads, i, load)
{
unsigned adj_load = load % 2;
if (candidates[0] != PERM_UNKNOWN && adj_load != 1)
{
candidates[0] = PERM_UNKNOWN;
valid_patterns--;
}
if (candidates[1] != PERM_UNKNOWN && adj_load != 0)
{
candidates[1] = PERM_UNKNOWN;
valid_patterns--;
}
if (candidates[2] != PERM_UNKNOWN && load != i)
{
candidates[2] = PERM_UNKNOWN;
valid_patterns--;
}
if (candidates[3] != PERM_UNKNOWN
&& load != (i % 2 == 0 ? i + 1 : i - 1))
{
candidates[3] = PERM_UNKNOWN;
valid_patterns--;
}
if (valid_patterns == 0)
return PERM_UNKNOWN;
}
for (i = 0; i < sizeof(candidates); i++)
if (candidates[i] != PERM_UNKNOWN)
return candidates[i];
return PERM_UNKNOWN;
}
/* Combine complex_perm_kinds A and B into a new permute kind that describes the
resulting operation. */
static inline complex_perm_kinds_t
vect_merge_perms (complex_perm_kinds_t a, complex_perm_kinds_t b)
{
if (a == b)
return a;
if (a == PERM_TOP)
return b;
if (b == PERM_TOP)
return a;
return PERM_UNKNOWN;
}
/* Check to see if all loads rooted in ROOT are linear. Linearity is
defined as having no gaps between values loaded. */
static complex_perm_kinds_t
linear_loads_p (slp_tree_to_load_perm_map_t *perm_cache, slp_tree root)
{
if (!root)
return PERM_UNKNOWN;
unsigned i;
complex_perm_kinds_t *tmp;
if ((tmp = perm_cache->get (root)) != NULL)
return *tmp;
complex_perm_kinds_t retval = PERM_UNKNOWN;
perm_cache->put (root, retval);
/* If it's a load node, then just read the load permute. */
if (SLP_TREE_LOAD_PERMUTATION (root).exists ())
{
retval = is_linear_load_p (SLP_TREE_LOAD_PERMUTATION (root));
perm_cache->put (root, retval);
return retval;
}
else if (SLP_TREE_DEF_TYPE (root) != vect_internal_def)
{
retval = PERM_TOP;
perm_cache->put (root, retval);
return retval;
}
complex_perm_kinds_t kind = PERM_TOP;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (root), i, child)
{
complex_perm_kinds_t res = linear_loads_p (perm_cache, child);
kind = vect_merge_perms (kind, res);
/* Unknown and Top are not valid on blends as they produce no permute. */
retval = kind;
if (kind == PERM_UNKNOWN || kind == PERM_TOP)
return retval;
}
retval = kind;
perm_cache->put (root, retval);
return retval;
}
/* This function attempts to make a node rooted in NODE is linear. If the node
if already linear than the node itself is returned in RESULT.
If the node is not linear then a new VEC_PERM_EXPR node is created with a
lane permute that when applied will make the node linear. If such a
permute cannot be created then FALSE is returned from the function.
Here linearity is defined as having a sequential, monotically increasing
load position inside the load permute generated by the loads reachable from
NODE. */
static slp_tree
vect_build_swap_evenodd_node (slp_tree node)
{
/* Attempt to linearise the permute. */
vec<std::pair<unsigned, unsigned> > zipped;
zipped.create (SLP_TREE_LANES (node));
for (unsigned x = 0; x < SLP_TREE_LANES (node); x+=2)
{
zipped.quick_push (std::make_pair (0, x+1));
zipped.quick_push (std::make_pair (0, x));
}
/* Create the new permute node and store it instead. */
slp_tree vnode = vect_create_new_slp_node (1, VEC_PERM_EXPR);
SLP_TREE_LANE_PERMUTATION (vnode) = zipped;
SLP_TREE_VECTYPE (vnode) = SLP_TREE_VECTYPE (node);
SLP_TREE_CHILDREN (vnode).quick_push (node);
SLP_TREE_REF_COUNT (vnode) = 1;
SLP_TREE_LANES (vnode) = SLP_TREE_LANES (node);
SLP_TREE_REPRESENTATIVE (vnode) = SLP_TREE_REPRESENTATIVE (node);
SLP_TREE_REF_COUNT (node)++;
return vnode;
}
/* Checks to see of the expression represented by NODE is a gimple assign with
code CODE. */
static inline bool
vect_match_expression_p (slp_tree node, tree_code code)
{
if (!node
|| !SLP_TREE_REPRESENTATIVE (node))
return false;
gimple* expr = STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (node));
if (!is_gimple_assign (expr)
|| gimple_assign_rhs_code (expr) != code)
return false;
return true;
}
/* Check if the given lane permute in PERMUTES matches an alternating sequence
of {even odd even odd ...}. This to account for unrolled loops. Further
mode there resulting permute must be linear. */
static inline bool
vect_check_evenodd_blend (lane_permutation_t &permutes,
unsigned even, unsigned odd)
{
if (permutes.length () == 0
|| permutes.length () % 2 != 0)
return false;
unsigned val[2] = {even, odd};
unsigned seed = 0;
for (unsigned i = 0; i < permutes.length (); i++)
if (permutes[i].first != val[i % 2]
|| permutes[i].second != seed++)
return false;
return true;
}
/* This function will match the two gimple expressions representing NODE1 and
NODE2 in parallel and returns the pair operation that represents the two
expressions in the two statements.
If match is successful then the corresponding complex_operation is
returned and the arguments to the two matched operations are returned in OPS.
If TWO_OPERANDS it is expected that the LANES of the parent VEC_PERM select
from the two nodes alternatingly.
If unsuccessful then CMPLX_NONE is returned and OPS is untouched.
e.g. the following gimple statements
stmt 0 _39 = _37 + _12;
stmt 1 _6 = _38 - _36;
will return PLUS_MINUS along with OPS containing {_37, _12, _38, _36}.
