1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  
     | 
    
      // Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzz
import (
	"bytes"
	"context"
	"crypto/sha256"
	"encoding/json"
	"errors"
	"fmt"
	"io"
	"io/ioutil"
	"os"
	"os/exec"
	"reflect"
	"runtime"
	"sync"
	"time"
)
const (
	// workerFuzzDuration is the amount of time a worker can spend testing random
	// variations of an input given by the coordinator.
	workerFuzzDuration = 100 * time.Millisecond
	// workerTimeoutDuration is the amount of time a worker can go without
	// responding to the coordinator before being stopped.
	workerTimeoutDuration = 1 * time.Second
	// workerExitCode is used as an exit code by fuzz worker processes after an internal error.
	// This distinguishes internal errors from uncontrolled panics and other crashes.
	// Keep in sync with internal/fuzz.workerExitCode.
	workerExitCode = 70
	// workerSharedMemSize is the maximum size of the shared memory file used to
	// communicate with workers. This limits the size of fuzz inputs.
	workerSharedMemSize = 100 << 20 // 100 MB
)
// worker manages a worker process running a test binary. The worker object
// exists only in the coordinator (the process started by 'go test -fuzz').
// workerClient is used by the coordinator to send RPCs to the worker process,
// which handles them with workerServer.
type worker struct {
	dir     string   // working directory, same as package directory
	binPath string   // path to test executable
	args    []string // arguments for test executable
	env     []string // environment for test executable
	coordinator *coordinator
	memMu chan *sharedMem // mutex guarding shared memory with worker; persists across processes.
	cmd         *exec.Cmd     // current worker process
	client      *workerClient // used to communicate with worker process
	waitErr     error         // last error returned by wait, set before termC is closed.
	interrupted bool          // true after stop interrupts a running worker.
	termC       chan struct{} // closed by wait when worker process terminates
}
func newWorker(c *coordinator, dir, binPath string, args, env []string) (*worker, error) {
	mem, err := sharedMemTempFile(workerSharedMemSize)
	if err != nil {
		return nil, err
	}
	memMu := make(chan *sharedMem, 1)
	memMu <- mem
	return &worker{
		dir:         dir,
		binPath:     binPath,
		args:        args,
		env:         env[:len(env):len(env)], // copy on append to ensure workers don't overwrite each other.
		coordinator: c,
		memMu:       memMu,
	}, nil
}
// cleanup releases persistent resources associated with the worker.
func (w *worker) cleanup() error {
	mem := <-w.memMu
	if mem == nil {
		return nil
	}
	close(w.memMu)
	return mem.Close()
}
// coordinate runs the test binary to perform fuzzing.
//
// coordinate loops until ctx is cancelled or a fatal error is encountered.
// If a test process terminates unexpectedly while fuzzing, coordinate will
// attempt to restart and continue unless the termination can be attributed
// to an interruption (from a timer or the user).
//
// While looping, coordinate receives inputs from the coordinator, passes
// those inputs to the worker process, then passes the results back to
// the coordinator.
func (w *worker) coordinate(ctx context.Context) error {
	// Main event loop.
	for {
		// Start or restart the worker if it's not running.
		if !w.isRunning() {
			if err := w.startAndPing(ctx); err != nil {
				return err
			}
		}
		select {
		case <-ctx.Done():
			// Worker was told to stop.
			err := w.stop()
			if err != nil && !w.interrupted && !isInterruptError(err) {
				return err
			}
			return ctx.Err()
		case <-w.termC:
			// Worker process terminated unexpectedly while waiting for input.
			err := w.stop()
			if w.interrupted {
				panic("worker interrupted after unexpected termination")
			}
			if err == nil || isInterruptError(err) {
				// Worker stopped, either by exiting with status 0 or after being
				// interrupted with a signal that was not sent by the coordinator.
				//
				// When the user presses ^C, on POSIX platforms, SIGINT is delivered to
				// all processes in the group concurrently, and the worker may see it
				// before the coordinator. The worker should exit 0 gracefully (in
				// theory).
