1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
|
/* A typesafe wrapper around libiberty's splay-tree.h.
Copyright (C) 2015-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_TYPED_SPLAY_TREE_H
#define GCC_TYPED_SPLAY_TREE_H
/* Typesafe wrapper around libiberty's splay-tree.h. */
template <typename KEY_TYPE, typename VALUE_TYPE>
class typed_splay_tree
{
public:
typedef KEY_TYPE key_type;
typedef VALUE_TYPE value_type;
typedef int (*compare_fn) (key_type, key_type);
typedef void (*delete_key_fn) (key_type);
typedef void (*delete_value_fn) (value_type);
typedef int (*foreach_fn) (key_type, value_type, void *);
typed_splay_tree (compare_fn,
delete_key_fn,
delete_value_fn);
~typed_splay_tree ();
value_type lookup (key_type k);
value_type predecessor (key_type k);
value_type successor (key_type k);
void insert (key_type k, value_type v);
void remove (key_type k);
value_type max ();
value_type min ();
int foreach (foreach_fn, void *);
private:
/* Copy and assignment ops are not supported. */
typed_splay_tree (const typed_splay_tree &);
typed_splay_tree & operator = (const typed_splay_tree &);
typedef key_type splay_tree_key;
typedef value_type splay_tree_value;
/* The nodes in the splay tree. */
struct splay_tree_node_s {
/* The key. */
splay_tree_key key;
/* The value. */
splay_tree_value value;
/* The left and right children, respectively. */
splay_tree_node_s *left, *right;
/* Used as temporary value for tree traversals. */
splay_tree_node_s *back;
};
typedef splay_tree_node_s *splay_tree_node;
inline void KDEL (splay_tree_key);
inline void VDEL (splay_tree_value);
void splay_tree_delete_helper (splay_tree_node);
static inline void rotate_left (splay_tree_node *,
splay_tree_node, splay_tree_node);
static inline void rotate_right (splay_tree_node *,
splay_tree_node, splay_tree_node);
void splay_tree_splay (splay_tree_key);
static int splay_tree_foreach_helper (splay_tree_node,
foreach_fn, void*);
splay_tree_node splay_tree_insert (splay_tree_key, splay_tree_value);
void splay_tree_remove (splay_tree_key key);
splay_tree_node splay_tree_lookup (splay_tree_key key);
splay_tree_node splay_tree_predecessor (splay_tree_key);
splay_tree_node splay_tree_successor (splay_tree_key);
splay_tree_node splay_tree_max ();
splay_tree_node splay_tree_min ();
static value_type node_to_value (splay_tree_node node);
/* The root of the tree. */
splay_tree_node root;
/* The comparision function. */
compare_fn comp;
/* The deallocate-key function. NULL if no cleanup is necessary. */
delete_key_fn delete_key;
/* The deallocate-value function. NULL if no cleanup is necessary. */
delete_value_fn delete_value;
};
/* Constructor for typed_splay_tree <K, V>. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline typed_splay_tree<KEY_TYPE, VALUE_TYPE>::
typed_splay_tree (compare_fn compare_fn,
delete_key_fn delete_key_fn,
delete_value_fn delete_value_fn)
{
root = NULL;
comp = compare_fn;
delete_key = delete_key_fn;
delete_value = delete_value_fn;
}
/* Destructor for typed_splay_tree <K, V>. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline typed_splay_tree<KEY_TYPE, VALUE_TYPE>::
~typed_splay_tree ()
{
splay_tree_delete_helper (root);
}
/* Lookup KEY, returning a value if present, and NULL
otherwise. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline VALUE_TYPE
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::lookup (key_type key)
{
splay_tree_node node = splay_tree_lookup (key);
return node_to_value (node);
}
/* Return the immediate predecessor of KEY, or NULL if there is no
predecessor. KEY need not be present in the tree. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline VALUE_TYPE
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::predecessor (key_type key)
{
splay_tree_node node = splay_tree_predecessor (key);
return node_to_value (node);
}
/* Return the immediate successor of KEY, or NULL if there is no
successor. KEY need not be present in the tree. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline VALUE_TYPE
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::successor (key_type key)
{
splay_tree_node node = splay_tree_successor (key);
return node_to_value (node);
}
/* Insert a new node (associating KEY with VALUE). If a
previous node with the indicated KEY exists, its data is replaced
with the new value. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline void
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::insert (key_type key,
value_type value)
{
splay_tree_insert (key, value);
}
/* Remove a node (associating KEY with VALUE). */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline void
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::remove (key_type key)
{
splay_tree_remove (key);
}
/* Get the value with maximal key. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline VALUE_TYPE
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::max ()
{
return node_to_value (splay_tree_max ());
}
/* Get the value with minimal key. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline VALUE_TYPE
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::min ()
{
return node_to_value (splay_tree_min ());
}
/* Call OUTER_CB, passing it the OUTER_USER_DATA, for every node,
following an in-order traversal. If OUTER_CB ever returns a non-zero
value, the iteration ceases immediately, and the value is returned.
