1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package lzw
import (
"bufio"
"errors"
"fmt"
"io"
)
// A writer is a buffered, flushable writer.
type writer interface {
io.ByteWriter
Flush() error
}
const (
// A code is a 12 bit value, stored as a uint32 when encoding to avoid
// type conversions when shifting bits.
maxCode = 1<<12 - 1
invalidCode = 1<<32 - 1
// There are 1<<12 possible codes, which is an upper bound on the number of
// valid hash table entries at any given point in time. tableSize is 4x that.
tableSize = 4 * 1 << 12
tableMask = tableSize - 1
// A hash table entry is a uint32. Zero is an invalid entry since the
// lower 12 bits of a valid entry must be a non-literal code.
invalidEntry = 0
)
// Writer is an LZW compressor. It writes the compressed form of the data
// to an underlying writer (see NewWriter).
type Writer struct {
// w is the writer that compressed bytes are written to.
w writer
// order, write, bits, nBits and width are the state for
// converting a code stream into a byte stream.
order Order
write func(*Writer, uint32) error
bits uint32
nBits uint
width uint
// litWidth is the width in bits of literal codes.
litWidth uint
// hi is the code implied by the next code emission.
// overflow is the code at which hi overflows the code width.
hi, overflow uint32
// savedCode is the accumulated code at the end of the most recent Write
// call. It is equal to invalidCode if there was no such call.
savedCode uint32
// err is the first error encountered during writing. Closing the writer
// will make any future Write calls return errClosed
err error
// table is the hash table from 20-bit keys to 12-bit values. Each table
// entry contains key<<12|val and collisions resolve by linear probing.
// The keys consist of a 12-bit code prefix and an 8-bit byte suffix.
// The values are a 12-bit code.
table [tableSize]uint32
}
// writeLSB writes the code c for "Least Significant Bits first" data.
func (w *Writer) writeLSB(c uint32) error {
w.bits |= c << w.nBits
w.nBits += w.width
for w.nBits >= 8 {
if err := w.w.WriteByte(uint8(w.bits)); err != nil {
return err
}
w.bits >>= 8
w.nBits -= 8
}
return nil
}
// writeMSB writes the code c for "Most Significant Bits first" data.
func (w *Writer) writeMSB(c uint32) error {
w.bits |= c << (32 - w.width - w.nBits)
w.nBits += w.width
for w.nBits >= 8 {
if err := w.w.WriteByte(uint8(w.bits >> 24)); err != nil {
return err
}
w.bits <<= 8
w.nBits -= 8
}
return nil
}
// errOutOfCodes is an internal error that means that the writer has run out
// of unused codes and a clear code needs to be sent next.
var errOutOfCodes = errors.New("lzw: out of codes")
// incHi increments e.hi and checks for both overflow and running out of
// unused codes. In the latter case, incHi sends a clear code, resets the
// writer state and returns errOutOfCodes.
func (w *Writer) incHi() error {
w.hi++
if w.hi == w.overflow {
w.width++
w.overflow <<= 1
}
if w.hi == maxCode {
clear := uint32(1) << w.litWidth
if err := w.write(w, clear); err != nil {
return err
}
w.width = w.litWidth + 1
w.hi = clear + 1
w.overflow = clear << 1
for i := range w.table {
w.table[i] = invalidEntry
}
return errOutOfCodes
}
return nil
}
// Write writes a compressed representation of p to w's underlying writer.
func (w *Writer) Write(p []byte) (n int, err error) {
if w.err != nil {
return 0, w.err
}
if len(p) == 0 {
return 0, nil
}
if maxLit := uint8(1<<w.litWidth - 1); maxLit != 0xff {
for _, x := range p {
if x > maxLit {
w.err = errors.New("lzw: input byte too large for the litWidth")
return 0, w.err
}
}
}
n = len(p)
code := w.savedCode
if code == invalidCode {
// This is the first write; send a clear code.
// https://www.w3.org/Graphics/GIF/spec-gif89a.txt Appendix F
// "Variable-Length-Code LZW Compression" says that "Encoders should
// output a Clear code as the first code of each image data stream".