				//
				// This condition is probably intended by the user, so suppress
				// the error.
				return nil
			}
			if exitErr, ok := err.(*exec.ExitError); ok && exitErr.ExitCode() == workerExitCode {
				// Worker exited with a code indicating F.Fuzz was not called correctly,
				// for example, F.Fail was called first.
				return fmt.Errorf("fuzzing process exited unexpectedly due to an internal failure: %w", err)
			}
			// Worker exited non-zero or was terminated by a non-interrupt
			// signal (for example, SIGSEGV) while fuzzing.
			return fmt.Errorf("fuzzing process hung or terminated unexpectedly: %w", err)
			// TODO(jayconrod,katiehockman): if -keepfuzzing, restart worker.
		case input := <-w.coordinator.inputC:
			// Received input from coordinator.
			args := fuzzArgs{
				Limit:        input.limit,
				Timeout:      input.timeout,
				Warmup:       input.warmup,
				CoverageData: input.coverageData,
			}
			entry, resp, isInternalError, err := w.client.fuzz(ctx, input.entry, args)
			canMinimize := true
			if err != nil {
				// Error communicating with worker.
				w.stop()
				if ctx.Err() != nil {
					// Timeout or interruption.
					return ctx.Err()
				}
				if w.interrupted {
					// Communication error before we stopped the worker.
					// Report an error, but don't record a crasher.
					return fmt.Errorf("communicating with fuzzing process: %v", err)
				}
				if sig, ok := terminationSignal(w.waitErr); ok && !isCrashSignal(sig) {
					// Worker terminated by a signal that probably wasn't caused by a
					// specific input to the fuzz function. For example, on Linux,
					// the kernel (OOM killer) may send SIGKILL to a process using a lot
					// of memory. Or the shell might send SIGHUP when the terminal
					// is closed. Don't record a crasher.
					return fmt.Errorf("fuzzing process terminated by unexpected signal; no crash will be recorded: %v", w.waitErr)
				}
				if isInternalError {
					// An internal error occurred which shouldn't be considered
					// a crash.
					return err
				}
				// Unexpected termination. Set error message and fall through.
				// We'll restart the worker on the next iteration.
				// Don't attempt to minimize this since it crashed the worker.
				resp.Err = fmt.Sprintf("fuzzing process hung or terminated unexpectedly: %v", w.waitErr)
				canMinimize = false
			}
			result := fuzzResult{
				limit:         input.limit,
				count:         resp.Count,
				totalDuration: resp.TotalDuration,
				entryDuration: resp.InterestingDuration,
				entry:         entry,
				crasherMsg:    resp.Err,
				coverageData:  resp.CoverageData,
				canMinimize:   canMinimize,
			}
			w.coordinator.resultC <- result
		case input := <-w.coordinator.minimizeC:
			// Received input to minimize from coordinator.
			result, err := w.minimize(ctx, input)
			if err != nil {
				// Error minimizing. Send back the original input. If it didn't cause
				// an error before, report it as causing an error now.
				// TODO: double-check this is handled correctly when
				// implementing -keepfuzzing.
				result = fuzzResult{
					entry:       input.entry,
					crasherMsg:  input.crasherMsg,
					canMinimize: false,
					limit:       input.limit,
				}
				if result.crasherMsg == "" {
					result.crasherMsg = err.Error()
				}
			}
			w.coordinator.resultC <- result
		}
	}
}
// minimize tells a worker process to attempt to find a smaller value that
// either causes an error (if we started minimizing because we found an input
// that causes an error) or preserves new coverage (if we started minimizing
// because we found an input that expands coverage).
func (w *worker) minimize(ctx context.Context, input fuzzMinimizeInput) (min fuzzResult, err error) {
	if w.coordinator.opts.MinimizeTimeout != 0 {
		var cancel func()
		ctx, cancel = context.WithTimeout(ctx, w.coordinator.opts.MinimizeTimeout)
		defer cancel()
	}
	args := minimizeArgs{
		Limit:        input.limit,
		Timeout:      input.timeout,
		KeepCoverage: input.keepCoverage,
	}
	entry, resp, err := w.client.minimize(ctx, input.entry, args)
	if err != nil {
		// Error communicating with worker.
		w.stop()
		if ctx.Err() != nil || w.interrupted || isInterruptError(w.waitErr) {
			// Worker was interrupted, possibly by the user pressing ^C.
