1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzz
import (
"bytes"
"fmt"
"go/ast"
"go/parser"
"go/token"
"math"
"strconv"
"unicode/utf8"
)
// encVersion1 will be the first line of a file with version 1 encoding.
var encVersion1 = "go test fuzz v1"
// marshalCorpusFile encodes an arbitrary number of arguments into the file format for the
// corpus.
func marshalCorpusFile(vals ...any) []byte {
if len(vals) == 0 {
panic("must have at least one value to marshal")
}
b := bytes.NewBuffer([]byte(encVersion1 + "\n"))
// TODO(katiehockman): keep uint8 and int32 encoding where applicable,
// instead of changing to byte and rune respectively.
for _, val := range vals {
switch t := val.(type) {
case int, int8, int16, int64, uint, uint16, uint32, uint64, bool:
fmt.Fprintf(b, "%T(%v)\n", t, t)
case float32:
if math.IsNaN(float64(t)) && math.Float32bits(t) != math.Float32bits(float32(math.NaN())) {
// We encode unusual NaNs as hex values, because that is how users are
// likely to encounter them in literature about floating-point encoding.
// This allows us to reproduce fuzz failures that depend on the specific
// NaN representation (for float32 there are about 2^24 possibilities!),
// not just the fact that the value is *a* NaN.
//
// Note that the specific value of float32(math.NaN()) can vary based on
// whether the architecture represents signaling NaNs using a low bit
// (as is common) or a high bit (as commonly implemented on MIPS
// hardware before around 2012). We believe that the increase in clarity
// from identifying "NaN" with math.NaN() is worth the slight ambiguity
// from a platform-dependent value.
fmt.Fprintf(b, "math.Float32frombits(0x%x)\n", math.Float32bits(t))
} else {
// We encode all other values — including the NaN value that is
// bitwise-identical to float32(math.Nan()) — using the default
// formatting, which is equivalent to strconv.FormatFloat with format
// 'g' and can be parsed by strconv.ParseFloat.
//
// For an ordinary floating-point number this format includes
// sufficiently many digits to reconstruct the exact value. For positive
// or negative infinity it is the string "+Inf" or "-Inf". For positive
// or negative zero it is "0" or "-0". For NaN, it is the string "NaN".
fmt.Fprintf(b, "%T(%v)\n", t, t)
}
case float64:
if math.IsNaN(t) && math.Float64bits(t) != math.Float64bits(math.NaN()) {
fmt.Fprintf(b, "math.Float64frombits(0x%x)\n", math.Float64bits(t))
} else {
fmt.Fprintf(b, "%T(%v)\n", t, t)
}
case string:
fmt.Fprintf(b, "string(%q)\n", t)
case rune: // int32
// Although rune and int32 are represented by the same type, only a subset
// of valid int32 values can be expressed as rune literals. Notably,
// negative numbers, surrogate halves, and values above unicode.MaxRune
// have no quoted representation.
//
// fmt with "%q" (and the corresponding functions in the strconv package)
// would quote out-of-range values to the Unicode replacement character
// instead of the original value (see https://go.dev/issue/51526), so
// they must be treated as int32 instead.
//
// We arbitrarily draw the line at UTF-8 validity, which biases toward the
// "rune" interpretation. (However, we accept either format as input.)
if utf8.ValidRune(t) {
fmt.Fprintf(b, "rune(%q)\n", t)
} else {
fmt.Fprintf(b, "int32(%v)\n", t)
}
case byte: // uint8
// For bytes, we arbitrarily prefer the character interpretation.