*/
static complex_operation_t
vect_detect_pair_op (slp_tree node1, slp_tree node2, lane_permutation_t &lanes,
bool two_operands = true, vec<slp_tree> *ops = NULL)
{
complex_operation_t result = CMPLX_NONE;
if (vect_match_expression_p (node1, MINUS_EXPR)
&& vect_match_expression_p (node2, PLUS_EXPR)
&& (!two_operands || vect_check_evenodd_blend (lanes, 0, 1)))
result = MINUS_PLUS;
else if (vect_match_expression_p (node1, PLUS_EXPR)
&& vect_match_expression_p (node2, MINUS_EXPR)
&& (!two_operands || vect_check_evenodd_blend (lanes, 0, 1)))
result = PLUS_MINUS;
else if (vect_match_expression_p (node1, PLUS_EXPR)
&& vect_match_expression_p (node2, PLUS_EXPR))
result = PLUS_PLUS;
else if (vect_match_expression_p (node1, MULT_EXPR)
&& vect_match_expression_p (node2, MULT_EXPR))
result = MULT_MULT;
if (result != CMPLX_NONE && ops != NULL)
{
if (two_operands)
{
auto l0node = SLP_TREE_CHILDREN (node1);
auto l1node = SLP_TREE_CHILDREN (node2);
/* Check if the tree is connected as we expect it. */
if (!((l0node[0] == l1node[0] && l0node[1] == l1node[1])
|| (l0node[0] == l1node[1] && l0node[1] == l1node[0])))
return CMPLX_NONE;
}
ops->safe_push (node1);
ops->safe_push (node2);
}
return result;
}
/* Overload of vect_detect_pair_op that matches against the representative
statements in the children of NODE. It is expected that NODE has exactly
two children and when TWO_OPERANDS then NODE must be a VEC_PERM. */
static complex_operation_t
vect_detect_pair_op (slp_tree node, bool two_operands = true,
vec<slp_tree> *ops = NULL)
{
if (!two_operands && SLP_TREE_CODE (node) == VEC_PERM_EXPR)
return CMPLX_NONE;
if (SLP_TREE_CHILDREN (node).length () != 2)
return CMPLX_NONE;
vec<slp_tree> children = SLP_TREE_CHILDREN (node);
lane_permutation_t &lanes = SLP_TREE_LANE_PERMUTATION (node);
return vect_detect_pair_op (children[0], children[1], lanes, two_operands,
ops);
}
/*******************************************************************************
* complex_pattern class
******************************************************************************/
/* SLP Complex Numbers pattern matching.
As an example, the following simple loop:
double a[restrict N]; double b[restrict N]; double c[restrict N];
for (int i=0; i < N; i+=2)
{
c[i] = a[i] - b[i+1];
c[i+1] = a[i+1] + b[i];
}
which represents a complex addition on with a rotation of 90* around the
argand plane. i.e. if `a` and `b` were complex numbers then this would be the
same as `a + (b * I)`.
Here the expressions for `c[i]` and `c[i+1]` are independent but have to be
both recognized in order for the pattern to work. As an SLP tree this is
represented as
+--------------------------------+
| stmt 0 *_9 = _10; |
| stmt 1 *_15 = _16; |
+--------------------------------+
|
|
v
+--------------------------------+
| stmt 0 _10 = _4 - _8; |
| stmt 1 _16 = _12 + _14; |
| lane permutation { 0[0] 1[1] } |
+--------------------------------+
| |
| |
| |
+-----+ | | +-----+
| | | | | |
+-----| { } |<-----+ +----->| { } --------+
| | | +------------------| | |
| +-----+ | +-----+ |
| | | |
| | | |
| +------|------------------+ |
| | | |
v v v v
+--------------------------+ +--------------------------------+
| stmt 0 _8 = *_7; | | stmt 0 _4 = *_3; |
| stmt 1 _14 = *_13; | | stmt 1 _12 = *_11; |
| load permutation { 1 0 } | | load permutation { 0 1 } |
+--------------------------+ +--------------------------------+
The pattern matcher allows you to replace both statements 0 and 1 or none at
all. Because this operation is a two operands operation the actual nodes
being replaced are those in the { } nodes. The actual scalar statements
themselves are not replaced or used during the matching but instead the
SLP_TREE_REPRESENTATIVE statements are inspected. You are also allowed to
replace and match on any number of nodes.
Because the pattern matcher matches on the representative statement for the
SLP node the case of two_operators it allows you to match the children of the
node. This is done using the method `recognize ()`.
*/
/* The complex_pattern class contains common code for pattern matchers that work
on complex numbers. These provide functionality to allow de-construction and
validation of sequences depicting/transforming REAL and IMAG pairs. */
class complex_pattern : public vect_pattern
{
protected:
auto_vec<slp_tree> m_workset;
complex_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
: vect_pattern (node, m_ops, ifn)
{
this->m_workset.safe_push (*node);
}
public:
void build (vec_info *);
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *, slp_tree *,
vec<slp_tree> *);
};
/* Create a replacement pattern statement for each node in m_node and inserts
the new statement into m_node as the new representative statement. The old
statement is marked as being in a pattern defined by the new statement. The
statement is created as call to internal function IFN with m_num_args
arguments.
Futhermore the new pattern is also added to the vectorization information
structure VINFO and the old statement STMT_INFO is marked as unused while
the new statement is marked as used and the number of SLP uses of the new
statement is incremented.
The newly created SLP nodes are marked as SLP only and will be dissolved
if SLP is aborted.
The newly created gimple call is returned and the BB remains unchanged.
This default method is designed to only match against simple operands where
all the input and output types are the same.
