1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
|
/* Header file for the value range relational processing.
Copyright (C) 2020-2022 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-range.h"
#include "tree-pretty-print.h"
#include "gimple-pretty-print.h"
#include "alloc-pool.h"
#include "dominance.h"
// These VREL codes are arranged such that VREL_NONE is the first
// code, and all the rest are contiguous up to and including VREL_LAST.
#define VREL_FIRST VREL_NONE
#define VREL_LAST NE_EXPR
#define VREL_COUNT (VREL_LAST - VREL_FIRST + 1)
// vrel_range_assert will either assert that the tree code passed is valid,
// or mark invalid codes as unreachable to help with table optimation.
#if CHECKING_P
#define vrel_range_assert(c) \
gcc_checking_assert ((c) >= VREL_FIRST && (c) <= VREL_LAST)
#else
#define vrel_range_assert(c) \
if ((c) < VREL_FIRST || (c) > VREL_LAST) \
gcc_unreachable ();
#endif
static const char *kind_string[VREL_COUNT] =
{ "none", "<", "<=", ">", ">=", "empty", "==", "!=" };
// Print a relation_kind REL to file F.
void
print_relation (FILE *f, relation_kind rel)
{
vrel_range_assert (rel);
fprintf (f, " %s ", kind_string[rel - VREL_FIRST]);
}
// This table is used to negate the operands. op1 REL op2 -> !(op1 REL op2).
relation_kind rr_negate_table[VREL_COUNT] = {
// NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, EMPTY, EQ_EXPR, NE_EXPR
VREL_NONE, GE_EXPR, GT_EXPR, LE_EXPR, LT_EXPR, VREL_EMPTY, NE_EXPR, EQ_EXPR };
// Negate the relation, as in logical negation.
relation_kind
relation_negate (relation_kind r)
{
vrel_range_assert (r);
return rr_negate_table [r - VREL_FIRST];
}
// This table is used to swap the operands. op1 REL op2 -> op2 REL op1.
relation_kind rr_swap_table[VREL_COUNT] = {
// NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, EMPTY, EQ_EXPR, NE_EXPR
VREL_NONE, GT_EXPR, GE_EXPR, LT_EXPR, LE_EXPR, VREL_EMPTY, EQ_EXPR, NE_EXPR };
// Return the relation as if the operands were swapped.
relation_kind
relation_swap (relation_kind r)
{
vrel_range_assert (r);
return rr_swap_table [r - VREL_FIRST];
}
// This table is used to perform an intersection between 2 relations.
relation_kind rr_intersect_table[VREL_COUNT][VREL_COUNT] = {
// NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, EMPTY, EQ_EXPR, NE_EXPR
// VREL_NONE
{ VREL_NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, VREL_EMPTY, EQ_EXPR, NE_EXPR },
// LT_EXPR
{ LT_EXPR, LT_EXPR, LT_EXPR, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, LT_EXPR },
// LE_EXPR
{ LE_EXPR, LT_EXPR, LE_EXPR, VREL_EMPTY, EQ_EXPR, VREL_EMPTY, EQ_EXPR, LT_EXPR },
// GT_EXPR
{ GT_EXPR, VREL_EMPTY, VREL_EMPTY, GT_EXPR, GT_EXPR, VREL_EMPTY, VREL_EMPTY, GT_EXPR },
// GE_EXPR
{ GE_EXPR, VREL_EMPTY, EQ_EXPR, GT_EXPR, GE_EXPR, VREL_EMPTY, EQ_EXPR, GT_EXPR },
// VREL_EMPTY
{ VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY },
// EQ_EXPR
{ EQ_EXPR, VREL_EMPTY, EQ_EXPR, VREL_EMPTY, EQ_EXPR, VREL_EMPTY, EQ_EXPR, VREL_EMPTY },
// NE_EXPR
{ NE_EXPR, LT_EXPR, LT_EXPR, GT_EXPR, GT_EXPR, VREL_EMPTY, VREL_EMPTY, NE_EXPR } };
// Intersect relation R1 with relation R2 and return the resulting relation.
relation_kind
relation_intersect (relation_kind r1, relation_kind r2)
{
vrel_range_assert (r1);
vrel_range_assert (r2);
return rr_intersect_table[r1 - VREL_FIRST][r2 - VREL_FIRST];
}
// This table is used to perform a union between 2 relations.
relation_kind rr_union_table[VREL_COUNT][VREL_COUNT] = {
// NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, EMPTY, EQ_EXPR, NE_EXPR
// VREL_NONE
{ VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE },
// LT_EXPR
{ VREL_NONE, LT_EXPR, LE_EXPR, NE_EXPR, VREL_NONE, LT_EXPR, LE_EXPR, NE_EXPR },
// LE_EXPR
{ VREL_NONE, LE_EXPR, LE_EXPR, VREL_NONE, VREL_NONE, LE_EXPR, LE_EXPR, VREL_NONE },
// GT_EXPR
{ VREL_NONE, NE_EXPR, VREL_NONE, GT_EXPR, GE_EXPR, GT_EXPR, GE_EXPR, NE_EXPR },
// GE_EXPR
{ VREL_NONE, VREL_NONE, VREL_NONE, GE_EXPR, GE_EXPR, GE_EXPR, GE_EXPR, VREL_NONE },
// VREL_EMPTY
{ VREL_NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, VREL_EMPTY, EQ_EXPR, NE_EXPR },
// EQ_EXPR
{ VREL_NONE, LE_EXPR, LE_EXPR, GE_EXPR, GE_EXPR, EQ_EXPR, EQ_EXPR, VREL_NONE },
// NE_EXPR
{ VREL_NONE, NE_EXPR, VREL_NONE, NE_EXPR, VREL_NONE, NE_EXPR, VREL_NONE, NE_EXPR } };
// Union relation R1 with relation R2 and return the result.
relation_kind
relation_union (relation_kind r1, relation_kind r2)
{
vrel_range_assert (r1);
vrel_range_assert (r2);
return rr_union_table[r1 - VREL_FIRST][r2 - VREL_FIRST];
}
// This table is used to determine transitivity between 2 relations.