// (Every byte has a valid character encoding.)
fmt.Fprintf(b, "byte(%q)\n", t)
case []byte: // []uint8
fmt.Fprintf(b, "[]byte(%q)\n", t)
default:
panic(fmt.Sprintf("unsupported type: %T", t))
}
}
return b.Bytes()
}
// unmarshalCorpusFile decodes corpus bytes into their respective values.
func unmarshalCorpusFile(b []byte) ([]any, error) {
if len(b) == 0 {
return nil, fmt.Errorf("cannot unmarshal empty string")
}
lines := bytes.Split(b, []byte("\n"))
if len(lines) < 2 {
return nil, fmt.Errorf("must include version and at least one value")
}
if string(lines[0]) != encVersion1 {
return nil, fmt.Errorf("unknown encoding version: %s", lines[0])
}
var vals []any
for _, line := range lines[1:] {
line = bytes.TrimSpace(line)
if len(line) == 0 {
continue
}
v, err := parseCorpusValue(line)
if err != nil {
return nil, fmt.Errorf("malformed line %q: %v", line, err)
}
vals = append(vals, v)
}
return vals, nil
}
func parseCorpusValue(line []byte) (any, error) {
fs := token.NewFileSet()
expr, err := parser.ParseExprFrom(fs, "(test)", line, 0)
if err != nil {
return nil, err
}
call, ok := expr.(*ast.CallExpr)
if !ok {
return nil, fmt.Errorf("expected call expression")
}
if len(call.Args) != 1 {
return nil, fmt.Errorf("expected call expression with 1 argument; got %d", len(call.Args))
}
arg := call.Args[0]
if arrayType, ok := call.Fun.(*ast.ArrayType); ok {
if arrayType.Len != nil {
return nil, fmt.Errorf("expected []byte or primitive type")
}
elt, ok := arrayType.Elt.(*ast.Ident)
if !ok || elt.Name != "byte" {
return nil, fmt.Errorf("expected []byte")
}
lit, ok := arg.(*ast.BasicLit)
if !ok || lit.Kind != token.STRING {
return nil, fmt.Errorf("string literal required for type []byte")
}
s, err := strconv.Unquote(lit.Value)
if err != nil {
return nil, err
}
return []byte(s), nil
}
var idType *ast.Ident
if selector, ok := call.Fun.(*ast.SelectorExpr); ok {
xIdent, ok := selector.X.(*ast.Ident)
if !ok || xIdent.Name != "math" {
return nil, fmt.Errorf("invalid selector type")
}
switch selector.Sel.Name {
case "Float64frombits":
idType = &ast.Ident{Name: "float64-bits"}
case "Float32frombits":
idType = &ast.Ident{Name: "float32-bits"}
default:
return nil, fmt.Errorf("invalid selector type")
}
} else {
idType, ok = call.Fun.(*ast.Ident)
if !ok {
return nil, fmt.Errorf("expected []byte or primitive type")
}
if idType.Name == "bool" {
id, ok := arg.(*ast.Ident)
if !ok {
return nil, fmt.Errorf("malformed bool")
}
if id.Name == "true" {
return true, nil
} else if id.Name == "false" {
return false, nil
} else {
return nil, fmt.Errorf("true or false required for type bool")
}
}
}
var (
val string
kind token.Token
)
if op, ok := arg.(*ast.UnaryExpr); ok {
switch lit := op.X.(type) {
case *ast.BasicLit:
if op.Op != token.SUB {
return nil, fmt.Errorf("unsupported operation on int/float: %v", op.Op)
}
// Special case for negative numbers.