*/
void
complex_pattern::build (vec_info *vinfo)
{
stmt_vec_info stmt_info;
auto_vec<tree> args;
args.create (this->m_num_args);
args.quick_grow_cleared (this->m_num_args);
slp_tree node;
unsigned ix;
stmt_vec_info call_stmt_info;
gcall *call_stmt = NULL;
/* Now modify the nodes themselves. */
FOR_EACH_VEC_ELT (this->m_workset, ix, node)
{
/* Calculate the location of the statement in NODE to replace. */
stmt_info = SLP_TREE_REPRESENTATIVE (node);
stmt_vec_info reduc_def
= STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info));
gimple* old_stmt = STMT_VINFO_STMT (stmt_info);
tree lhs_old_stmt = gimple_get_lhs (old_stmt);
tree type = TREE_TYPE (lhs_old_stmt);
/* Create the argument set for use by gimple_build_call_internal_vec. */
for (unsigned i = 0; i < this->m_num_args; i++)
args[i] = lhs_old_stmt;
/* Create the new pattern statements. */
call_stmt = gimple_build_call_internal_vec (this->m_ifn, args);
tree var = make_temp_ssa_name (type, call_stmt, "slp_patt");
gimple_call_set_lhs (call_stmt, var);
gimple_set_location (call_stmt, gimple_location (old_stmt));
gimple_call_set_nothrow (call_stmt, true);
/* Adjust the book-keeping for the new and old statements for use during
SLP. This is required to get the right VF and statement during SLP
analysis. These changes are created after relevancy has been set for
the nodes as such we need to manually update them. Any changes will be
undone if SLP is cancelled. */
call_stmt_info
= vinfo->add_pattern_stmt (call_stmt, stmt_info);
/* Make sure to mark the representative statement pure_slp and
relevant and transfer reduction info. */
STMT_VINFO_RELEVANT (call_stmt_info) = vect_used_in_scope;
STMT_SLP_TYPE (call_stmt_info) = pure_slp;
STMT_VINFO_REDUC_DEF (call_stmt_info) = reduc_def;
gimple_set_bb (call_stmt, gimple_bb (stmt_info->stmt));
STMT_VINFO_VECTYPE (call_stmt_info) = SLP_TREE_VECTYPE (node);
STMT_VINFO_SLP_VECT_ONLY_PATTERN (call_stmt_info) = true;
/* Since we are replacing all the statements in the group with the same
thing it doesn't really matter. So just set it every time a new stmt
is created. */
SLP_TREE_REPRESENTATIVE (node) = call_stmt_info;
SLP_TREE_LANE_PERMUTATION (node).release ();
SLP_TREE_CODE (node) = CALL_EXPR;
}
}
/*******************************************************************************
* complex_add_pattern class
******************************************************************************/
class complex_add_pattern : public complex_pattern
{
protected:
complex_add_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
: complex_pattern (node, m_ops, ifn)
{
this->m_num_args = 2;
}
public:
void build (vec_info *);
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *, vec<slp_tree> *);
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
static vect_pattern*
mkInstance (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
{
return new complex_add_pattern (node, m_ops, ifn);
}
};
/* Perform a replacement of the detected complex add pattern with the new
instruction sequences. */
void
complex_add_pattern::build (vec_info *vinfo)
{
SLP_TREE_CHILDREN (*this->m_node).reserve_exact (2);
slp_tree node = this->m_ops[0];
vec<slp_tree> children = SLP_TREE_CHILDREN (node);
/* First re-arrange the children. */
SLP_TREE_CHILDREN (*this->m_node)[0] = children[0];
SLP_TREE_CHILDREN (*this->m_node)[1] =
vect_build_swap_evenodd_node (children[1]);
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (*this->m_node)[0])++;
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (*this->m_node)[1])++;
vect_free_slp_tree (this->m_ops[0]);
vect_free_slp_tree (this->m_ops[1]);
complex_pattern::build (vinfo);
}
/* Pattern matcher for trying to match complex addition pattern in SLP tree.
If no match is found then IFN is set to IFN_LAST.
This function matches the patterns shaped as:
c[i] = a[i] - b[i+1];
c[i+1] = a[i+1] + b[i];
If a match occurred then TRUE is returned, else FALSE. The initial match is
expected to be in OP1 and the initial match operands in args0. */
internal_fn
complex_add_pattern::matches (complex_operation_t op,
slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t * /* compat_cache */,
slp_tree *node, vec<slp_tree> *ops)
{
internal_fn ifn = IFN_LAST;
/* Find the two components. Rotation in the complex plane will modify
the operations:
* Rotation 0: + +
* Rotation 90: - +
* Rotation 180: - -
* Rotation 270: + -
Rotation 0 and 180 can be handled by normal SIMD code, so we don't need
to care about them here. */
if (op == MINUS_PLUS)
ifn = IFN_COMPLEX_ADD_ROT90;
else if (op == PLUS_MINUS)
ifn = IFN_COMPLEX_ADD_ROT270;
else
return ifn;
/* verify that there is a permute, otherwise this isn't a pattern we
we support. */
gcc_assert (ops->length () == 2);
vec<slp_tree> children = SLP_TREE_CHILDREN ((*ops)[0]);
/* First node must be unpermuted. */
if (linear_loads_p (perm_cache, children[0]) != PERM_EVENODD)
return IFN_LAST;
/* Second node must be permuted. */
if (linear_loads_p (perm_cache, children[1]) != PERM_ODDEVEN)
return IFN_LAST;
if (!vect_pattern_validate_optab (ifn, *node))
return IFN_LAST;
return ifn;
}
/* Attempt to recognize a complex add pattern. */
vect_pattern*
complex_add_pattern::recognize (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree *node)
{
auto_vec<slp_tree> ops;
complex_operation_t op
= vect_detect_pair_op (*node, true, &ops);
internal_fn ifn
= complex_add_pattern::matches (op, perm_cache, compat_cache, node, &ops);
if (ifn == IFN_LAST)
return NULL;
return new complex_add_pattern (node, &ops, ifn);
}
/*******************************************************************************
* complex_mul_pattern
******************************************************************************/
/* Helper function to check if PERM is KIND or PERM_TOP. */
static inline bool
is_eq_or_top (slp_tree_to_load_perm_map_t *perm_cache,