			// Normally, workers can handle interrupts and timeouts gracefully and
			// will return without error. An error here indicates the worker
			// may not have been in a good state, but the error won't be meaningful
			// to the user. Just return the original crasher without logging anything.
			return fuzzResult{
				entry:        input.entry,
				crasherMsg:   input.crasherMsg,
				coverageData: input.keepCoverage,
				canMinimize:  false,
				limit:        input.limit,
			}, nil
		}
		return fuzzResult{
			entry:         entry,
			crasherMsg:    fmt.Sprintf("fuzzing process hung or terminated unexpectedly while minimizing: %v", err),
			canMinimize:   false,
			limit:         input.limit,
			count:         resp.Count,
			totalDuration: resp.Duration,
		}, nil
	}
	if input.crasherMsg != "" && resp.Err == "" {
		return fuzzResult{}, fmt.Errorf("attempted to minimize a crash but could not reproduce")
	}
	return fuzzResult{
		entry:         entry,
		crasherMsg:    resp.Err,
		coverageData:  resp.CoverageData,
		canMinimize:   false,
		limit:         input.limit,
		count:         resp.Count,
		totalDuration: resp.Duration,
	}, nil
}
func (w *worker) isRunning() bool {
	return w.cmd != nil
}
// startAndPing starts the worker process and sends it a message to make sure it
// can communicate.
//
// startAndPing returns an error if any part of this didn't work, including if
// the context is expired or the worker process was interrupted before it
// responded. Errors that happen after start but before the ping response
// likely indicate that the worker did not call F.Fuzz or called F.Fail first.
// We don't record crashers for these errors.
func (w *worker) startAndPing(ctx context.Context) error {
	if ctx.Err() != nil {
		return ctx.Err()
	}
	if err := w.start(); err != nil {
		return err
	}
	if err := w.client.ping(ctx); err != nil {
		w.stop()
		if ctx.Err() != nil {
			return ctx.Err()
		}
		if isInterruptError(err) {
			// User may have pressed ^C before worker responded.
			return err
		}
		// TODO: record and return stderr.
		return fmt.Errorf("fuzzing process terminated without fuzzing: %w", err)
	}
	return nil
}
// start runs a new worker process.
//
// If the process couldn't be started, start returns an error. Start won't
// return later termination errors from the process if they occur.
//
// If the process starts successfully, start returns nil. stop must be called
// once later to clean up, even if the process terminates on its own.
//
// When the process terminates, w.waitErr is set to the error (if any), and
// w.termC is closed.
func (w *worker) start() (err error) {
	if w.isRunning() {
		panic("worker already started")
	}
	w.waitErr = nil
	w.interrupted = false
	w.termC = nil
	cmd := exec.Command(w.binPath, w.args...)
	cmd.Dir = w.dir
	cmd.Env = w.env[:len(w.env):len(w.env)] // copy on append to ensure workers don't overwrite each other.
	// Create the "fuzz_in" and "fuzz_out" pipes so we can communicate with
	// the worker. We don't use stdin and stdout, since the test binary may
	// do something else with those.
	//
	// Each pipe has a reader and a writer. The coordinator writes to fuzzInW
	// and reads from fuzzOutR. The worker inherits fuzzInR and fuzzOutW.
	// The coordinator closes fuzzInR and fuzzOutW after starting the worker,
	// since we have no further need of them.
	fuzzInR, fuzzInW, err := os.Pipe()
	if err != nil {
		return err
	}
	defer fuzzInR.Close()
	fuzzOutR, fuzzOutW, err := os.Pipe()
	if err != nil {
		fuzzInW.Close()
		return err
	}
	defer fuzzOutW.Close()
	setWorkerComm(cmd, workerComm{fuzzIn: fuzzInR, fuzzOut: fuzzOutW, memMu: w.memMu})
	// Start the worker process.
	if err := cmd.Start(); err != nil {
		fuzzInW.Close()
		fuzzOutR.Close()
		return err
	}
	// Worker started successfully.
