1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
/* Implementation of the degree trignometric functions COSD, SIND, TAND.
Copyright (C) 2020-2022 Free Software Foundation, Inc.
Contributed by Steven G. Kargl <kargl@gcc.gnu.org>
and Fritz Reese <foreese@gcc.gnu.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/*
This file is included from both the FE and the runtime library code.
Operations are generalized using GMP/MPFR functions. When included from
libgfortran, these should be overridden using macros which will use native
operations conforming to the same API. From the FE, the GMP/MPFR functions can
be used as-is.
The following macros are used and must be defined, unless listed as [optional]:
FTYPE
Type name for the real-valued parameter.
Variables of this type are constructed/destroyed using mpfr_init()
and mpfr_clear.
RETTYPE
Return type of the functions.
RETURN(x)
Insert code to return a value.
The parameter x is the result variable, which was also the input parameter.
ITYPE
Type name for integer types.
SIND, COSD, TRIGD
Names for the degree-valued trig functions defined by this module.
ENABLE_SIND, ENABLE_COSD, ENABLE_TAND
Whether the degree-valued trig functions can be enabled.
ERROR_RETURN(f, k, x)
If ENABLE_<xxx>D is not defined, this is substituted to assert an
error condition for function f, kind k, and parameter x.
The function argument is one of {sind, cosd, tand}.
ISFINITE(x)
Whether x is a regular number or zero (not inf or NaN).
D2R(x)
Convert x from radians to degrees.
SET_COSD30(x)
Set x to COSD(30), or equivalently, SIND(60).
TINY_LITERAL [optional]
Value subtracted from 1 to cause raise INEXACT for COSD(x) for x << 1.
If not set, COSD(x) for x <= COSD_SMALL_LITERAL simply returns 1.
COSD_SMALL_LITERAL [optional]
Value such that x <= COSD_SMALL_LITERAL implies COSD(x) = 1 to within the
precision of FTYPE. If not set, this condition is not checked.
SIND_SMALL_LITERAL [optional]
Value such that x <= SIND_SMALL_LITERAL implies SIND(x) = D2R(x) to within
the precision of FTYPE. If not set, this condition is not checked.
*/
#ifdef SIND
/* Compute sind(x) = sin(x * pi / 180). */
RETTYPE
SIND (FTYPE x)
{
#ifdef ENABLE_SIND
if (ISFINITE (x))
{
FTYPE s, one;
/* sin(-x) = - sin(x). */
mpfr_init (s);
mpfr_init_set_ui (one, 1, GFC_RND_MODE);
mpfr_copysign (s, one, x, GFC_RND_MODE);
mpfr_clear (one);
#ifdef SIND_SMALL_LITERAL
/* sin(x) = x as x -> 0; but only for some precisions. */
FTYPE ax;
mpfr_init (ax);
mpfr_abs (ax, x, GFC_RND_MODE);
if (mpfr_cmp_ld (ax, SIND_SMALL_LITERAL) < 0)
{
D2R (x);
mpfr_clear (ax);
return x;
}
mpfr_swap (x, ax);
mpfr_clear (ax);
#else
mpfr_abs (x, x, GFC_RND_MODE);
#endif /* SIND_SMALL_LITERAL */
/* Reduce angle to x in [0,360]. */
FTYPE period;
mpfr_init_set_ui (period, 360, GFC_RND_MODE);
mpfr_fmod (x, x, period, GFC_RND_MODE);
mpfr_clear (period);
/* Special cases with exact results. */
ITYPE n;
mpz_init (n);
if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30))
{
/* Flip sign for odd n*pi (x is % 360 so this is only for 180).