// (A relation0 B) and (B relation1 C) implies (A result C)
relation_kind rr_transitive_table[VREL_COUNT][VREL_COUNT] = {
// NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, EMPTY, EQ_EXPR, NE_EXPR
// VREL_NONE
{ VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE },
// LT_EXPR
{ VREL_NONE, LT_EXPR, LT_EXPR, VREL_NONE, VREL_NONE, VREL_NONE, LT_EXPR, VREL_NONE },
// LE_EXPR
{ VREL_NONE, LT_EXPR, LE_EXPR, VREL_NONE, VREL_NONE, VREL_NONE, LE_EXPR, VREL_NONE },
// GT_EXPR
{ VREL_NONE, VREL_NONE, VREL_NONE, GT_EXPR, GT_EXPR, VREL_NONE, GT_EXPR, VREL_NONE },
// GE_EXPR
{ VREL_NONE, VREL_NONE, VREL_NONE, GT_EXPR, GE_EXPR, VREL_NONE, GE_EXPR, VREL_NONE },
// VREL_EMPTY
{ VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE },
// EQ_EXPR
{ VREL_NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, VREL_NONE, EQ_EXPR, VREL_NONE },
// NE_EXPR
{ VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE } };
// Apply transitive operation between relation R1 and relation R2, and
// return the resulting relation, if any.
relation_kind
relation_transitive (relation_kind r1, relation_kind r2)
{
vrel_range_assert (r1);
vrel_range_assert (r2);
return rr_transitive_table[r1 - VREL_FIRST][r2 - VREL_FIRST];
}
// Given an equivalence set EQUIV, set all the bits in B that are still valid
// members of EQUIV in basic block BB.
void
relation_oracle::valid_equivs (bitmap b, const_bitmap equivs, basic_block bb)
{
unsigned i;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (equivs, 0, i, bi)
{
tree ssa = ssa_name (i);
const_bitmap ssa_equiv = equiv_set (ssa, bb);
if (ssa_equiv == equivs)
bitmap_set_bit (b, i);
}
}
// -------------------------------------------------------------------------
// The very first element in the m_equiv chain is actually just a summary
// element in which the m_names bitmap is used to indicate that an ssa_name
// has an equivalence set in this block.
// This allows for much faster traversal of the DOM chain, as a search for
// SSA_NAME simply requires walking the DOM chain until a block is found
// which has the bit for SSA_NAME set. Then scan for the equivalency set in
// that block. No previous lists need be searched.
// If SSA has an equivalence in this list, find and return it.
// Otherwise return NULL.
equiv_chain *
equiv_chain::find (unsigned ssa)
{
equiv_chain *ptr = NULL;
// If there are equiv sets and SSA is in one in this list, find it.
// Otherwise return NULL.
if (bitmap_bit_p (m_names, ssa))
{
for (ptr = m_next; ptr; ptr = ptr->m_next)
if (bitmap_bit_p (ptr->m_names, ssa))
break;
}
return ptr;
}
// Dump the names in this equivalence set.
void
equiv_chain::dump (FILE *f) const
{
bitmap_iterator bi;
unsigned i;
if (!m_names)
return;
fprintf (f, "Equivalence set : [");
unsigned c = 0;
EXECUTE_IF_SET_IN_BITMAP (m_names, 0, i, bi)
{
if (ssa_name (i))
{
if (c++)
fprintf (f, ", ");
print_generic_expr (f, ssa_name (i), TDF_SLIM);
}
}
fprintf (f, "]\n");
}
// Instantiate an equivalency oracle.
equiv_oracle::equiv_oracle ()
{
bitmap_obstack_initialize (&m_bitmaps);
m_equiv.create (0);
m_equiv.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
m_equiv_set = BITMAP_ALLOC (&m_bitmaps);
obstack_init (&m_chain_obstack);
m_self_equiv.create (0);
m_self_equiv.safe_grow_cleared (num_ssa_names + 1);
}
// Destruct an equivalency oracle.
equiv_oracle::~equiv_oracle ()
{
m_self_equiv.release ();
obstack_free (&m_chain_obstack, NULL);
m_equiv.release ();
bitmap_obstack_release (&m_bitmaps);
}
// Find and return the equivalency set for SSA along the dominators of BB.
// This is the external API.
const_bitmap
equiv_oracle::equiv_set (tree ssa, basic_block bb)
{
// Search the dominator tree for an equivalency.
equiv_chain *equiv = find_equiv_dom (ssa, bb);
if (equiv)
return equiv->m_names;
// Otherwise return a cached equiv set containing just this SSA.
unsigned v = SSA_NAME_VERSION (ssa);
if (v >= m_self_equiv.length ())
m_self_equiv.safe_grow_cleared (num_ssa_names + 1);
if (!m_self_equiv[v])
{
m_self_equiv[v] = BITMAP_ALLOC (&m_bitmaps);
bitmap_set_bit (m_self_equiv[v], v);
}
return m_self_equiv[v];
}
// Query if thre is a relation (equivalence) between 2 SSA_NAMEs.
relation_kind
equiv_oracle::query_relation (basic_block bb, tree ssa1, tree ssa2)
{
// If the 2 ssa names share the same equiv set, they are equal.
if (equiv_set (ssa1, bb) == equiv_set (ssa2, bb))
return EQ_EXPR;
return VREL_NONE;
}
// Query if thre is a relation (equivalence) between 2 SSA_NAMEs.
relation_kind
equiv_oracle::query_relation (basic_block bb ATTRIBUTE_UNUSED, const_bitmap e1,
const_bitmap e2)
{
// If the 2 ssa names share the same equiv set, they are equal.
if (bitmap_equal_p (e1, e2))
return EQ_EXPR;
return VREL_NONE;
}
// If SSA has an equivalence in block BB, find and return it.