val = op.Op.String() + lit.Value // e.g. "-" + "124"
kind = lit.Kind
case *ast.Ident:
if lit.Name != "Inf" {
return nil, fmt.Errorf("expected operation on int or float type")
}
if op.Op == token.SUB {
val = "-Inf"
} else {
val = "+Inf"
}
kind = token.FLOAT
default:
return nil, fmt.Errorf("expected operation on int or float type")
}
} else {
switch lit := arg.(type) {
case *ast.BasicLit:
val, kind = lit.Value, lit.Kind
case *ast.Ident:
if lit.Name != "NaN" {
return nil, fmt.Errorf("literal value required for primitive type")
}
val, kind = "NaN", token.FLOAT
default:
return nil, fmt.Errorf("literal value required for primitive type")
}
}
switch typ := idType.Name; typ {
case "string":
if kind != token.STRING {
return nil, fmt.Errorf("string literal value required for type string")
}
return strconv.Unquote(val)
case "byte", "rune":
if kind == token.INT {
switch typ {
case "rune":
return parseInt(val, typ)
case "byte":
return parseUint(val, typ)
}
}
if kind != token.CHAR {
return nil, fmt.Errorf("character literal required for byte/rune types")
}
n := len(val)
if n < 2 {
return nil, fmt.Errorf("malformed character literal, missing single quotes")
}
code, _, _, err := strconv.UnquoteChar(val[1:n-1], '\'')
if err != nil {
return nil, err
}
if typ == "rune" {
return code, nil
}
if code >= 256 {
return nil, fmt.Errorf("can only encode single byte to a byte type")
}
return byte(code), nil
case "int", "int8", "int16", "int32", "int64":
if kind != token.INT {
return nil, fmt.Errorf("integer literal required for int types")
}
return parseInt(val, typ)
case "uint", "uint8", "uint16", "uint32", "uint64":
if kind != token.INT {
return nil, fmt.Errorf("integer literal required for uint types")
}
return parseUint(val, typ)
case "float32":
if kind != token.FLOAT && kind != token.INT {
return nil, fmt.Errorf("float or integer literal required for float32 type")
}
v, err := strconv.ParseFloat(val, 32)
return float32(v), err
case "float64":
if kind != token.FLOAT && kind != token.INT {
return nil, fmt.Errorf("float or integer literal required for float64 type")
}
return strconv.ParseFloat(val, 64)
case "float32-bits":
if kind != token.INT {
return nil, fmt.Errorf("integer literal required for math.Float32frombits type")
}
bits, err := parseUint(val, "uint32")
if err != nil {
return nil, err
}
return math.Float32frombits(bits.(uint32)), nil
case "float64-bits":
if kind != token.FLOAT && kind != token.INT {
return nil, fmt.Errorf("integer literal required for math.Float64frombits type")
}
bits, err := parseUint(val, "uint64")
if err != nil {
return nil, err
}
return math.Float64frombits(bits.(uint64)), nil
default:
return nil, fmt.Errorf("expected []byte or primitive type")
}
}
// parseInt returns an integer of value val and type typ.
func parseInt(val, typ string) (any, error) {
switch typ {
case "int":
// The int type may be either 32 or 64 bits. If 32, the fuzz tests in the
// corpus may include 64-bit values produced by fuzzing runs on 64-bit
// architectures. When running those tests, we implicitly wrap the values to
// fit in a regular int. (The test case is still “interesting”, even if the
// specific values of its inputs are platform-dependent.)
i, err := strconv.ParseInt(val, 0, 64)
return int(i), err
case "int8":
i, err := strconv.ParseInt(val, 0, 8)
return int8(i), err
case "int16":
i, err := strconv.ParseInt(val, 0, 16)
return int16(i), err
case "int32", "rune":
i, err := strconv.ParseInt(val, 0, 32)
return int32(i), err
case "int64":
return strconv.ParseInt(val, 0, 64)
default:
panic("unreachable")
}
}
// parseInt returns an unsigned integer of value val and type typ.
func parseUint(val, typ string) (any, error) {
switch typ {
case "uint":
i, err := strconv.ParseUint(val, 0, 64)
return uint(i), err
case "uint8", "byte":
i, err := strconv.ParseUint(val, 0, 8)
return uint8(i), err
case "uint16":
i, err := strconv.ParseUint(val, 0, 16)
return uint16(i), err
case "uint32":
i, err := strconv.ParseUint(val, 0, 32)
return uint32(i), err
case "uint64":
return strconv.ParseUint(val, 0, 64)
default:
panic("unreachable")
}
}
|