1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/* Context-aware pointer equivalence tracker.
Copyright (C) 2020-2022 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-propagate.h"
#include "alloc-pool.h"
#include "domwalk.h"
#include "tree-cfgcleanup.h"
#include "vr-values.h"
#include "gimple-range.h"
#include "fold-const.h"
#include "value-pointer-equiv.h"
// Unwindable SSA equivalence table for pointers.
//
// The main query point is get_replacement() which returns what a
// given SSA can be replaced with in the current scope.
class ssa_equiv_stack
{
public:
ssa_equiv_stack ();
void enter (basic_block);
void leave (basic_block);
void push_replacement (tree name, tree replacement);
tree get_replacement (tree name);
private:
auto_vec<std::pair <tree, tree>> m_stack;
auto_vec<tree> m_replacements;
const std::pair <tree, tree> m_marker = std::make_pair (NULL, NULL);
};
ssa_equiv_stack::ssa_equiv_stack ()
{
m_replacements.safe_grow_cleared (num_ssa_names + 1);
}
// Pushes a marker at the given point.
void
ssa_equiv_stack::enter (basic_block)
{
m_stack.safe_push (m_marker);
}
// Pops the stack to the last marker, while performing replacements
// along the way.
void
ssa_equiv_stack::leave (basic_block)
{
gcc_checking_assert (!m_stack.is_empty ());
while (m_stack.last () != m_marker)
{
std::pair<tree, tree> e = m_stack.pop ();
m_replacements[SSA_NAME_VERSION (e.first)] = e.second;
}
m_stack.pop ();
}
// Set the equivalence of NAME to REPLACEMENT.
void
ssa_equiv_stack::push_replacement (tree name, tree replacement)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_replacements.length ())
m_replacements.safe_grow_cleared (num_ssa_names + 1);
tree old = m_replacements[v];
m_replacements[v] = replacement;
m_stack.safe_push (std::make_pair (name, old));
}
// Return the equivalence of NAME.
tree
ssa_equiv_stack::get_replacement (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_replacements.length ())
m_replacements.safe_grow_cleared (num_ssa_names + 1);
return m_replacements[v];
}
pointer_equiv_analyzer::pointer_equiv_analyzer (gimple_ranger *r)
{
m_ranger = r;
m_global_points.safe_grow_cleared (num_ssa_names + 1);
m_cond_points = new ssa_equiv_stack;
}
pointer_equiv_analyzer::~pointer_equiv_analyzer ()
{
delete m_cond_points;
}
// Set the global pointer equivalency for SSA to POINTEE.
void
pointer_equiv_analyzer::set_global_equiv (tree ssa, tree pointee)
{
unsigned v = SSA_NAME_VERSION (ssa);
if (v >= m_global_points.length ())
m_global_points.safe_grow_cleared (num_ssa_names + 1);
m_global_points[v] = pointee;
}
// Set the conditional pointer equivalency for SSA to POINTEE.
void
pointer_equiv_analyzer::set_cond_equiv (tree ssa, tree pointee)
{
m_cond_points->push_replacement (ssa, pointee);
}
// Return the current pointer equivalency info for SSA, or NULL if
// none is available. Note that global info takes priority over
// conditional info.
tree
pointer_equiv_analyzer::get_equiv (tree ssa)
{
unsigned v = SSA_NAME_VERSION (ssa);
if (v >= m_global_points.length ())
m_global_points.safe_grow_cleared (num_ssa_names + 1);
tree ret = m_global_points[v];
if (ret)
return ret;
return m_cond_points->get_replacement (ssa);
}
// Method to be called on entry to a BB.
void
pointer_equiv_analyzer::enter (basic_block bb)
{
m_cond_points->enter (bb);
for (gphi_iterator iter = gsi_start_phis (bb);
!gsi_end_p (iter);
gsi_next (&iter))
{
gphi *phi = iter.phi ();
tree lhs = gimple_phi_result (phi);
if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
continue;
tree arg0 = gimple_phi_arg_def (phi, 0);
if (TREE_CODE (arg0) == SSA_NAME && !is_gimple_min_invariant (arg0))
arg0 = get_equiv (arg0);
if (arg0 && is_gimple_min_invariant (arg0))
{
// If all the PHI args point to the same place, set the
// pointer equivalency info for the PHI result. This can
// happen for passes that create redundant PHIs like
// PHI<&foo, &foo> or PHI<&foo>.