Otherwise, this function returns 0. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline int
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::foreach (foreach_fn foreach_fn,
void *user_data)
{
return splay_tree_foreach_helper (root, foreach_fn, user_data);
}
/* Internal function for converting from splay_tree_node to
VALUE_TYPE. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline VALUE_TYPE
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::node_to_value (splay_tree_node node)
{
if (node)
return node->value;
else
return 0;
}
template <typename KEY_TYPE, typename VALUE_TYPE>
inline void
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::KDEL(splay_tree_key x)
{
if (delete_key)
(*delete_key)(x);
}
template <typename KEY_TYPE, typename VALUE_TYPE>
inline void
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::VDEL(splay_tree_value x)
{
if (delete_value)
(*delete_value)(x);
}
/* Deallocate NODE (a member of SP), and all its sub-trees. */
template <typename KEY_TYPE, typename VALUE_TYPE>
void
typed_splay_tree<KEY_TYPE,
VALUE_TYPE>::splay_tree_delete_helper (splay_tree_node node)
{
splay_tree_node pending = NULL;
splay_tree_node active = NULL;
if (!node)
return;
KDEL (node->key);
VDEL (node->value);
/* We use the "back" field to hold the "next" pointer. */
node->back = pending;
pending = node;
/* Now, keep processing the pending list until there aren't any
more. This is a little more complicated than just recursing, but
it doesn't toast the stack for large trees. */
while (pending)
{
active = pending;
pending = NULL;
while (active)
{
splay_tree_node temp;
/* active points to a node which has its key and value
deallocated, we just need to process left and right. */
if (active->left)
{
KDEL (active->left->key);
VDEL (active->left->value);
active->left->back = pending;
pending = active->left;
}
if (active->right)
{
KDEL (active->right->key);
VDEL (active->right->value);
active->right->back = pending;
pending = active->right;
}
temp = active;
active = temp->back;
delete temp;
}
}
}
/* Rotate the edge joining the left child N with its parent P. PP is the
grandparents' pointer to P. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline void
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::rotate_left (splay_tree_node *pp,
splay_tree_node p,
splay_tree_node n)
{
splay_tree_node tmp;
tmp = n->right;
n->right = p;
p->left = tmp;
*pp = n;
}
/* Rotate the edge joining the right child N with its parent P. PP is the
grandparents' pointer to P. */
template <typename KEY_TYPE, typename VALUE_TYPE>
inline void
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::rotate_right (splay_tree_node *pp,
splay_tree_node p,
splay_tree_node n)
{
splay_tree_node tmp;
tmp = n->left;
n->left = p;
p->right = tmp;
*pp = n;
}
/* Bottom up splay of key. */
template <typename KEY_TYPE, typename VALUE_TYPE>
void
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_splay (splay_tree_key key)
{
if (root == NULL)
return;
do {
int cmp1, cmp2;
splay_tree_node n, c;
n = root;
cmp1 = (*comp) (key, n->key);
/* Found. */
if (cmp1 == 0)
return;
/* Left or right? If no child, then we're done. */
if (cmp1 < 0)
c = n->left;
else
c = n->right;
if (!c)
return;
/* Next one left or right? If found or no child, we're done
after one rotation. */
cmp2 = (*comp) (key, c->key);
if (cmp2 == 0
|| (cmp2 < 0 && !c->left)
|| (cmp2 > 0 && !c->right))
{
if (cmp1 < 0)
rotate_left (&root, n, c);
else
rotate_right (&root, n, c);
return;
}
/* Now we have the four cases of double-rotation. */
if (cmp1 < 0 && cmp2 < 0)
{
rotate_left (&n->left, c, c->left);
rotate_left (&root, n, n->left);
}
else if (cmp1 > 0 && cmp2 > 0)
{
rotate_right (&n->right, c, c->right);
rotate_right (&root, n, n->right);
}
else if (cmp1 < 0 && cmp2 > 0)
{
rotate_right (&n->left, c, c->right);
rotate_left (&root, n, n->left);
}
else if (cmp1 > 0 && cmp2 < 0)
{
rotate_left (&n->right, c, c->left);
rotate_right (&root, n, n->right);
}
} while (1);
}
/* Call FN, passing it the DATA, for every node below NODE, all of
which are from SP, following an in-order traversal. If FN every
returns a non-zero value, the iteration ceases immediately, and the
value is returned. Otherwise, this function returns 0. */
template <typename KEY_TYPE, typename VALUE_TYPE>
int
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_foreach_helper (
splay_tree_node node,
foreach_fn fn, void *data)
{
int val;
splay_tree_node stack;
/* A non-recursive implementation is used to avoid filling the stack
for large trees. Splay trees are worst case O(n) in the depth of
the tree. */