	// After this, w.client owns fuzzInW and fuzzOutR, so w.client.Close must be
	// called later by stop.
	w.cmd = cmd
	w.termC = make(chan struct{})
	comm := workerComm{fuzzIn: fuzzInW, fuzzOut: fuzzOutR, memMu: w.memMu}
	m := newMutator()
	w.client = newWorkerClient(comm, m)
	go func() {
		w.waitErr = w.cmd.Wait()
		close(w.termC)
	}()
	return nil
}
// stop tells the worker process to exit by closing w.client, then blocks until
// it terminates. If the worker doesn't terminate after a short time, stop
// signals it with os.Interrupt (where supported), then os.Kill.
//
// stop returns the error the process terminated with, if any (same as
// w.waitErr).
//
// stop must be called at least once after start returns successfully, even if
// the worker process terminates unexpectedly.
func (w *worker) stop() error {
	if w.termC == nil {
		panic("worker was not started successfully")
	}
	select {
	case <-w.termC:
		// Worker already terminated.
		if w.client == nil {
			// stop already called.
			return w.waitErr
		}
		// Possible unexpected termination.
		w.client.Close()
		w.cmd = nil
		w.client = nil
		return w.waitErr
	default:
		// Worker still running.
	}
	// Tell the worker to stop by closing fuzz_in. It won't actually stop until it
	// finishes with earlier calls.
	closeC := make(chan struct{})
	go func() {
		w.client.Close()
		close(closeC)
	}()
	sig := os.Interrupt
	if runtime.GOOS == "windows" {
		// Per https://golang.org/pkg/os/#Signal, “Interrupt is not implemented on
		// Windows; using it with os.Process.Signal will return an error.”
		// Fall back to Kill instead.
		sig = os.Kill
	}
	t := time.NewTimer(workerTimeoutDuration)
	for {
		select {
		case <-w.termC:
			// Worker terminated.
			t.Stop()
			<-closeC
			w.cmd = nil
			w.client = nil
			return w.waitErr
		case <-t.C:
			// Timer fired before worker terminated.
			w.interrupted = true
			switch sig {
			case os.Interrupt:
				// Try to stop the worker with SIGINT and wait a little longer.
				w.cmd.Process.Signal(sig)
				sig = os.Kill
				t.Reset(workerTimeoutDuration)
			case os.Kill:
				// Try to stop the worker with SIGKILL and keep waiting.
				w.cmd.Process.Signal(sig)
				sig = nil
				t.Reset(workerTimeoutDuration)
			case nil:
				// Still waiting. Print a message to let the user know why.
				fmt.Fprintf(w.coordinator.opts.Log, "waiting for fuzzing process to terminate...\n")
			}
		}
	}
}
// RunFuzzWorker is called in a worker process to communicate with the
// coordinator process in order to fuzz random inputs. RunFuzzWorker loops
// until the coordinator tells it to stop.
//
// fn is a wrapper on the fuzz function. It may return an error to indicate
// a given input "crashed". The coordinator will also record a crasher if
// the function times out or terminates the process.
//
// RunFuzzWorker returns an error if it could not communicate with the
// coordinator process.
func RunFuzzWorker(ctx context.Context, fn func(CorpusEntry) error) error {
	comm, err := getWorkerComm()
	if err != nil {
		return err
	}
	srv := &workerServer{
		workerComm: comm,
		fuzzFn: func(e CorpusEntry) (time.Duration, error) {
			timer := time.AfterFunc(10*time.Second, func() {
				panic("deadlocked!") // this error message won't be printed
			})
			defer timer.Stop()
			start := time.Now()
			err := fn(e)
			return time.Since(start), err
		},
		m: newMutator(),
	}
	return srv.serve(ctx)
}
// call is serialized and sent from the coordinator on fuzz_in. It acts as
// a minimalist RPC mechanism. Exactly one of its fields must be set to indicate
// which method to call.
type call struct {
	Ping     *pingArgs
	Fuzz     *fuzzArgs
	Minimize *minimizeArgs
}
// minimizeArgs contains arguments to workerServer.minimize. The value to
// minimize is already in shared memory.
type minimizeArgs struct {
	// Timeout is the time to spend minimizing. This may include time to start up,
	// especially if the input causes the worker process to terminated, requiring
	// repeated restarts.
	Timeout time.Duration
	// Limit is the maximum number of values to test, without spending more time
	// than Duration. 0 indicates no limit.