// Otherwise return NULL.
equiv_chain *
equiv_oracle::find_equiv_block (unsigned ssa, int bb) const
{
if (bb >= (int)m_equiv.length () || !m_equiv[bb])
return NULL;
return m_equiv[bb]->find (ssa);
}
// Starting at block BB, walk the dominator chain looking for the nearest
// equivalence set containing NAME.
equiv_chain *
equiv_oracle::find_equiv_dom (tree name, basic_block bb) const
{
unsigned v = SSA_NAME_VERSION (name);
// Short circuit looking for names which have no equivalences.
// Saves time looking for something which does not exist.
if (!bitmap_bit_p (m_equiv_set, v))
return NULL;
// NAME has at least once equivalence set, check to see if it has one along
// the dominator tree.
for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
equiv_chain *ptr = find_equiv_block (v, bb->index);
if (ptr)
return ptr;
}
return NULL;
}
// Register equivalance between ssa_name V and set EQUIV in block BB,
bitmap
equiv_oracle::register_equiv (basic_block bb, unsigned v, equiv_chain *equiv)
{
// V will have an equivalency now.
bitmap_set_bit (m_equiv_set, v);
// If that equiv chain is in this block, simply use it.
if (equiv->m_bb == bb)
{
bitmap_set_bit (equiv->m_names, v);
bitmap_set_bit (m_equiv[bb->index]->m_names, v);
return NULL;
}
// Otherwise create an equivalence for this block which is a copy
// of equiv, the add V to the set.
bitmap b = BITMAP_ALLOC (&m_bitmaps);
valid_equivs (b, equiv->m_names, bb);
bitmap_set_bit (b, v);
return b;
}
// Register equivalence between set equiv_1 and equiv_2 in block BB.
// Return NULL if either name can be merged with the other. Otherwise
// return a pointer to the combined bitmap of names. This allows the
// caller to do any setup required for a new element.
bitmap
equiv_oracle::register_equiv (basic_block bb, equiv_chain *equiv_1,
equiv_chain *equiv_2)
{
// If equiv_1 is already in BB, use it as the combined set.
if (equiv_1->m_bb == bb)
{
valid_equivs (equiv_1->m_names, equiv_2->m_names, bb);
// Its hard to delete from a single linked list, so
// just clear the second one.
if (equiv_2->m_bb == bb)
bitmap_clear (equiv_2->m_names);
else
// Ensure the new names are in the summary for BB.
bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_1->m_names);
return NULL;
}
// If equiv_2 is in BB, use it for the combined set.
if (equiv_2->m_bb == bb)
{
valid_equivs (equiv_2->m_names, equiv_1->m_names, bb);
// Ensure the new names are in the summary.
bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_2->m_names);
return NULL;
}
// At this point, neither equivalence is from this block.
bitmap b = BITMAP_ALLOC (&m_bitmaps);
valid_equivs (b, equiv_1->m_names, bb);
valid_equivs (b, equiv_2->m_names, bb);
return b;
}
// Create an equivalency set containing only SSA in its definition block.
// This is done the first time SSA is registered in an equivalency and blocks
// any DOM searches past the definition.
void
equiv_oracle::register_initial_def (tree ssa)
{
if (SSA_NAME_IS_DEFAULT_DEF (ssa))
return;
basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (ssa));
gcc_checking_assert (bb && !find_equiv_dom (ssa, bb));
unsigned v = SSA_NAME_VERSION (ssa);
bitmap_set_bit (m_equiv_set, v);
bitmap equiv_set = BITMAP_ALLOC (&m_bitmaps);
bitmap_set_bit (equiv_set, v);
add_equiv_to_block (bb, equiv_set);
}
// Register an equivalence between SSA1 and SSA2 in block BB.
// The equivalence oracle maintains a vector of equivalencies indexed by basic
// block. When an equivalence bteween SSA1 and SSA2 is registered in block BB,
// a query is made as to what equivalences both names have already, and
// any preexisting equivalences are merged to create a single equivalence
// containing all the ssa_names in this basic block.
void
equiv_oracle::register_relation (basic_block bb, relation_kind k, tree ssa1,
tree ssa2)
{
// Only handle equality relations.
if (k != EQ_EXPR)
return;
unsigned v1 = SSA_NAME_VERSION (ssa1);
unsigned v2 = SSA_NAME_VERSION (ssa2);
// If this is the first time an ssa_name has an equivalency registered
// create a self-equivalency record in the def block.
if (!bitmap_bit_p (m_equiv_set, v1))
register_initial_def (ssa1);
if (!bitmap_bit_p (m_equiv_set, v2))
register_initial_def (ssa2);
equiv_chain *equiv_1 = find_equiv_dom (ssa1, bb);
equiv_chain *equiv_2 = find_equiv_dom (ssa2, bb);
// Check if they are the same set
if (equiv_1 && equiv_1 == equiv_2)
return;
bitmap equiv_set;
// Case where we have 2 SSA_NAMEs that are not in any set.
if (!equiv_1 && !equiv_2)
{
bitmap_set_bit (m_equiv_set, v1);
bitmap_set_bit (m_equiv_set, v2);
equiv_set = BITMAP_ALLOC (&m_bitmaps);
bitmap_set_bit (equiv_set, v1);
bitmap_set_bit (equiv_set, v2);
}
else if (!equiv_1 && equiv_2)
equiv_set = register_equiv (bb, v1, equiv_2);
else if (equiv_1 && !equiv_2)
equiv_set = register_equiv (bb, v2, equiv_1);
else
equiv_set = register_equiv (bb, equiv_1, equiv_2);
// A non-null return is a bitmap that is to be added to the current
// block as a new equivalence.
if (!equiv_set)
return;
add_equiv_to_block (bb, equiv_set);
}
// Add an equivalency record in block BB containing bitmap EQUIV_SET.