stack = NULL;
val = 0;
for (;;)
{
while (node != NULL)
{
node->back = stack;
stack = node;
node = node->left;
}
if (stack == NULL)
break;
node = stack;
stack = stack->back;
val = (*fn) (node->key, node->value, data);
if (val)
break;
node = node->right;
}
return val;
}
/* Insert a new node (associating KEY with DATA) into SP. If a
previous node with the indicated KEY exists, its data is replaced
with the new value. Returns the new node. */
template <typename KEY_TYPE, typename VALUE_TYPE>
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_insert (
splay_tree_key key,
splay_tree_value value)
{
int comparison = 0;
splay_tree_splay (key);
if (root)
comparison = (*comp)(root->key, key);
if (root && comparison == 0)
{
/* If the root of the tree already has the indicated KEY, just
replace the value with VALUE. */
VDEL(root->value);
root->value = value;
}
else
{
/* Create a new node, and insert it at the root. */
splay_tree_node node;
node = new splay_tree_node_s;
node->key = key;
node->value = value;
if (!root)
node->left = node->right = 0;
else if (comparison < 0)
{
node->left = root;
node->right = node->left->right;
node->left->right = 0;
}
else
{
node->right = root;
node->left = node->right->left;
node->right->left = 0;
}
root = node;
}
return root;
}
/* Remove KEY from SP. It is not an error if it did not exist. */
template <typename KEY_TYPE, typename VALUE_TYPE>
void
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_remove (splay_tree_key key)
{
splay_tree_splay (key);
if (root && (*comp) (root->key, key) == 0)
{
splay_tree_node left, right;
left = root->left;
right = root->right;
/* Delete the root node itself. */
VDEL (root->value);
delete root;
/* One of the children is now the root. Doesn't matter much
which, so long as we preserve the properties of the tree. */
if (left)
{
root = left;
/* If there was a right child as well, hang it off the
right-most leaf of the left child. */
if (right)
{
while (left->right)
left = left->right;
left->right = right;
}
}
else
root = right;
}
}
/* Lookup KEY in SP, returning VALUE if present, and NULL
otherwise. */
template <typename KEY_TYPE, typename VALUE_TYPE>
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_lookup (splay_tree_key key)
{
splay_tree_splay (key);
if (root && (*comp)(root->key, key) == 0)
return root;
else
return 0;
}
/* Return the node in SP with the greatest key. */
template <typename KEY_TYPE, typename VALUE_TYPE>
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_max ()
{
splay_tree_node n = root;
if (!n)
return NULL;
while (n->right)
n = n->right;
return n;
}
/* Return the node in SP with the smallest key. */
template <typename KEY_TYPE, typename VALUE_TYPE>
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_min ()
{
splay_tree_node n = root;
if (!n)
return NULL;
while (n->left)
n = n->left;
return n;
}
/* Return the immediate predecessor KEY, or NULL if there is no
predecessor. KEY need not be present in the tree. */
template <typename KEY_TYPE, typename VALUE_TYPE>
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
typed_splay_tree<KEY_TYPE,
VALUE_TYPE>::splay_tree_predecessor (splay_tree_key key)
{
int comparison;
splay_tree_node node;
/* If the tree is empty, there is certainly no predecessor. */
if (!root)
return NULL;
/* Splay the tree around KEY. That will leave either the KEY
itself, its predecessor, or its successor at the root. */
splay_tree_splay (key);
comparison = (*comp)(root->key, key);
/* If the predecessor is at the root, just return it. */
if (comparison < 0)
return root;
/* Otherwise, find the rightmost element of the left subtree. */
node = root->left;
if (node)
while (node->right)
node = node->right;
return node;
}
/* Return the immediate successor KEY, or NULL if there is no
successor. KEY need not be present in the tree. */
template <typename KEY_TYPE, typename VALUE_TYPE>
typename typed_splay_tree<KEY_TYPE, VALUE_TYPE>::splay_tree_node
typed_splay_tree<KEY_TYPE,
VALUE_TYPE>::splay_tree_successor (splay_tree_key key)
{
int comparison;
splay_tree_node node;
/* If the tree is empty, there is certainly no successor. */
if (!root)
return NULL;
/* Splay the tree around KEY. That will leave either the KEY
itself, its predecessor, or its successor at the root. */
splay_tree_splay (key);
comparison = (*comp)(root->key, key);
/* If the successor is at the root, just return it. */
if (comparison > 0)
return root;
/* Otherwise, find the leftmost element of the right subtree. */
node = root->right;
if (node)
while (node->left)
node = node->left;
return node;
}
#endif /* GCC_TYPED_SPLAY_TREE_H */
|