This respects sgn(sin(x)) = sgn(d/dx sin(x)) = sgn(cos(x)). */
if (mpz_divisible_ui_p (n, 180))
{
mpfr_set_ui (x, 0, GFC_RND_MODE);
if (mpz_cmp_ui (n, 180) == 0)
mpfr_neg (s, s, GFC_RND_MODE);
}
else if (mpz_divisible_ui_p (n, 90))
mpfr_set_si (x, (mpz_cmp_ui (n, 90) == 0 ? 1 : -1), GFC_RND_MODE);
else if (mpz_divisible_ui_p (n, 60))
{
SET_COSD30 (x);
if (mpz_cmp_ui (n, 180) >= 0)
mpfr_neg (x, x, GFC_RND_MODE);
}
else
mpfr_set_ld (x, (mpz_cmp_ui (n, 180) < 0 ? 0.5L : -0.5L),
GFC_RND_MODE);
}
/* Fold [0,360] into the range [0,45], and compute either SIN() or
COS() depending on symmetry of shifting into the [0,45] range. */
else
{
bool fold_cos = false;
if (mpfr_cmp_ui (x, 180) <= 0)
{
if (mpfr_cmp_ui (x, 90) <= 0)
{
if (mpfr_cmp_ui (x, 45) > 0)
{
/* x = COS(D2R(90 - x)) */
mpfr_ui_sub (x, 90, x, GFC_RND_MODE);
fold_cos = true;
}
}
else
{
if (mpfr_cmp_ui (x, 135) <= 0)
{
mpfr_sub_ui (x, x, 90, GFC_RND_MODE);
fold_cos = true;
}
else
mpfr_ui_sub (x, 180, x, GFC_RND_MODE);
}
}
else if (mpfr_cmp_ui (x, 270) <= 0)
{
if (mpfr_cmp_ui (x, 225) <= 0)
mpfr_sub_ui (x, x, 180, GFC_RND_MODE);
else
{
mpfr_ui_sub (x, 270, x, GFC_RND_MODE);
fold_cos = true;
}
mpfr_neg (s, s, GFC_RND_MODE);
}
else
{
if (mpfr_cmp_ui (x, 315) <= 0)
{
mpfr_sub_ui (x, x, 270, GFC_RND_MODE);
fold_cos = true;
}
else
mpfr_ui_sub (x, 360, x, GFC_RND_MODE);
mpfr_neg (s, s, GFC_RND_MODE);
}
D2R (x);
if (fold_cos)
mpfr_cos (x, x, GFC_RND_MODE);
else
mpfr_sin (x, x, GFC_RND_MODE);
}
mpfr_mul (x, x, s, GFC_RND_MODE);
mpz_clear (n);
mpfr_clear (s);
}
/* Return NaN for +-Inf and NaN and raise exception. */
else
mpfr_sub (x, x, x, GFC_RND_MODE);
RETURN (x);
#else
ERROR_RETURN(sind, KIND, x);
#endif // ENABLE_SIND
}
#endif // SIND
#ifdef COSD
/* Compute cosd(x) = cos(x * pi / 180). */
RETTYPE
COSD (FTYPE x)
{
#ifdef ENABLE_COSD
#if defined(TINY_LITERAL) && defined(COSD_SMALL_LITERAL)
static const volatile FTYPE tiny = TINY_LITERAL;
#endif
if (ISFINITE (x))
{
#ifdef COSD_SMALL_LITERAL
FTYPE ax;
mpfr_init (ax);
mpfr_abs (ax, x, GFC_RND_MODE);
/* No spurious underflows!. In radians, cos(x) = 1-x*x/2 as x -> 0. */
if (mpfr_cmp_ld (ax, COSD_SMALL_LITERAL) <= 0)
{
mpfr_set_ui (x, 1, GFC_RND_MODE);
#ifdef TINY_LITERAL
/* Cause INEXACT. */
if (!mpfr_zero_p (ax))
mpfr_sub_d (x, x, tiny, GFC_RND_MODE);
#endif
mpfr_clear (ax);
return x;
}
mpfr_swap (x, ax);
mpfr_clear (ax);
#else
mpfr_abs (x, x, GFC_RND_MODE);
#endif /* COSD_SMALL_LITERAL */
/* Reduce angle to ax in [0,360]. */
FTYPE period;
mpfr_init_set_ui (period, 360, GFC_RND_MODE);
mpfr_fmod (x, x, period, GFC_RND_MODE);
mpfr_clear (period);
/* Special cases with exact results.
Return negative zero for cosd(270) for consistency with libm cos(). */
ITYPE n;
mpz_init (n);
if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30))
{
if (mpz_divisible_ui_p (n, 180))
mpfr_set_si (x, (mpz_cmp_ui (n, 180) == 0 ? -1 : 1),
GFC_RND_MODE);
else if (mpz_divisible_ui_p (n, 90))
mpfr_set_zero (x, 0);
else if (mpz_divisible_ui_p (n, 60))
{
mpfr_set_ld (x, 0.5, GFC_RND_MODE);
if (mpz_cmp_ui (n, 60) != 0 && mpz_cmp_ui (n, 300) != 0)
mpfr_neg (x, x, GFC_RND_MODE);
}
else
{
SET_COSD30 (x);
if (mpz_cmp_ui (n, 30) != 0 && mpz_cmp_ui (n, 330) != 0)
mpfr_neg (x, x, GFC_RND_MODE);
}
}