// Note the internal caller is responible for allocating EQUIV_SET properly.
void
equiv_oracle::add_equiv_to_block (basic_block bb, bitmap equiv_set)
{
equiv_chain *ptr;
// Check if this is the first time a block has an equivalence added.
// and create a header block. And set the summary for this block.
if (!m_equiv[bb->index])
{
ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack,
sizeof (equiv_chain));
ptr->m_names = BITMAP_ALLOC (&m_bitmaps);
bitmap_copy (ptr->m_names, equiv_set);
ptr->m_bb = bb;
ptr->m_next = NULL;
m_equiv[bb->index] = ptr;
}
// Now create the element for this equiv set and initialize it.
ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, sizeof (equiv_chain));
ptr->m_names = equiv_set;
ptr->m_bb = bb;
gcc_checking_assert (bb->index < (int)m_equiv.length ());
ptr->m_next = m_equiv[bb->index]->m_next;
m_equiv[bb->index]->m_next = ptr;
bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_set);
}
// Make sure the BB vector is big enough and grow it if needed.
void
equiv_oracle::limit_check (basic_block bb)
{
int i = (bb) ? bb->index : last_basic_block_for_fn (cfun);
if (i >= (int)m_equiv.length ())
m_equiv.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
}
// Dump the equivalence sets in BB to file F.
void
equiv_oracle::dump (FILE *f, basic_block bb) const
{
if (bb->index >= (int)m_equiv.length ())
return;
if (!m_equiv[bb->index])
return;
equiv_chain *ptr = m_equiv[bb->index]->m_next;
for (; ptr; ptr = ptr->m_next)
ptr->dump (f);
}
// Dump all equivalence sets known to the oracle.
void
equiv_oracle::dump (FILE *f) const
{
fprintf (f, "Equivalency dump\n");
for (unsigned i = 0; i < m_equiv.length (); i++)
if (m_equiv[i] && BASIC_BLOCK_FOR_FN (cfun, i))
{
fprintf (f, "BB%d\n", i);
dump (f, BASIC_BLOCK_FOR_FN (cfun, i));
}
}
// --------------------------------------------------------------------------
// The value-relation class is used to encapsulate the represention of an
// individual relation between 2 ssa-names, and to facilitate operating on
// the relation.
class value_relation
{
public:
value_relation ();
value_relation (relation_kind kind, tree n1, tree n2);
void set_relation (relation_kind kind, tree n1, tree n2);
inline relation_kind kind () const { return related; }
inline tree op1 () const { return name1; }
inline tree op2 () const { return name2; }
bool union_ (value_relation &p);
bool intersect (value_relation &p);
void negate ();
bool apply_transitive (const value_relation &rel);
void dump (FILE *f) const;
private:
relation_kind related;
tree name1, name2;
};
// Set relation R between ssa_name N1 and N2.
inline void
value_relation::set_relation (relation_kind r, tree n1, tree n2)
{
gcc_checking_assert (SSA_NAME_VERSION (n1) != SSA_NAME_VERSION (n2));
related = r;
name1 = n1;
name2 = n2;
}
// Default constructor.
inline
value_relation::value_relation ()
{
related = VREL_NONE;
name1 = NULL_TREE;
name2 = NULL_TREE;
}
// Constructor for relation R between SSA version N1 nd N2.
inline
value_relation::value_relation (relation_kind kind, tree n1, tree n2)
{
set_relation (kind, n1, n2);
}
// Negate the current relation.
void
value_relation::negate ()
{
related = relation_negate (related);
}
// Perform an intersection between 2 relations. *this &&= p.
bool
value_relation::intersect (value_relation &p)
{
// Save previous value
relation_kind old = related;
if (p.op1 () == op1 () && p.op2 () == op2 ())
related = relation_intersect (kind (), p.kind ());
else if (p.op2 () == op1 () && p.op1 () == op2 ())
related = relation_intersect (kind (), relation_swap (p.kind ()));
else
return false;
return old != related;
}
// Perform a union between 2 relations. *this ||= p.
bool
value_relation::union_ (value_relation &p)
{
// Save previous value
relation_kind old = related;
if (p.op1 () == op1 () && p.op2 () == op2 ())
related = relation_union (kind(), p.kind());
else if (p.op2 () == op1 () && p.op1 () == op2 ())
related = relation_union (kind(), relation_swap (p.kind ()));
else
return false;
return old != related;
}
// Identify and apply any transitive relations between REL
// and THIS. Return true if there was a transformation.
bool
value_relation::apply_transitive (const value_relation &rel)
{
relation_kind k = VREL_NONE;
// Idenity any common operand, and notrmalize the relations to
// the form : A < B B < C produces A < C
if (rel.op1 () == name2)
{
// A < B B < C
if (rel.op2 () == name1)
return false;
k = relation_transitive (kind (), rel.kind ());
if (k != VREL_NONE)
{
related = k;
name2 = rel.op2 ();
return true;
}
}
else if (rel.op1 () == name1)
{
// B > A B < C
if (rel.op2 () == name2)
return false;
k = relation_transitive (relation_swap (kind ()), rel.kind ());
if (k != VREL_NONE)
{
related = k;
name1 = name2;
name2 = rel.op2 ();
return true;
}
}
else if (rel.op2 () == name2)
{
// A < B C > B
if (rel.op1 () == name1)
return false;
k = relation_transitive (kind (), relation_swap (rel.kind ()));
if (k != VREL_NONE)
{
related = k;
name2 = rel.op1 ();
return true;
}
}
else if (rel.op2 () == name1)
{
// B > A C > B
if (rel.op1 () == name2)
return false;
k = relation_transitive (relation_swap (kind ()),
relation_swap (rel.kind ()));
if (k != VREL_NONE)
{
related = k;
name1 = name2;
name2 = rel.op1 ();
return true;
}
}
return false;
}
// Dump the relation to file F.
