1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzz
// byteSliceRemoveBytes removes a random chunk of bytes from b.
func byteSliceRemoveBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
pos0 := m.rand(len(b))
pos1 := pos0 + m.chooseLen(len(b)-pos0)
copy(b[pos0:], b[pos1:])
b = b[:len(b)-(pos1-pos0)]
return b
}
// byteSliceInsertRandomBytes inserts a chunk of random bytes into b at a random
// position.
func byteSliceInsertRandomBytes(m *mutator, b []byte) []byte {
pos := m.rand(len(b) + 1)
n := m.chooseLen(1024)
if len(b)+n >= cap(b) {
return nil
}
b = b[:len(b)+n]
copy(b[pos+n:], b[pos:])
for i := 0; i < n; i++ {
b[pos+i] = byte(m.rand(256))
}
return b
}
// byteSliceDuplicateBytes duplicates a chunk of bytes in b and inserts it into
// a random position.
func byteSliceDuplicateBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
src := m.rand(len(b))
dst := m.rand(len(b))
for dst == src {
dst = m.rand(len(b))
}
n := m.chooseLen(len(b) - src)
// Use the end of the slice as scratch space to avoid doing an
// allocation. If the slice is too small abort and try something
// else.
if len(b)+(n*2) >= cap(b) {
return nil
}
end := len(b)
// Increase the size of b to fit the duplicated block as well as
// some extra working space
b = b[:end+(n*2)]
// Copy the block of bytes we want to duplicate to the end of the
// slice
copy(b[end+n:], b[src:src+n])
// Shift the bytes after the splice point n positions to the right
// to make room for the new block
copy(b[dst+n:end+n], b[dst:end])
// Insert the duplicate block into the splice point
copy(b[dst:], b[end+n:])
b = b[:end+n]
return b
}
// byteSliceOverwriteBytes overwrites a chunk of b with another chunk of b.
func byteSliceOverwriteBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
src := m.rand(len(b))
dst := m.rand(len(b))
for dst == src {
dst = m.rand(len(b))
}
n := m.chooseLen(len(b) - src - 1)
copy(b[dst:], b[src:src+n])
return b
}
// byteSliceBitFlip flips a random bit in a random byte in b.
func byteSliceBitFlip(m *mutator, b []byte) []byte {
if len(b) == 0 {
return nil
}
pos := m.rand(len(b))
b[pos] ^= 1 << uint(m.rand(8))
return b
}
// byteSliceXORByte XORs a random byte in b with a random value.
func byteSliceXORByte(m *mutator, b []byte) []byte {
if len(b) == 0 {
return nil
}
pos := m.rand(len(b))
// In order to avoid a no-op (where the random value matches
// the existing value), use XOR instead of just setting to
// the random value.
b[pos] ^= byte(1 + m.rand(255))
return b
}
// byteSliceSwapByte swaps two random bytes in b.
func byteSliceSwapByte(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
src := m.rand(len(b))
dst := m.rand(len(b))
for dst == src {
dst = m.rand(len(b))
}
b[src], b[dst] = b[dst], b[src]
return b
}
// byteSliceArithmeticUint8 adds/subtracts from a random byte in b.
func byteSliceArithmeticUint8(m *mutator, b []byte) []byte {
if len(b) == 0 {
return nil
}
pos := m.rand(len(b))
v := byte(m.rand(35) + 1)
if m.r.bool() {
b[pos] += v
} else {
b[pos] -= v
}
return b
}
// byteSliceArithmeticUint16 adds/subtracts from a random uint16 in b.
func byteSliceArithmeticUint16(m *mutator, b []byte) []byte {
if len(b) < 2 {
return nil
}
v := uint16(m.rand(35) + 1)
if m.r.bool() {
v = 0 - v
}
pos := m.rand(len(b) - 1)
enc := m.randByteOrder()
enc.PutUint16(b[pos:], enc.Uint16(b[pos:])+v)
return b
}
// byteSliceArithmeticUint32 adds/subtracts from a random uint32 in b.
func byteSliceArithmeticUint32(m *mutator, b []byte) []byte {
if len(b) < 4 {
return nil
}
v := uint32(m.rand(35) + 1)
if m.r.bool() {
v = 0 - v
}
pos := m.rand(len(b) - 3)
enc := m.randByteOrder()
enc.PutUint32(b[pos:], enc.Uint32(b[pos:])+v)
return b
}
// byteSliceArithmeticUint64 adds/subtracts from a random uint64 in b.