/* Fold [0,360] into the range [0,45], and compute either SIN() or
COS() depending on symmetry of shifting into the [0,45] range. */
else
{
bool neg = false;
bool fold_sin = false;
if (mpfr_cmp_ui (x, 180) <= 0)
{
if (mpfr_cmp_ui (x, 90) <= 0)
{
if (mpfr_cmp_ui (x, 45) > 0)
{
mpfr_ui_sub (x, 90, x, GFC_RND_MODE);
fold_sin = true;
}
}
else
{
if (mpfr_cmp_ui (x, 135) <= 0)
{
mpfr_sub_ui (x, x, 90, GFC_RND_MODE);
fold_sin = true;
}
else
mpfr_ui_sub (x, 180, x, GFC_RND_MODE);
neg = true;
}
}
else if (mpfr_cmp_ui (x, 270) <= 0)
{
if (mpfr_cmp_ui (x, 225) <= 0)
mpfr_sub_ui (x, x, 180, GFC_RND_MODE);
else
{
mpfr_ui_sub (x, 270, x, GFC_RND_MODE);
fold_sin = true;
}
neg = true;
}
else
{
if (mpfr_cmp_ui (x, 315) <= 0)
{
mpfr_sub_ui (x, x, 270, GFC_RND_MODE);
fold_sin = true;
}
else
mpfr_ui_sub (x, 360, x, GFC_RND_MODE);
}
D2R (x);
if (fold_sin)
mpfr_sin (x, x, GFC_RND_MODE);
else
mpfr_cos (x, x, GFC_RND_MODE);
if (neg)
mpfr_neg (x, x, GFC_RND_MODE);
}
mpz_clear (n);
}
/* Return NaN for +-Inf and NaN and raise exception. */
else
mpfr_sub (x, x, x, GFC_RND_MODE);
RETURN (x);
#else
ERROR_RETURN(cosd, KIND, x);
#endif // ENABLE_COSD
}
#endif // COSD
#ifdef TAND
/* Compute tand(x) = tan(x * pi / 180). */
RETTYPE
TAND (FTYPE x)
{
#ifdef ENABLE_TAND
if (ISFINITE (x))
{
FTYPE s, one;
/* tan(-x) = - tan(x). */
mpfr_init (s);
mpfr_init_set_ui (one, 1, GFC_RND_MODE);
mpfr_copysign (s, one, x, GFC_RND_MODE);
mpfr_clear (one);
#ifdef SIND_SMALL_LITERAL
/* tan(x) = x as x -> 0; but only for some precisions. */
FTYPE ax;
mpfr_init (ax);
mpfr_abs (ax, x, GFC_RND_MODE);
if (mpfr_cmp_ld (ax, SIND_SMALL_LITERAL) < 0)
{
D2R (x);
mpfr_clear (ax);
return x;
}
mpfr_swap (x, ax);
mpfr_clear (ax);
#else
mpfr_abs (x, x, GFC_RND_MODE);
#endif /* SIND_SMALL_LITERAL */
/* Reduce angle to x in [0,360]. */
FTYPE period;
mpfr_init_set_ui (period, 360, GFC_RND_MODE);
mpfr_fmod (x, x, period, GFC_RND_MODE);
mpfr_clear (period);
/* Special cases with exact results. */
ITYPE n;
mpz_init (n);
if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 45))
{
if (mpz_divisible_ui_p (n, 180))
mpfr_set_zero (x, 0);
/* Though mathematically NaN is more appropriate for tan(n*90),
returning +/-Inf offers the advantage that 1/tan(n*90) returns 0,
which is mathematically sound. In fact we rely on this behavior
to implement COTAND(x) = 1 / TAND(x).
*/
else if (mpz_divisible_ui_p (n, 90))
mpfr_set_inf (x, mpz_cmp_ui (n, 90) == 0 ? 0 : 1);
else
{
mpfr_set_ui (x, 1, GFC_RND_MODE);
if (mpz_cmp_ui (n, 45) != 0 && mpz_cmp_ui (n, 225) != 0)
mpfr_neg (x, x, GFC_RND_MODE);
}
}
else
{
/* Fold [0,360] into the range [0,90], and compute TAN(). */
if (mpfr_cmp_ui (x, 180) <= 0)
{
if (mpfr_cmp_ui (x, 90) > 0)
{
mpfr_ui_sub (x, 180, x, GFC_RND_MODE);
mpfr_neg (s, s, GFC_RND_MODE);
}
}
else
{
if (mpfr_cmp_ui (x, 270) <= 0)
{
mpfr_sub_ui (x, x, 180, GFC_RND_MODE);
}
else
{
mpfr_ui_sub (x, 360, x, GFC_RND_MODE);
mpfr_neg (s, s, GFC_RND_MODE);
}
}
D2R (x);
mpfr_tan (x, x, GFC_RND_MODE);
}
mpfr_mul (x, x, s, GFC_RND_MODE);
mpz_clear (n);
mpfr_clear (s);
}
/* Return NaN for +-Inf and NaN and raise exception. */
else
mpfr_sub (x, x, x, GFC_RND_MODE);
RETURN (x);
#else
ERROR_RETURN(tand, KIND, x);
#endif // ENABLE_TAND
}
#endif // TAND
/* vim: set ft=c: */
|