void
value_relation::dump (FILE *f) const
{
if (!name1 || !name2)
{
fprintf (f, "uninitialized");
return;
}
fputc ('(', f);
print_generic_expr (f, op1 (), TDF_SLIM);
print_relation (f, kind ());
print_generic_expr (f, op2 (), TDF_SLIM);
fputc(')', f);
}
// This container is used to link relations in a chain.
class relation_chain : public value_relation
{
public:
relation_chain *m_next;
};
// ------------------------------------------------------------------------
// Find the relation between any ssa_name in B1 and any name in B2 in LIST.
// This will allow equivalencies to be applied to any SSA_NAME in a relation.
relation_kind
relation_chain_head::find_relation (const_bitmap b1, const_bitmap b2) const
{
if (!m_names)
return VREL_NONE;
// If both b1 and b2 aren't referenced in thie block, cant be a relation
if (!bitmap_intersect_p (m_names, b1) || !bitmap_intersect_p (m_names, b2))
return VREL_NONE;
// Search for the fiorst relation that contains BOTH an element from B1
// and B2, and return that relation.
for (relation_chain *ptr = m_head; ptr ; ptr = ptr->m_next)
{
unsigned op1 = SSA_NAME_VERSION (ptr->op1 ());
unsigned op2 = SSA_NAME_VERSION (ptr->op2 ());
if (bitmap_bit_p (b1, op1) && bitmap_bit_p (b2, op2))
return ptr->kind ();
if (bitmap_bit_p (b1, op2) && bitmap_bit_p (b2, op1))
return relation_swap (ptr->kind ());
}
return VREL_NONE;
}
// Instantiate a relation oracle.
dom_oracle::dom_oracle ()
{
m_relations.create (0);
m_relations.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
m_relation_set = BITMAP_ALLOC (&m_bitmaps);
m_tmp = BITMAP_ALLOC (&m_bitmaps);
m_tmp2 = BITMAP_ALLOC (&m_bitmaps);
}
// Destruct a relation oracle.
dom_oracle::~dom_oracle ()
{
m_relations.release ();
}
// Register relation K between ssa_name OP1 and OP2 on STMT.
void
relation_oracle::register_stmt (gimple *stmt, relation_kind k, tree op1,
tree op2)
{
gcc_checking_assert (TREE_CODE (op1) == SSA_NAME);
gcc_checking_assert (TREE_CODE (op2) == SSA_NAME);
gcc_checking_assert (stmt && gimple_bb (stmt));
// Don't register lack of a relation.
if (k == VREL_NONE)
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
value_relation vr (k, op1, op2);
fprintf (dump_file, " Registering value_relation ");
vr.dump (dump_file);
fprintf (dump_file, " (bb%d) at ", gimple_bb (stmt)->index);
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
// If an equivalence is being added between a PHI and one of its arguments
// make sure that that argument is not defined in the same block.
// This can happen along back edges and the equivalence will not be
// applicable as it would require a use before def.
if (k == EQ_EXPR && is_a<gphi *> (stmt))
{
tree phi_def = gimple_phi_result (stmt);
gcc_checking_assert (phi_def == op1 || phi_def == op2);
tree arg = op2;
if (phi_def == op2)
arg = op1;
if (gimple_bb (stmt) == gimple_bb (SSA_NAME_DEF_STMT (arg)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Not registered due to ");
print_generic_expr (dump_file, arg, TDF_SLIM);
fprintf (dump_file, " being defined in the same block.\n");
}
return;
}
}
register_relation (gimple_bb (stmt), k, op1, op2);
}
// Register relation K between ssa_name OP1 and OP2 on edge E.
void
relation_oracle::register_edge (edge e, relation_kind k, tree op1, tree op2)
{
gcc_checking_assert (TREE_CODE (op1) == SSA_NAME);
gcc_checking_assert (TREE_CODE (op2) == SSA_NAME);
// Do not register lack of relation, or blocks which have more than
// edge E for a predecessor.
if (k == VREL_NONE || !single_pred_p (e->dest))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
value_relation vr (k, op1, op2);
fprintf (dump_file, " Registering value_relation ");
vr.dump (dump_file);
fprintf (dump_file, " on (%d->%d)\n", e->src->index, e->dest->index);
}
register_relation (e->dest, k, op1, op2);
}
// Register relation K between OP! and OP2 in block BB.
// This creates the record and searches for existing records in the dominator
// tree to merge with.
void
dom_oracle::register_relation (basic_block bb, relation_kind k, tree op1,
tree op2)
{
// If the 2 ssa_names are the same, do nothing. An equivalence is implied,
// and no other relation makes sense.
if (op1 == op2)
return;
// Equivalencies are handled by the equivalence oracle.
if (k == EQ_EXPR)
equiv_oracle::register_relation (bb, k, op1, op2);
else
{
relation_chain *ptr = set_one_relation (bb, k, op1, op2);
if (ptr)
register_transitives (bb, *ptr);
}
}
// Register relation K between OP! and OP2 in block BB.