slp_tree op1, complex_perm_kinds_t kind1,
slp_tree op2, complex_perm_kinds_t kind2)
{
complex_perm_kinds_t perm1 = linear_loads_p (perm_cache, op1);
if (perm1 != kind1 && perm1 != PERM_TOP)
return false;
complex_perm_kinds_t perm2 = linear_loads_p (perm_cache, op2);
if (perm2 != kind2 && perm2 != PERM_TOP)
return false;
return true;
}
enum _conj_status { CONJ_NONE, CONJ_FST, CONJ_SND };
static inline bool
compatible_complex_nodes_p (slp_compat_nodes_map_t *compat_cache,
slp_tree a, int *pa, slp_tree b, int *pb)
{
bool *tmp;
std::pair<slp_tree, slp_tree> key = std::make_pair(a, b);
if ((tmp = compat_cache->get (key)) != NULL)
return *tmp;
compat_cache->put (key, false);
if (SLP_TREE_CHILDREN (a).length () != SLP_TREE_CHILDREN (b).length ())
return false;
if (SLP_TREE_DEF_TYPE (a) != SLP_TREE_DEF_TYPE (b))
return false;
/* Only internal nodes can be loads, as such we can't check further if they
are externals. */
if (SLP_TREE_DEF_TYPE (a) != vect_internal_def)
{
for (unsigned i = 0; i < SLP_TREE_SCALAR_OPS (a).length (); i++)
{
tree op1 = SLP_TREE_SCALAR_OPS (a)[pa[i % 2]];
tree op2 = SLP_TREE_SCALAR_OPS (b)[pb[i % 2]];
if (!operand_equal_p (op1, op2, 0))
return false;
}
compat_cache->put (key, true);
return true;
}
auto a_stmt = STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (a));
auto b_stmt = STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (b));
if (gimple_code (a_stmt) != gimple_code (b_stmt))
return false;
/* code, children, type, externals, loads, constants */
if (gimple_num_args (a_stmt) != gimple_num_args (b_stmt))
return false;
/* At this point, a and b are known to be the same gimple operations. */
if (is_gimple_call (a_stmt))
{
if (!compatible_calls_p (dyn_cast <gcall *> (a_stmt),
dyn_cast <gcall *> (b_stmt)))
return false;
}
else if (!is_gimple_assign (a_stmt))
return false;
else
{
tree_code acode = gimple_assign_rhs_code (a_stmt);
tree_code bcode = gimple_assign_rhs_code (b_stmt);
if ((acode == REALPART_EXPR || acode == IMAGPART_EXPR)
&& (bcode == REALPART_EXPR || bcode == IMAGPART_EXPR))
return true;
if (acode != bcode)
return false;
}
if (!SLP_TREE_LOAD_PERMUTATION (a).exists ()
|| !SLP_TREE_LOAD_PERMUTATION (b).exists ())
{
for (unsigned i = 0; i < gimple_num_args (a_stmt); i++)
{
tree t1 = gimple_arg (a_stmt, i);
tree t2 = gimple_arg (b_stmt, i);
if (TREE_CODE (t1) != TREE_CODE (t2))
return false;
/* If SSA name then we will need to inspect the children
so we can punt here. */
if (TREE_CODE (t1) == SSA_NAME)
continue;
if (!operand_equal_p (t1, t2, 0))
return false;
}
}
else
{
auto dr1 = STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (a));
auto dr2 = STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (b));
/* Don't check the last dimension as that's checked by the lineary
checks. This check is also much stricter than what we need
because it doesn't consider loading from adjacent elements
in the same struct as loading from the same base object.
But for now, I'll play it safe. */
if (!same_data_refs (dr1, dr2, 1))
return false;
}
for (unsigned i = 0; i < SLP_TREE_CHILDREN (a).length (); i++)
{
if (!compatible_complex_nodes_p (compat_cache,
SLP_TREE_CHILDREN (a)[i], pa,
SLP_TREE_CHILDREN (b)[i], pb))
return false;
}
compat_cache->put (key, true);
return true;
}
static inline bool
vect_validate_multiplication (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
vec<slp_tree> &left_op,
vec<slp_tree> &right_op,
bool subtract,
enum _conj_status *_status)
{
auto_vec<slp_tree> ops;
enum _conj_status stats = CONJ_NONE;
/* The complex operations can occur in two layouts and two permute sequences
so declare them and re-use them. */
int styles[][4] = { { 0, 2, 1, 3} /* {L1, R1} + {L2, R2}. */
, { 0, 3, 1, 2} /* {L1, R2} + {L2, R1}. */
};
/* Now for the corresponding permutes that go with these values. */
complex_perm_kinds_t perms[][4]
= { { PERM_EVENEVEN, PERM_ODDODD, PERM_EVENODD, PERM_ODDEVEN }
, { PERM_EVENODD, PERM_ODDEVEN, PERM_EVENEVEN, PERM_ODDODD }
};
/* These permutes are used during comparisons of externals on which
we require strict equality. */
int cq[][4][2]
= { { { 0, 0 }, { 1, 1 }, { 0, 1 }, { 1, 0 } }
, { { 0, 1 }, { 1, 0 }, { 0, 0 }, { 1, 1 } }
};
/* Default to style and perm 0, most operations use this one. */
int style = 0;
int perm = subtract ? 1 : 0;
/* Check if we have a negate operation, if so absorb the node and continue
looking. */
bool neg0 = vect_match_expression_p (right_op[0], NEGATE_EXPR);
bool neg1 = vect_match_expression_p (right_op[1], NEGATE_EXPR);
/* Determine which style we're looking at. We only have different ones
whenever a conjugate is involved. */
if (neg0 && neg1)
;
else if (neg0)
{
right_op[0] = SLP_TREE_CHILDREN (right_op[0])[0];
stats = CONJ_FST;
if (subtract)
perm = 0;
}
else if (neg1)
{
right_op[1] = SLP_TREE_CHILDREN (right_op[1])[0];
stats = CONJ_SND;
perm = 1;
}
*_status = stats;
/* Flatten the inputs after we've remapped them. */
ops.create (4);
ops.safe_splice (left_op);
ops.safe_splice (right_op);
/* Extract out the elements to check. */
slp_tree op0 = ops[styles[style][0]];
slp_tree op1 = ops[styles[style][1]];
slp_tree op2 = ops[styles[style][2]];
slp_tree op3 = ops[styles[style][3]];
/* Do cheapest test first. If failed no need to analyze further. */
if (linear_loads_p (perm_cache, op0) != perms[perm][0]
|| linear_loads_p (perm_cache, op1) != perms[perm][1]
|| !is_eq_or_top (perm_cache, op2, perms[perm][2], op3, perms[perm][3]))
return false;
return compatible_complex_nodes_p (compat_cache, op0, cq[perm][0], op1,
cq[perm][1])
&& compatible_complex_nodes_p (compat_cache, op2, cq[perm][2], op3,
cq[perm][3]);
}
/* This function combines two nodes containing only even and only odd lanes
together into a single node which contains the nodes in even/odd order
by using a lane permute.