	Limit int64
	// KeepCoverage is a set of coverage counters the worker should attempt to
	// keep in minimized values. When provided, the worker will reject inputs that
	// don't cause at least one of these bits to be set.
	KeepCoverage []byte
	// Index is the index of the fuzz target parameter to be minimized.
	Index int
}
// minimizeResponse contains results from workerServer.minimize.
type minimizeResponse struct {
	// WroteToMem is true if the worker found a smaller input and wrote it to
	// shared memory. If minimizeArgs.KeepCoverage was set, the minimized input
	// preserved at least one coverage bit and did not cause an error.
	// Otherwise, the minimized input caused some error, recorded in Err.
	WroteToMem bool
	// Err is the error string caused by the value in shared memory, if any.
	Err string
	// CoverageData is the set of coverage bits activated by the minimized value
	// in shared memory. When set, it contains at least one bit from KeepCoverage.
	// CoverageData will be nil if Err is set or if minimization failed.
	CoverageData []byte
	// Duration is the time spent minimizing, not including starting or cleaning up.
	Duration time.Duration
	// Count is the number of values tested.
	Count int64
}
// fuzzArgs contains arguments to workerServer.fuzz. The value to fuzz is
// passed in shared memory.
type fuzzArgs struct {
	// Timeout is the time to spend fuzzing, not including starting or
	// cleaning up.
	Timeout time.Duration
	// Limit is the maximum number of values to test, without spending more time
	// than Duration. 0 indicates no limit.
	Limit int64
	// Warmup indicates whether this is part of a warmup run, meaning that
	// fuzzing should not occur. If coverageEnabled is true, then coverage data
	// should be reported.
	Warmup bool
	// CoverageData is the coverage data. If set, the worker should update its
	// local coverage data prior to fuzzing.
	CoverageData []byte
}
// fuzzResponse contains results from workerServer.fuzz.
type fuzzResponse struct {
	// Duration is the time spent fuzzing, not including starting or cleaning up.
	TotalDuration       time.Duration
	InterestingDuration time.Duration
	// Count is the number of values tested.
	Count int64
	// CoverageData is set if the value in shared memory expands coverage
	// and therefore may be interesting to the coordinator.
	CoverageData []byte
	// Err is the error string caused by the value in shared memory, which is
	// non-empty if the value in shared memory caused a crash.
	Err string
	// InternalErr is the error string caused by an internal error in the
	// worker. This shouldn't be considered a crasher.
	InternalErr string
}
// pingArgs contains arguments to workerServer.ping.
type pingArgs struct{}
// pingResponse contains results from workerServer.ping.
type pingResponse struct{}
// workerComm holds pipes and shared memory used for communication
// between the coordinator process (client) and a worker process (server).
// These values are unique to each worker; they are shared only with the
// coordinator, not with other workers.
//
// Access to shared memory is synchronized implicitly over the RPC protocol
// implemented in workerServer and workerClient. During a call, the client
// (worker) has exclusive access to shared memory; at other times, the server
// (coordinator) has exclusive access.
type workerComm struct {
	fuzzIn, fuzzOut *os.File
	memMu           chan *sharedMem // mutex guarding shared memory
}
// workerServer is a minimalist RPC server, run by fuzz worker processes.
// It allows the coordinator process (using workerClient) to call methods in a
// worker process. This system allows the coordinator to run multiple worker
// processes in parallel and to collect inputs that caused crashes from shared
// memory after a worker process terminates unexpectedly.
type workerServer struct {
	workerComm
	m *mutator
	// coverageMask is the local coverage data for the worker. It is
	// periodically updated to reflect the data in the coordinator when new
	// coverage is found.
	coverageMask []byte
	// fuzzFn runs the worker's fuzz target on the given input and returns an
	// error if it finds a crasher (the process may also exit or crash), and the
	// time it took to run the input. It sets a deadline of 10 seconds, at which
	// point it will panic with the assumption that the process is hanging or
	// deadlocked.
	fuzzFn func(CorpusEntry) (time.Duration, error)
}
// serve reads serialized RPC messages on fuzzIn. When serve receives a message,
// it calls the corresponding method, then sends the serialized result back
// on fuzzOut.
//
// serve handles RPC calls synchronously; it will not attempt to read a message
// until the previous call has finished.