// This creates the record and searches for existing records in the dominator
// tree to merge with. Return the record, or NULL if no record was created.
relation_chain *
dom_oracle::set_one_relation (basic_block bb, relation_kind k, tree op1,
tree op2)
{
gcc_checking_assert (k != VREL_NONE && k != EQ_EXPR);
value_relation vr(k, op1, op2);
int bbi = bb->index;
if (bbi >= (int)m_relations.length())
m_relations.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
// Summary bitmap indicating what ssa_names have relations in this BB.
bitmap bm = m_relations[bbi].m_names;
if (!bm)
bm = m_relations[bbi].m_names = BITMAP_ALLOC (&m_bitmaps);
unsigned v1 = SSA_NAME_VERSION (op1);
unsigned v2 = SSA_NAME_VERSION (op2);
relation_kind curr;
relation_chain *ptr;
curr = find_relation_block (bbi, v1, v2, &ptr);
// There is an existing relation in this block, just intersect with it.
if (curr != VREL_NONE)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Intersecting with existing ");
ptr->dump (dump_file);
}
// Check into whether we can simply replace the relation rather than
// intersecting it. THis may help with some optimistic iterative
// updating algorithms.
ptr->intersect (vr);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " to produce ");
ptr->dump (dump_file);
fprintf (dump_file, "\n");
}
}
else
{
if (m_relations[bbi].m_num_relations >= param_relation_block_limit)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Not registered due to bb being full\n");
return NULL;
}
m_relations[bbi].m_num_relations++;
// Check for an existing relation further up the DOM chain.
// By including dominating relations, The first one found in any search
// will be the aggregate of all the previous ones.
curr = find_relation_dom (bb, v1, v2);
if (curr != VREL_NONE)
k = relation_intersect (curr, k);
bitmap_set_bit (bm, v1);
bitmap_set_bit (bm, v2);
bitmap_set_bit (m_relation_set, v1);
bitmap_set_bit (m_relation_set, v2);
ptr = (relation_chain *) obstack_alloc (&m_chain_obstack,
sizeof (relation_chain));
ptr->set_relation (k, op1, op2);
ptr->m_next = m_relations[bbi].m_head;
m_relations[bbi].m_head = ptr;
}
return ptr;
}
// Starting at ROOT_BB search the DOM tree looking for relations which
// may produce transitive relations to RELATION. EQUIV1 and EQUIV2 are
// bitmaps for op1/op2 and any of their equivalences that should also be
// considered.
void
dom_oracle::register_transitives (basic_block root_bb,
const value_relation &relation)
{
basic_block bb;
// Only apply transitives to certain kinds of operations.
switch (relation.kind ())
{
case LE_EXPR:
case LT_EXPR:
case GT_EXPR:
case GE_EXPR:
break;
default:
return;
}
const_bitmap equiv1 = equiv_set (relation.op1 (), root_bb);
const_bitmap equiv2 = equiv_set (relation.op2 (), root_bb);
for (bb = root_bb; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
int bbi = bb->index;
if (bbi >= (int)m_relations.length())
continue;
const_bitmap bm = m_relations[bbi].m_names;
if (!bm)
continue;
if (!bitmap_intersect_p (bm, equiv1) && !bitmap_intersect_p (bm, equiv2))
continue;
// At least one of the 2 ops has a relation in this block.
relation_chain *ptr;
for (ptr = m_relations[bbi].m_head; ptr ; ptr = ptr->m_next)
{
// In the presence of an equivalence, 2 operands may do not
// naturally match. ie with equivalence a_2 == b_3
// given c_1 < a_2 && b_3 < d_4
// convert the second relation (b_3 < d_4) to match any
// equivalences to found in the first relation.
// ie convert b_3 < d_4 to a_2 < d_4, which then exposes the
// transitive operation: c_1 < a_2 && a_2 < d_4 -> c_1 < d_4
tree r1, r2;
tree p1 = ptr->op1 ();
tree p2 = ptr->op2 ();
// Find which equivalence is in the first operand.
if (bitmap_bit_p (equiv1, SSA_NAME_VERSION (p1)))
r1 = p1;
else if (bitmap_bit_p (equiv1, SSA_NAME_VERSION (p2)))
r1 = p2;
else
r1 = NULL_TREE;
// Find which equivalence is in the second operand.
if (bitmap_bit_p (equiv2, SSA_NAME_VERSION (p1)))
r2 = p1;
else if (bitmap_bit_p (equiv2, SSA_NAME_VERSION (p2)))
r2 = p2;
else
r2 = NULL_TREE;
// Ignore if both NULL (not relevant relation) or the same,
if (r1 == r2)
continue;
// Any operand not an equivalence, just take the real operand.
if (!r1)
r1 = relation.op1 ();
if (!r2)
r2 = relation.op2 ();
value_relation nr (relation.kind (), r1, r2);
if (nr.apply_transitive (*ptr))
{
if (!set_one_relation (root_bb, nr.kind (), nr.op1 (), nr.op2 ()))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Registering transitive relation ");
nr.dump (dump_file);
fputc ('\n', dump_file);
}
}
}
}
}
// Find the relation between any ssa_name in B1 and any name in B2 in block BB.