The lanes in EVEN and ODD are duplicated 2 times inside the vectors.
So for a lanes = 4 EVEN contains {EVEN1, EVEN1, EVEN2, EVEN2}.
The tree REPRESENTATION is taken from the supplied REP along with the
vectype which must be the same between all three nodes.
*/
static slp_tree
vect_build_combine_node (slp_tree even, slp_tree odd, slp_tree rep)
{
vec<std::pair<unsigned, unsigned> > perm;
perm.create (SLP_TREE_LANES (rep));
for (unsigned x = 0; x < SLP_TREE_LANES (rep); x+=2)
{
perm.quick_push (std::make_pair (0, x));
perm.quick_push (std::make_pair (1, x+1));
}
slp_tree vnode = vect_create_new_slp_node (2, SLP_TREE_CODE (even));
SLP_TREE_CODE (vnode) = VEC_PERM_EXPR;
SLP_TREE_LANE_PERMUTATION (vnode) = perm;
SLP_TREE_CHILDREN (vnode).create (2);
SLP_TREE_CHILDREN (vnode).quick_push (even);
SLP_TREE_CHILDREN (vnode).quick_push (odd);
SLP_TREE_REF_COUNT (even)++;
SLP_TREE_REF_COUNT (odd)++;
SLP_TREE_REF_COUNT (vnode) = 1;
SLP_TREE_LANES (vnode) = SLP_TREE_LANES (rep);
gcc_assert (perm.length () == SLP_TREE_LANES (vnode));
/* Representation is set to that of the current node as the vectorizer
can't deal with VEC_PERMs with no representation, as would be the
case with invariants. */
SLP_TREE_REPRESENTATIVE (vnode) = SLP_TREE_REPRESENTATIVE (rep);
SLP_TREE_VECTYPE (vnode) = SLP_TREE_VECTYPE (rep);
return vnode;
}
class complex_mul_pattern : public complex_pattern
{
protected:
complex_mul_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
: complex_pattern (node, m_ops, ifn)
{
this->m_num_args = 2;
}
public:
void build (vec_info *);
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *, vec<slp_tree> *);
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
static vect_pattern*
mkInstance (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
{
return new complex_mul_pattern (node, m_ops, ifn);
}
};
/* Pattern matcher for trying to match complex multiply and complex multiply
and accumulate pattern in SLP tree. If the operation matches then IFN
is set to the operation it matched and the arguments to the two
replacement statements are put in m_ops.
If no match is found then IFN is set to IFN_LAST and m_ops is unchanged.
This function matches the patterns shaped as:
double ax = (b[i+1] * a[i]);
double bx = (a[i+1] * b[i]);
c[i] = c[i] - ax;
c[i+1] = c[i+1] + bx;
If a match occurred then TRUE is returned, else FALSE. The initial match is
expected to be in OP1 and the initial match operands in args0. */
internal_fn
complex_mul_pattern::matches (complex_operation_t op,
slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree *node, vec<slp_tree> *ops)
{
internal_fn ifn = IFN_LAST;
if (op != MINUS_PLUS)
return IFN_LAST;
auto childs = *ops;
auto l0node = SLP_TREE_CHILDREN (childs[0]);
bool mul0 = vect_match_expression_p (l0node[0], MULT_EXPR);
bool mul1 = vect_match_expression_p (l0node[1], MULT_EXPR);
if (!mul0 && !mul1)
return IFN_LAST;
/* Now operand2+4 may lead to another expression. */
auto_vec<slp_tree> left_op, right_op;
slp_tree add0 = NULL;
/* Check if we may be a multiply add. */
if (!mul0
&& vect_match_expression_p (l0node[0], PLUS_EXPR))
{
auto vals = SLP_TREE_CHILDREN (l0node[0]);
/* Check if it's a multiply, otherwise no idea what this is. */
if (!(mul0 = vect_match_expression_p (vals[1], MULT_EXPR)))
return IFN_LAST;
/* Check if the ADD is linear, otherwise it's not valid complex FMA. */
if (linear_loads_p (perm_cache, vals[0]) != PERM_EVENODD)
return IFN_LAST;
left_op.safe_splice (SLP_TREE_CHILDREN (vals[1]));
add0 = vals[0];
}
else
left_op.safe_splice (SLP_TREE_CHILDREN (l0node[0]));
right_op.safe_splice (SLP_TREE_CHILDREN (l0node[1]));
if (left_op.length () != 2
|| right_op.length () != 2
|| !mul0
|| !mul1
|| linear_loads_p (perm_cache, left_op[1]) == PERM_ODDEVEN)
return IFN_LAST;
enum _conj_status status;
if (!vect_validate_multiplication (perm_cache, compat_cache, left_op,
right_op, false, &status))
return IFN_LAST;
if (status == CONJ_NONE)
{
if (add0)
ifn = IFN_COMPLEX_FMA;
else
ifn = IFN_COMPLEX_MUL;
}
else
{
if(add0)
ifn = IFN_COMPLEX_FMA_CONJ;
else
ifn = IFN_COMPLEX_MUL_CONJ;
}
if (!vect_pattern_validate_optab (ifn, *node))
return IFN_LAST;
ops->truncate (0);
ops->create (add0 ? 4 : 3);
if (add0)
ops->quick_push (add0);
complex_perm_kinds_t kind = linear_loads_p (perm_cache, left_op[0]);
if (kind == PERM_EVENODD || kind == PERM_TOP)
{
ops->quick_push (left_op[1]);
ops->quick_push (right_op[1]);
ops->quick_push (left_op[0]);
}
else if (kind == PERM_EVENEVEN && status != CONJ_SND)
{
ops->quick_push (left_op[0]);
ops->quick_push (right_op[0]);
ops->quick_push (left_op[1]);
}
else
{
ops->quick_push (left_op[0]);
ops->quick_push (right_op[1]);
ops->quick_push (left_op[1]);
}
return ifn;
}
/* Attempt to recognize a complex mul pattern. */
vect_pattern*
complex_mul_pattern::recognize (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree *node)
{
auto_vec<slp_tree> ops;
complex_operation_t op
= vect_detect_pair_op (*node, true, &ops);