for (size_t i = 1; i < gimple_phi_num_args (phi); ++i)
{
tree argi = gimple_phi_arg_def (phi, i);
if (TREE_CODE (argi) == SSA_NAME
&& !is_gimple_min_invariant (argi))
argi = get_equiv (argi);
if (!argi || !operand_equal_p (arg0, argi))
return;
}
set_global_equiv (lhs, arg0);
}
}
edge pred = single_pred_edge_ignoring_loop_edges (bb, false);
if (pred)
visit_edge (pred);
}
// Method to be called on exit from a BB.
void
pointer_equiv_analyzer::leave (basic_block bb)
{
m_cond_points->leave (bb);
}
// Helper function to return the pointer equivalency information for
// EXPR from a gimple statement with CODE. This returns either the
// cached pointer equivalency info for an SSA, or an invariant in case
// EXPR is one (i.e. &foo). Returns NULL if EXPR is neither an SSA
// nor an invariant.
tree
pointer_equiv_analyzer::get_equiv_expr (tree_code code, tree expr)
{
if (code == SSA_NAME)
return get_equiv (expr);
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
&& is_gimple_min_invariant (expr))
return expr;
return NULL;
}
// Hack to provide context to the gimple fold callback.
static struct
{
gimple *m_stmt;
gimple_ranger *m_ranger;
pointer_equiv_analyzer *m_pta;
} x_fold_context;
// Gimple fold callback.
static tree
pta_valueize (tree name)
{
tree ret
= x_fold_context.m_ranger->value_of_expr (name, x_fold_context.m_stmt);
if (!ret && supported_pointer_equiv_p (name))
ret = x_fold_context.m_pta->get_equiv (name);
return ret ? ret : name;
}
// Method to be called on gimple statements during traversal of the IL.
void
pointer_equiv_analyzer::visit_stmt (gimple *stmt)
{
if (gimple_code (stmt) != GIMPLE_ASSIGN)
return;
tree lhs = gimple_assign_lhs (stmt);
if (!supported_pointer_equiv_p (lhs))
return;
tree rhs = gimple_assign_rhs1 (stmt);
rhs = get_equiv_expr (gimple_assign_rhs_code (stmt), rhs);
if (rhs)
{
set_global_equiv (lhs, rhs);
return;
}
// If we couldn't find anything, try fold.
x_fold_context = { stmt, m_ranger, this};
rhs = gimple_fold_stmt_to_constant_1 (stmt, pta_valueize, pta_valueize);
if (rhs)
{
rhs = get_equiv_expr (TREE_CODE (rhs), rhs);
if (rhs)
{
set_global_equiv (lhs, rhs);
return;
}
}
}
// If the edge in E is a conditional that sets a pointer equality, set the
// conditional pointer equivalency information.
void
pointer_equiv_analyzer::visit_edge (edge e)
{
gimple *stmt = last_stmt (e->src);
tree lhs;
// Recognize: x_13 [==,!=] &foo.
if (stmt
&& gimple_code (stmt) == GIMPLE_COND
&& (lhs = gimple_cond_lhs (stmt))
&& TREE_CODE (lhs) == SSA_NAME
&& POINTER_TYPE_P (TREE_TYPE (lhs))
&& TREE_CODE (gimple_cond_rhs (stmt)) == ADDR_EXPR)
{
tree_code code = gimple_cond_code (stmt);
if ((code == EQ_EXPR && e->flags & EDGE_TRUE_VALUE)
|| ((code == NE_EXPR && e->flags & EDGE_FALSE_VALUE)))
set_cond_equiv (lhs, gimple_cond_rhs (stmt));
}
}
|