func byteSliceArithmeticUint64(m *mutator, b []byte) []byte {
if len(b) < 8 {
return nil
}
v := uint64(m.rand(35) + 1)
if m.r.bool() {
v = 0 - v
}
pos := m.rand(len(b) - 7)
enc := m.randByteOrder()
enc.PutUint64(b[pos:], enc.Uint64(b[pos:])+v)
return b
}
// byteSliceOverwriteInterestingUint8 overwrites a random byte in b with an interesting
// value.
func byteSliceOverwriteInterestingUint8(m *mutator, b []byte) []byte {
if len(b) == 0 {
return nil
}
pos := m.rand(len(b))
b[pos] = byte(interesting8[m.rand(len(interesting8))])
return b
}
// byteSliceOverwriteInterestingUint16 overwrites a random uint16 in b with an interesting
// value.
func byteSliceOverwriteInterestingUint16(m *mutator, b []byte) []byte {
if len(b) < 2 {
return nil
}
pos := m.rand(len(b) - 1)
v := uint16(interesting16[m.rand(len(interesting16))])
m.randByteOrder().PutUint16(b[pos:], v)
return b
}
// byteSliceOverwriteInterestingUint32 overwrites a random uint16 in b with an interesting
// value.
func byteSliceOverwriteInterestingUint32(m *mutator, b []byte) []byte {
if len(b) < 4 {
return nil
}
pos := m.rand(len(b) - 3)
v := uint32(interesting32[m.rand(len(interesting32))])
m.randByteOrder().PutUint32(b[pos:], v)
return b
}
// byteSliceInsertConstantBytes inserts a chunk of constant bytes into a random position in b.
func byteSliceInsertConstantBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
dst := m.rand(len(b))
// TODO(rolandshoemaker,katiehockman): 4096 was mainly picked
// randomly. We may want to either pick a much larger value
// (AFL uses 32768, paired with a similar impl to chooseLen
// which biases towards smaller lengths that grow over time),
// or set the max based on characteristics of the corpus
// (libFuzzer sets a min/max based on the min/max size of
// entries in the corpus and then picks uniformly from
// that range).
n := m.chooseLen(4096)
if len(b)+n >= cap(b) {
return nil
}
b = b[:len(b)+n]
copy(b[dst+n:], b[dst:])
rb := byte(m.rand(256))
for i := dst; i < dst+n; i++ {
b[i] = rb
}
return b
}
// byteSliceOverwriteConstantBytes overwrites a chunk of b with constant bytes.
func byteSliceOverwriteConstantBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
dst := m.rand(len(b))
n := m.chooseLen(len(b) - dst)
rb := byte(m.rand(256))
for i := dst; i < dst+n; i++ {
b[i] = rb
}
return b
}
// byteSliceShuffleBytes shuffles a chunk of bytes in b.
func byteSliceShuffleBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
dst := m.rand(len(b))
n := m.chooseLen(len(b) - dst)
if n <= 2 {
return nil
}
// Start at the end of the range, and iterate backwards
// to dst, swapping each element with another element in
// dst:dst+n (Fisher-Yates shuffle).
for i := n - 1; i > 0; i-- {
j := m.rand(i + 1)
b[dst+i], b[dst+j] = b[dst+j], b[dst+i]
}
return b
}
// byteSliceSwapBytes swaps two chunks of bytes in b.
func byteSliceSwapBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
src := m.rand(len(b))
dst := m.rand(len(b))
for dst == src {
dst = m.rand(len(b))
}
// Choose the random length as len(b) - max(src, dst)
// so that we don't attempt to swap a chunk that extends
// beyond the end of the slice
max := dst
if src > max {
max = src
}
n := m.chooseLen(len(b) - max - 1)
// Check that neither chunk intersect, so that we don't end up
// duplicating parts of the input, rather than swapping them
if src > dst && dst+n >= src || dst > src && src+n >= dst {
return nil
}
// Use the end of the slice as scratch space to avoid doing an
// allocation. If the slice is too small abort and try something
// else.
if len(b)+n >= cap(b) {
return nil
}
end := len(b)
b = b[:end+n]
copy(b[end:], b[dst:dst+n])
copy(b[dst:], b[src:src+n])
copy(b[src:], b[end:])
b = b[:end]
return b
}
|