internal_fn ifn
= complex_mul_pattern::matches (op, perm_cache, compat_cache, node, &ops);
if (ifn == IFN_LAST)
return NULL;
return new complex_mul_pattern (node, &ops, ifn);
}
/* Perform a replacement of the detected complex mul pattern with the new
instruction sequences. */
void
complex_mul_pattern::build (vec_info *vinfo)
{
slp_tree node;
unsigned i;
switch (this->m_ifn)
{
case IFN_COMPLEX_MUL:
case IFN_COMPLEX_MUL_CONJ:
{
slp_tree newnode
= vect_build_combine_node (this->m_ops[0], this->m_ops[1],
*this->m_node);
SLP_TREE_REF_COUNT (this->m_ops[2])++;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (*this->m_node), i, node)
vect_free_slp_tree (node);
/* First re-arrange the children. */
SLP_TREE_CHILDREN (*this->m_node).reserve_exact (2);
SLP_TREE_CHILDREN (*this->m_node)[0] = this->m_ops[2];
SLP_TREE_CHILDREN (*this->m_node)[1] = newnode;
break;
}
case IFN_COMPLEX_FMA:
case IFN_COMPLEX_FMA_CONJ:
{
SLP_TREE_REF_COUNT (this->m_ops[0])++;
slp_tree newnode
= vect_build_combine_node (this->m_ops[1], this->m_ops[2],
*this->m_node);
SLP_TREE_REF_COUNT (this->m_ops[3])++;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (*this->m_node), i, node)
vect_free_slp_tree (node);
/* First re-arrange the children. */
SLP_TREE_CHILDREN (*this->m_node).safe_grow (3);
SLP_TREE_CHILDREN (*this->m_node)[0] = this->m_ops[3];
SLP_TREE_CHILDREN (*this->m_node)[1] = newnode;
SLP_TREE_CHILDREN (*this->m_node)[2] = this->m_ops[0];
/* Tell the builder to expect an extra argument. */
this->m_num_args++;
break;
}
default:
gcc_unreachable ();
}
/* And then rewrite the node itself. */
complex_pattern::build (vinfo);
}
/*******************************************************************************
* complex_fms_pattern class
******************************************************************************/
class complex_fms_pattern : public complex_pattern
{
protected:
complex_fms_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
: complex_pattern (node, m_ops, ifn)
{
this->m_num_args = 3;
}
public:
void build (vec_info *);
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *, vec<slp_tree> *);
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
static vect_pattern*
mkInstance (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
{
return new complex_fms_pattern (node, m_ops, ifn);
}
};
/* Pattern matcher for trying to match complex multiply and subtract pattern
in SLP tree. If the operation matches then IFN is set to the operation
it matched and the arguments to the two replacement statements are put in
m_ops.
If no match is found then IFN is set to IFN_LAST and m_ops is unchanged.
This function matches the patterns shaped as:
double ax = (b[i+1] * a[i]) + (b[i] * a[i]);
double bx = (a[i+1] * b[i]) - (a[i+1] * b[i+1]);
c[i] = c[i] - ax;
c[i+1] = c[i+1] + bx;
If a match occurred then TRUE is returned, else FALSE. The initial match is
expected to be in OP1 and the initial match operands in args0. */
internal_fn
complex_fms_pattern::matches (complex_operation_t op,
slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree * ref_node, vec<slp_tree> *ops)
{
internal_fn ifn = IFN_LAST;
/* We need to ignore the two_operands nodes that may also match,
for that we can check if they have any scalar statements and also
check that it's not a permute node as we're looking for a normal
MINUS_EXPR operation. */
if (op != CMPLX_NONE)
return IFN_LAST;
slp_tree root = *ref_node;
if (!vect_match_expression_p (root, MINUS_EXPR))
return IFN_LAST;
/* TODO: Support invariants here, with the new layout CADD now
can match before we get a chance to try CFMS. */
auto nodes = SLP_TREE_CHILDREN (root);
if (!vect_match_expression_p (nodes[1], MULT_EXPR)
|| vect_detect_pair_op (nodes[0]) != PLUS_MINUS)
return IFN_LAST;
auto childs = SLP_TREE_CHILDREN (nodes[0]);
auto l0node = SLP_TREE_CHILDREN (childs[0]);
/* Now operand2+4 may lead to another expression. */
auto_vec<slp_tree> left_op, right_op;
left_op.safe_splice (SLP_TREE_CHILDREN (l0node[1]));
right_op.safe_splice (SLP_TREE_CHILDREN (nodes[1]));
/* If these nodes don't have any children then they're
not ones we're interested in. */
if (left_op.length () != 2
|| right_op.length () != 2
|| !vect_match_expression_p (l0node[1], MULT_EXPR))
return IFN_LAST;
enum _conj_status status;
if (!vect_validate_multiplication (perm_cache, compat_cache, right_op,
left_op, true, &status))
return IFN_LAST;
if (status == CONJ_NONE)
ifn = IFN_COMPLEX_FMS;
else
ifn = IFN_COMPLEX_FMS_CONJ;
if (!vect_pattern_validate_optab (ifn, *ref_node))
return IFN_LAST;
ops->truncate (0);
ops->create (4);
complex_perm_kinds_t kind = linear_loads_p (perm_cache, right_op[0]);
if (kind == PERM_EVENODD)
{
ops->quick_push (l0node[0]);
ops->quick_push (right_op[0]);
ops->quick_push (right_op[1]);
ops->quick_push (left_op[1]);
}
else
{
ops->quick_push (l0node[0]);
ops->quick_push (right_op[1]);
ops->quick_push (right_op[0]);
ops->quick_push (left_op[0]);
}
return ifn;
}