// This will allow equivalencies to be applied to any SSA_NAME in a relation.
relation_kind
dom_oracle::find_relation_block (unsigned bb, const_bitmap b1,
const_bitmap b2) const
{
if (bb >= m_relations.length())
return VREL_NONE;
return m_relations[bb].find_relation (b1, b2);
}
// Search the DOM tree for a relation between an element of equivalency set B1
// and B2, starting with block BB.
relation_kind
dom_oracle::query_relation (basic_block bb, const_bitmap b1,
const_bitmap b2)
{
relation_kind r;
if (bitmap_equal_p (b1, b2))
return EQ_EXPR;
// If either name does not occur in a relation anywhere, there isnt one.
if (!bitmap_intersect_p (m_relation_set, b1)
|| !bitmap_intersect_p (m_relation_set, b2))
return VREL_NONE;
// Search each block in the DOM tree checking.
for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
r = find_relation_block (bb->index, b1, b2);
if (r != VREL_NONE)
return r;
}
return VREL_NONE;
}
// Find a relation in block BB between ssa version V1 and V2. If a relation
// is found, return a pointer to the chain object in OBJ.
relation_kind
dom_oracle::find_relation_block (int bb, unsigned v1, unsigned v2,
relation_chain **obj) const
{
if (bb >= (int)m_relations.length())
return VREL_NONE;
const_bitmap bm = m_relations[bb].m_names;
if (!bm)
return VREL_NONE;
// If both b1 and b2 aren't referenced in thie block, cant be a relation
if (!bitmap_bit_p (bm, v1) || !bitmap_bit_p (bm, v2))
return VREL_NONE;
relation_chain *ptr;
for (ptr = m_relations[bb].m_head; ptr ; ptr = ptr->m_next)
{
unsigned op1 = SSA_NAME_VERSION (ptr->op1 ());
unsigned op2 = SSA_NAME_VERSION (ptr->op2 ());
if (v1 == op1 && v2 == op2)
{
if (obj)
*obj = ptr;
return ptr->kind ();
}
if (v1 == op2 && v2 == op1)
{
if (obj)
*obj = ptr;
return relation_swap (ptr->kind ());
}
}
return VREL_NONE;
}
// Find a relation between SSA version V1 and V2 in the dominator tree
// starting with block BB
relation_kind
dom_oracle::find_relation_dom (basic_block bb, unsigned v1, unsigned v2) const
{
relation_kind r;
// IF either name does not occur in a relation anywhere, there isnt one.
if (!bitmap_bit_p (m_relation_set, v1) || !bitmap_bit_p (m_relation_set, v2))
return VREL_NONE;
for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
r = find_relation_block (bb->index, v1, v2);
if (r != VREL_NONE)
return r;
}
return VREL_NONE;
}
// Query if there is a relation between SSA1 and SS2 in block BB or a
// dominator of BB
relation_kind
dom_oracle::query_relation (basic_block bb, tree ssa1, tree ssa2)
{
relation_kind kind;
unsigned v1 = SSA_NAME_VERSION (ssa1);
unsigned v2 = SSA_NAME_VERSION (ssa2);
if (v1 == v2)
return EQ_EXPR;
// Check for equivalence first. They must be in each equivalency set.
const_bitmap equiv1 = equiv_set (ssa1, bb);
const_bitmap equiv2 = equiv_set (ssa2, bb);
if (bitmap_bit_p (equiv1, v2) && bitmap_bit_p (equiv2, v1))
return EQ_EXPR;
// Initially look for a direct relationship and just return that.
kind = find_relation_dom (bb, v1, v2);
if (kind != VREL_NONE)
return kind;
// Query using the equiovalence sets.
kind = query_relation (bb, equiv1, equiv2);
return kind;
}
// Dump all the relations in block BB to file F.
void
dom_oracle::dump (FILE *f, basic_block bb) const
{
equiv_oracle::dump (f,bb);
if (bb->index >= (int)m_relations.length ())
return;
if (!m_relations[bb->index].m_names)
return;
relation_chain *ptr = m_relations[bb->index].m_head;
for (; ptr; ptr = ptr->m_next)
{
fprintf (f, "Relational : ");
ptr->dump (f);
fprintf (f, "\n");
}
}
// Dump all the relations known to file F.
void
dom_oracle::dump (FILE *f) const
{
fprintf (f, "Relation dump\n");
for (unsigned i = 0; i < m_relations.length (); i++)
if (BASIC_BLOCK_FOR_FN (cfun, i))
{
fprintf (f, "BB%d\n", i);
dump (f, BASIC_BLOCK_FOR_FN (cfun, i));
}
}
void
relation_oracle::debug () const
{
dump (stderr);
}
path_oracle::path_oracle (relation_oracle *oracle)
{
set_root_oracle (oracle);
bitmap_obstack_initialize (&m_bitmaps);
obstack_init (&m_chain_obstack);
// Initialize header records.
m_equiv.m_names = BITMAP_ALLOC (&m_bitmaps);
m_equiv.m_bb = NULL;
m_equiv.m_next = NULL;
m_relations.m_names = BITMAP_ALLOC (&m_bitmaps);
m_relations.m_head = NULL;
m_killed_defs = BITMAP_ALLOC (&m_bitmaps);
}
path_oracle::~path_oracle ()
{
obstack_free (&m_chain_obstack, NULL);
bitmap_obstack_release (&m_bitmaps);
}
// Return the equiv set for SSA, and if there isn't one, check for equivs
// starting in block BB.
const_bitmap
path_oracle::equiv_set (tree ssa, basic_block bb)
{
// Check the list first.
equiv_chain *ptr = m_equiv.find (SSA_NAME_VERSION (ssa));
if (ptr)
return ptr->m_names;
// Otherwise defer to the root oracle.
if (m_root)
return m_root->equiv_set (ssa, bb);
// Allocate a throw away bitmap if there isn't a root oracle.
bitmap tmp = BITMAP_ALLOC (&m_bitmaps);
bitmap_set_bit (tmp, SSA_NAME_VERSION (ssa));
return tmp;
}
// Register an equivalence between SSA1 and SSA2 resolving unkowns from
// block BB.
void
path_oracle::register_equiv (basic_block bb, tree ssa1, tree ssa2)
{
const_bitmap equiv_1 = equiv_set (ssa1, bb);
const_bitmap equiv_2 = equiv_set (ssa2, bb);
// Check if they are the same set, if so, we're done.