//
// LZW compression isn't only used by GIF, but it's cheap to follow
// that directive unconditionally.
clear := uint32(1) << w.litWidth
if err := w.write(w, clear); err != nil {
return 0, err
}
// After the starting clear code, the next code sent (for non-empty
// input) is always a literal code.
code, p = uint32(p[0]), p[1:]
}
loop:
for _, x := range p {
literal := uint32(x)
key := code<<8 | literal
// If there is a hash table hit for this key then we continue the loop
// and do not emit a code yet.
hash := (key>>12 ^ key) & tableMask
for h, t := hash, w.table[hash]; t != invalidEntry; {
if key == t>>12 {
code = t & maxCode
continue loop
}
h = (h + 1) & tableMask
t = w.table[h]
}
// Otherwise, write the current code, and literal becomes the start of
// the next emitted code.
if w.err = w.write(w, code); w.err != nil {
return 0, w.err
}
code = literal
// Increment e.hi, the next implied code. If we run out of codes, reset
// the writer state (including clearing the hash table) and continue.
if err1 := w.incHi(); err1 != nil {
if err1 == errOutOfCodes {
continue
}
w.err = err1
return 0, w.err
}
// Otherwise, insert key -> e.hi into the map that e.table represents.
for {
if w.table[hash] == invalidEntry {
w.table[hash] = (key << 12) | w.hi
break
}
hash = (hash + 1) & tableMask
}
}
w.savedCode = code
return n, nil
}
// Close closes the Writer, flushing any pending output. It does not close
// w's underlying writer.
func (w *Writer) Close() error {
if w.err != nil {
if w.err == errClosed {
return nil
}
return w.err
}
// Make any future calls to Write return errClosed.
w.err = errClosed
// Write the savedCode if valid.
if w.savedCode != invalidCode {
if err := w.write(w, w.savedCode); err != nil {
return err
}
if err := w.incHi(); err != nil && err != errOutOfCodes {
return err
}
} else {
// Write the starting clear code, as w.Write did not.
clear := uint32(1) << w.litWidth
if err := w.write(w, clear); err != nil {
return err
}
}
// Write the eof code.
eof := uint32(1)<<w.litWidth + 1
if err := w.write(w, eof); err != nil {
return err
}
// Write the final bits.
if w.nBits > 0 {
if w.order == MSB {
w.bits >>= 24
}
if err := w.w.WriteByte(uint8(w.bits)); err != nil {
return err
}
}
return w.w.Flush()
}
// Reset clears the Writer's state and allows it to be reused again
// as a new Writer.
func (w *Writer) Reset(dst io.Writer, order Order, litWidth int) {
*w = Writer{}
w.init(dst, order, litWidth)
}
// NewWriter creates a new io.WriteCloser.
// Writes to the returned io.WriteCloser are compressed and written to w.
// It is the caller's responsibility to call Close on the WriteCloser when
// finished writing.
// The number of bits to use for literal codes, litWidth, must be in the
// range [2,8] and is typically 8. Input bytes must be less than 1<<litWidth.
//
// It is guaranteed that the underlying type of the returned io.WriteCloser
// is a *Writer.
func NewWriter(w io.Writer, order Order, litWidth int) io.WriteCloser {
return newWriter(w, order, litWidth)
}
func newWriter(dst io.Writer, order Order, litWidth int) *Writer {
w := new(Writer)
w.init(dst, order, litWidth)
return w
}
func (w *Writer) init(dst io.Writer, order Order, litWidth int) {
switch order {
case LSB:
w.write = (*Writer).writeLSB
case MSB:
w.write = (*Writer).writeMSB
default:
w.err = errors.New("lzw: unknown order")
return
}
if litWidth < 2 || 8 < litWidth {
w.err = fmt.Errorf("lzw: litWidth %d out of range", litWidth)
return
}
bw, ok := dst.(writer)
if !ok && dst != nil {
bw = bufio.NewWriter(dst)
}
w.w = bw
lw := uint(litWidth)
w.order = order
w.width = 1 + lw
w.litWidth = lw
w.hi = 1<<lw + 1
w.overflow = 1 << (lw + 1)
w.savedCode = invalidCode
}
|