/* Attempt to recognize a complex mul pattern. */
vect_pattern*
complex_fms_pattern::recognize (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree *node)
{
auto_vec<slp_tree> ops;
complex_operation_t op
= vect_detect_pair_op (*node, true, &ops);
internal_fn ifn
= complex_fms_pattern::matches (op, perm_cache, compat_cache, node, &ops);
if (ifn == IFN_LAST)
return NULL;
return new complex_fms_pattern (node, &ops, ifn);
}
/* Perform a replacement of the detected complex mul pattern with the new
instruction sequences. */
void
complex_fms_pattern::build (vec_info *vinfo)
{
slp_tree node;
unsigned i;
slp_tree newnode =
vect_build_combine_node (this->m_ops[2], this->m_ops[3], *this->m_node);
SLP_TREE_REF_COUNT (this->m_ops[0])++;
SLP_TREE_REF_COUNT (this->m_ops[1])++;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (*this->m_node), i, node)
vect_free_slp_tree (node);
SLP_TREE_CHILDREN (*this->m_node).release ();
SLP_TREE_CHILDREN (*this->m_node).create (3);
/* First re-arrange the children. */
SLP_TREE_CHILDREN (*this->m_node).quick_push (this->m_ops[1]);
SLP_TREE_CHILDREN (*this->m_node).quick_push (newnode);
SLP_TREE_CHILDREN (*this->m_node).quick_push (this->m_ops[0]);
/* And then rewrite the node itself. */
complex_pattern::build (vinfo);
}
/*******************************************************************************
* complex_operations_pattern class
******************************************************************************/
/* This function combines all the existing pattern matchers above into one class
that shares the functionality between them. The initial match is shared
between all complex operations. */
class complex_operations_pattern : public complex_pattern
{
protected:
complex_operations_pattern (slp_tree *node, vec<slp_tree> *m_ops,
internal_fn ifn)
: complex_pattern (node, m_ops, ifn)
{
this->m_num_args = 0;
}
public:
void build (vec_info *);
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *, vec<slp_tree> *);
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
};
/* Dummy matches implementation for proxy object. */
internal_fn
complex_operations_pattern::
matches (complex_operation_t /* op */,
slp_tree_to_load_perm_map_t * /* perm_cache */,
slp_compat_nodes_map_t * /* compat_cache */,
slp_tree * /* ref_node */, vec<slp_tree> * /* ops */)
{
return IFN_LAST;
}
/* Attempt to recognize a complex mul pattern. */
vect_pattern*
complex_operations_pattern::recognize (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *ccache,
slp_tree *node)
{
auto_vec<slp_tree> ops;
complex_operation_t op
= vect_detect_pair_op (*node, true, &ops);
internal_fn ifn = IFN_LAST;
ifn = complex_fms_pattern::matches (op, perm_cache, ccache, node, &ops);
if (ifn != IFN_LAST)
return complex_fms_pattern::mkInstance (node, &ops, ifn);
ifn = complex_mul_pattern::matches (op, perm_cache, ccache, node, &ops);
if (ifn != IFN_LAST)
return complex_mul_pattern::mkInstance (node, &ops, ifn);
ifn = complex_add_pattern::matches (op, perm_cache, ccache, node, &ops);
if (ifn != IFN_LAST)
return complex_add_pattern::mkInstance (node, &ops, ifn);
return NULL;
}
/* Dummy implementation of build. */
void
complex_operations_pattern::build (vec_info * /* vinfo */)
{
gcc_unreachable ();
}
/* The addsub_pattern. */
class addsub_pattern : public vect_pattern
{
public:
addsub_pattern (slp_tree *node, internal_fn ifn)
: vect_pattern (node, NULL, ifn) {};
void build (vec_info *);
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
};
vect_pattern *
addsub_pattern::recognize (slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *node_)
{
slp_tree node = *node_;
if (SLP_TREE_CODE (node) != VEC_PERM_EXPR
|| SLP_TREE_CHILDREN (node).length () != 2
|| SLP_TREE_LANE_PERMUTATION (node).length () % 2)
return NULL;
/* Match a blend of a plus and a minus op with the same number of plus and
minus lanes on the same operands. */
unsigned l0 = SLP_TREE_LANE_PERMUTATION (node)[0].first;
unsigned l1 = SLP_TREE_LANE_PERMUTATION (node)[1].first;
if (l0 == l1)
return NULL;
bool l0add_p = vect_match_expression_p (SLP_TREE_CHILDREN (node)[l0],
PLUS_EXPR);
if (!l0add_p
&& !vect_match_expression_p (SLP_TREE_CHILDREN (node)[l0], MINUS_EXPR))
return NULL;
bool l1add_p = vect_match_expression_p (SLP_TREE_CHILDREN (node)[l1],
PLUS_EXPR);
if (!l1add_p
&& !vect_match_expression_p (SLP_TREE_CHILDREN (node)[l1], MINUS_EXPR))
return NULL;
slp_tree l0node = SLP_TREE_CHILDREN (node)[l0];
slp_tree l1node = SLP_TREE_CHILDREN (node)[l1];
if (!((SLP_TREE_CHILDREN (l0node)[0] == SLP_TREE_CHILDREN (l1node)[0]
&& SLP_TREE_CHILDREN (l0node)[1] == SLP_TREE_CHILDREN (l1node)[1])
|| (SLP_TREE_CHILDREN (l0node)[0] == SLP_TREE_CHILDREN (l1node)[1]
&& SLP_TREE_CHILDREN (l0node)[1] == SLP_TREE_CHILDREN (l1node)[0])))
return NULL;
for (unsigned i = 0; i < SLP_TREE_LANE_PERMUTATION (node).length (); ++i)
{
std::pair<unsigned, unsigned> perm = SLP_TREE_LANE_PERMUTATION (node)[i];
/* It has to be alternating -, +, -,