if (bitmap_equal_p (equiv_1, equiv_2))
return;
// Don't mess around, simply create a new record and insert it first.
bitmap b = BITMAP_ALLOC (&m_bitmaps);
valid_equivs (b, equiv_1, bb);
valid_equivs (b, equiv_2, bb);
equiv_chain *ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack,
sizeof (equiv_chain));
ptr->m_names = b;
ptr->m_bb = NULL;
ptr->m_next = m_equiv.m_next;
m_equiv.m_next = ptr;
bitmap_ior_into (m_equiv.m_names, b);
}
// Register killing definition of an SSA_NAME.
void
path_oracle::killing_def (tree ssa)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Registering killing_def (path_oracle) ");
print_generic_expr (dump_file, ssa, TDF_SLIM);
fprintf (dump_file, "\n");
}
unsigned v = SSA_NAME_VERSION (ssa);
bitmap_set_bit (m_killed_defs, v);
// Walk the equivalency list and remove SSA from any equivalencies.
if (bitmap_bit_p (m_equiv.m_names, v))
{
for (equiv_chain *ptr = m_equiv.m_next; ptr; ptr = ptr->m_next)
if (bitmap_bit_p (ptr->m_names, v))
bitmap_clear_bit (ptr->m_names, v);
}
else
bitmap_set_bit (m_equiv.m_names, v);
// Now add an equivalency with itself so we don't look to the root oracle.
bitmap b = BITMAP_ALLOC (&m_bitmaps);
bitmap_set_bit (b, v);
equiv_chain *ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack,
sizeof (equiv_chain));
ptr->m_names = b;
ptr->m_bb = NULL;
ptr->m_next = m_equiv.m_next;
m_equiv.m_next = ptr;
// Walk the relation list and remove SSA from any relations.
if (!bitmap_bit_p (m_relations.m_names, v))
return;
bitmap_clear_bit (m_relations.m_names, v);
relation_chain **prev = &(m_relations.m_head);
relation_chain *next = NULL;
for (relation_chain *ptr = m_relations.m_head; ptr; ptr = next)
{
gcc_checking_assert (*prev == ptr);
next = ptr->m_next;
if (SSA_NAME_VERSION (ptr->op1 ()) == v
|| SSA_NAME_VERSION (ptr->op2 ()) == v)
*prev = ptr->m_next;
else
prev = &(ptr->m_next);
}
}
// Register relation K between SSA1 and SSA2, resolving unknowns by
// querying from BB.
void
path_oracle::register_relation (basic_block bb, relation_kind k, tree ssa1,
tree ssa2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
value_relation vr (k, ssa1, ssa2);
fprintf (dump_file, " Registering value_relation (path_oracle) ");
vr.dump (dump_file);
fprintf (dump_file, " (root: bb%d)\n", bb->index);
}
relation_kind curr = query_relation (bb, ssa1, ssa2);
if (curr != VREL_NONE)
k = relation_intersect (curr, k);
if (k == EQ_EXPR)
{
register_equiv (bb, ssa1, ssa2);
return;
}
bitmap_set_bit (m_relations.m_names, SSA_NAME_VERSION (ssa1));
bitmap_set_bit (m_relations.m_names, SSA_NAME_VERSION (ssa2));
relation_chain *ptr = (relation_chain *) obstack_alloc (&m_chain_obstack,
sizeof (relation_chain));
ptr->set_relation (k, ssa1, ssa2);
ptr->m_next = m_relations.m_head;
m_relations.m_head = ptr;
}
// Query for a relationship between equiv set B1 and B2, resolving unknowns
// starting at block BB.
relation_kind
path_oracle::query_relation (basic_block bb, const_bitmap b1, const_bitmap b2)
{
if (bitmap_equal_p (b1, b2))
return EQ_EXPR;
relation_kind k = m_relations.find_relation (b1, b2);
// Do not look at the root oracle for names that have been killed
// along the path.
if (bitmap_intersect_p (m_killed_defs, b1)
|| bitmap_intersect_p (m_killed_defs, b2))
return k;
if (k == VREL_NONE && m_root)
k = m_root->query_relation (bb, b1, b2);
return k;
}
// Query for a relationship between SSA1 and SSA2, resolving unknowns
// starting at block BB.
relation_kind
path_oracle::query_relation (basic_block bb, tree ssa1, tree ssa2)
{
unsigned v1 = SSA_NAME_VERSION (ssa1);
unsigned v2 = SSA_NAME_VERSION (ssa2);
if (v1 == v2)
return EQ_EXPR;
const_bitmap equiv_1 = equiv_set (ssa1, bb);
const_bitmap equiv_2 = equiv_set (ssa2, bb);
if (bitmap_bit_p (equiv_1, v2) && bitmap_bit_p (equiv_2, v1))
return EQ_EXPR;
return query_relation (bb, equiv_1, equiv_2);
}
// Reset any relations registered on this path.
void
path_oracle::reset_path ()
{
m_equiv.m_next = NULL;
bitmap_clear (m_equiv.m_names);
m_relations.m_head = NULL;
bitmap_clear (m_relations.m_names);
}
// Dump relation in basic block... Do nothing here.
void
path_oracle::dump (FILE *, basic_block) const
{
}
// Dump the relations and equivalencies found in the path.
void
path_oracle::dump (FILE *f) const
{
equiv_chain *ptr = m_equiv.m_next;
relation_chain *ptr2 = m_relations.m_head;
if (ptr || ptr2)
fprintf (f, "\npath_oracle:\n");
for (; ptr; ptr = ptr->m_next)
ptr->dump (f);
for (; ptr2; ptr2 = ptr2->m_next)
{
fprintf (f, "Relational : ");
ptr2->dump (f);
fprintf (f, "\n");
}
}
|