While we could permute the .ADDSUB inputs and the .ADDSUB output
that's only profitable over the add + sub + blend if at least
one of the permute is optimized which we can't determine here. */
if (perm.first != ((i & 1) ? l1 : l0)
|| perm.second != i)
return NULL;
}
/* Now we have either { -, +, -, + ... } (!l0add_p) or { +, -, +, - ... }
(l0add_p), see whether we have FMA variants. */
if (!l0add_p
&& vect_match_expression_p (SLP_TREE_CHILDREN (l0node)[0], MULT_EXPR))
{
/* (c * d) -+ a */
if (vect_pattern_validate_optab (IFN_VEC_FMADDSUB, node))
return new addsub_pattern (node_, IFN_VEC_FMADDSUB);
}
else if (l0add_p
&& vect_match_expression_p (SLP_TREE_CHILDREN (l1node)[0], MULT_EXPR))
{
/* (c * d) +- a */
if (vect_pattern_validate_optab (IFN_VEC_FMSUBADD, node))
return new addsub_pattern (node_, IFN_VEC_FMSUBADD);
}
if (!l0add_p && vect_pattern_validate_optab (IFN_VEC_ADDSUB, node))
return new addsub_pattern (node_, IFN_VEC_ADDSUB);
return NULL;
}
void
addsub_pattern::build (vec_info *vinfo)
{
slp_tree node = *m_node;
unsigned l0 = SLP_TREE_LANE_PERMUTATION (node)[0].first;
unsigned l1 = SLP_TREE_LANE_PERMUTATION (node)[1].first;
switch (m_ifn)
{
case IFN_VEC_ADDSUB:
{
slp_tree sub = SLP_TREE_CHILDREN (node)[l0];
slp_tree add = SLP_TREE_CHILDREN (node)[l1];
/* Modify the blend node in-place. */
SLP_TREE_CHILDREN (node)[0] = SLP_TREE_CHILDREN (sub)[0];
SLP_TREE_CHILDREN (node)[1] = SLP_TREE_CHILDREN (sub)[1];
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[0])++;
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[1])++;
/* Build IFN_VEC_ADDSUB from the sub representative operands. */
stmt_vec_info rep = SLP_TREE_REPRESENTATIVE (sub);
gcall *call = gimple_build_call_internal (IFN_VEC_ADDSUB, 2,
gimple_assign_rhs1 (rep->stmt),
gimple_assign_rhs2 (rep->stmt));
gimple_call_set_lhs (call, make_ssa_name
(TREE_TYPE (gimple_assign_lhs (rep->stmt))));
gimple_call_set_nothrow (call, true);
gimple_set_bb (call, gimple_bb (rep->stmt));
stmt_vec_info new_rep = vinfo->add_pattern_stmt (call, rep);
SLP_TREE_REPRESENTATIVE (node) = new_rep;
STMT_VINFO_RELEVANT (new_rep) = vect_used_in_scope;
STMT_SLP_TYPE (new_rep) = pure_slp;
STMT_VINFO_VECTYPE (new_rep) = SLP_TREE_VECTYPE (node);
STMT_VINFO_SLP_VECT_ONLY_PATTERN (new_rep) = true;
STMT_VINFO_REDUC_DEF (new_rep) = STMT_VINFO_REDUC_DEF (vect_orig_stmt (rep));
SLP_TREE_CODE (node) = ERROR_MARK;
SLP_TREE_LANE_PERMUTATION (node).release ();
vect_free_slp_tree (sub);
vect_free_slp_tree (add);
break;
}
case IFN_VEC_FMADDSUB:
case IFN_VEC_FMSUBADD:
{
slp_tree sub, add;
if (m_ifn == IFN_VEC_FMADDSUB)
{
sub = SLP_TREE_CHILDREN (node)[l0];
add = SLP_TREE_CHILDREN (node)[l1];
}
else /* m_ifn == IFN_VEC_FMSUBADD */
{
sub = SLP_TREE_CHILDREN (node)[l1];
add = SLP_TREE_CHILDREN (node)[l0];
}
slp_tree mul = SLP_TREE_CHILDREN (sub)[0];
/* Modify the blend node in-place. */
SLP_TREE_CHILDREN (node).safe_grow (3, true);
SLP_TREE_CHILDREN (node)[0] = SLP_TREE_CHILDREN (mul)[0];
SLP_TREE_CHILDREN (node)[1] = SLP_TREE_CHILDREN (mul)[1];
SLP_TREE_CHILDREN (node)[2] = SLP_TREE_CHILDREN (sub)[1];
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[0])++;
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[1])++;
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[2])++;
/* Build IFN_VEC_FMADDSUB from the mul/sub representative operands. */
stmt_vec_info srep = SLP_TREE_REPRESENTATIVE (sub);
stmt_vec_info mrep = SLP_TREE_REPRESENTATIVE (mul);
gcall *call = gimple_build_call_internal (m_ifn, 3,
gimple_assign_rhs1 (mrep->stmt),
gimple_assign_rhs2 (mrep->stmt),
gimple_assign_rhs2 (srep->stmt));
gimple_call_set_lhs (call, make_ssa_name
(TREE_TYPE (gimple_assign_lhs (srep->stmt))));
gimple_call_set_nothrow (call, true);
gimple_set_bb (call, gimple_bb (srep->stmt));
stmt_vec_info new_rep = vinfo->add_pattern_stmt (call, srep);
SLP_TREE_REPRESENTATIVE (node) = new_rep;
STMT_VINFO_RELEVANT (new_rep) = vect_used_in_scope;
STMT_SLP_TYPE (new_rep) = pure_slp;
STMT_VINFO_VECTYPE (new_rep) = SLP_TREE_VECTYPE (node);
STMT_VINFO_SLP_VECT_ONLY_PATTERN (new_rep) = true;
STMT_VINFO_REDUC_DEF (new_rep) = STMT_VINFO_REDUC_DEF (vect_orig_stmt (srep));
SLP_TREE_CODE (node) = ERROR_MARK;
SLP_TREE_LANE_PERMUTATION (node).release ();
vect_free_slp_tree (sub);
vect_free_slp_tree (add);
break;
}
default:;
}
}
/*******************************************************************************
* Pattern matching definitions
******************************************************************************/
#define SLP_PATTERN(x) &x::recognize
vect_pattern_decl_t slp_patterns[]
{
/* For least amount of back-tracking and more efficient matching
order patterns from the largest to the smallest. Especially if they
overlap in what they can detect. */
SLP_PATTERN (complex_operations_pattern),
SLP_PATTERN (addsub_pattern)
};
#undef SLP_PATTERN
/* Set the number of SLP pattern matchers available. */
size_t num__slp_patterns = sizeof(slp_patterns)/sizeof(vect_pattern_decl_t);
|