//
// serve returns errors that occurred when communicating over pipes. serve
// does not return errors from method calls; those are passed through serialized
// responses.
func (ws *workerServer) serve(ctx context.Context) error {
	enc := json.NewEncoder(ws.fuzzOut)
	dec := json.NewDecoder(&contextReader{ctx: ctx, r: ws.fuzzIn})
	for {
		var c call
		if err := dec.Decode(&c); err != nil {
			if err == io.EOF || err == ctx.Err() {
				return nil
			} else {
				return err
			}
		}
		var resp any
		switch {
		case c.Fuzz != nil:
			resp = ws.fuzz(ctx, *c.Fuzz)
		case c.Minimize != nil:
			resp = ws.minimize(ctx, *c.Minimize)
		case c.Ping != nil:
			resp = ws.ping(ctx, *c.Ping)
		default:
			return errors.New("no arguments provided for any call")
		}
		if err := enc.Encode(resp); err != nil {
			return err
		}
	}
}
// chainedMutations is how many mutations are applied before the worker
// resets the input to it's original state.
// NOTE: this number was picked without much thought. It is low enough that
// it seems to create a significant diversity in mutated inputs. We may want
// to consider looking into this more closely once we have a proper performance
// testing framework. Another option is to randomly pick the number of chained
// mutations on each invocation of the workerServer.fuzz method (this appears to
// be what libFuzzer does, although there seems to be no documentation which
// explains why this choice was made.)
const chainedMutations = 5
// fuzz runs the test function on random variations of the input value in shared
// memory for a limited duration or number of iterations.
//
// fuzz returns early if it finds an input that crashes the fuzz function (with
// fuzzResponse.Err set) or an input that expands coverage (with
// fuzzResponse.InterestingDuration set).
//
// fuzz does not modify the input in shared memory. Instead, it saves the
// initial PRNG state in shared memory and increments a counter in shared
// memory before each call to the test function. The caller may reconstruct
// the crashing input with this information, since the PRNG is deterministic.
func (ws *workerServer) fuzz(ctx context.Context, args fuzzArgs) (resp fuzzResponse) {
	if args.CoverageData != nil {
		if ws.coverageMask != nil && len(args.CoverageData) != len(ws.coverageMask) {
			resp.InternalErr = fmt.Sprintf("unexpected size for CoverageData: got %d, expected %d", len(args.CoverageData), len(ws.coverageMask))
			return resp
		}
		ws.coverageMask = args.CoverageData
	}
	start := time.Now()
	defer func() { resp.TotalDuration = time.Since(start) }()
	if args.Timeout != 0 {
		var cancel func()
		ctx, cancel = context.WithTimeout(ctx, args.Timeout)
		defer cancel()
	}
	mem := <-ws.memMu
	ws.m.r.save(&mem.header().randState, &mem.header().randInc)
	defer func() {
		resp.Count = mem.header().count
		ws.memMu <- mem
	}()
	if args.Limit > 0 && mem.header().count >= args.Limit {
		resp.InternalErr = fmt.Sprintf("mem.header().count %d already exceeds args.Limit %d", mem.header().count, args.Limit)
		return resp
	}
	originalVals, err := unmarshalCorpusFile(mem.valueCopy())
	if err != nil {
		resp.InternalErr = err.Error()
		return resp
	}
	vals := make([]any, len(originalVals))
	copy(vals, originalVals)
	shouldStop := func() bool {
		return args.Limit > 0 && mem.header().count >= args.Limit
	}
	fuzzOnce := func(entry CorpusEntry) (dur time.Duration, cov []byte, errMsg string) {
		mem.header().count++
		var err error
		dur, err = ws.fuzzFn(entry)
		if err != nil {
			errMsg = err.Error()
			if errMsg == "" {
				errMsg = "fuzz function failed with no input"
			}
			return dur, nil, errMsg
		}
		if ws.coverageMask != nil && countNewCoverageBits(ws.coverageMask, coverageSnapshot) > 0 {
			return dur, coverageSnapshot, ""
		}
		return dur, nil, ""
	}
	if args.Warmup {
		dur, _, errMsg := fuzzOnce(CorpusEntry{Values: vals})
		if errMsg != "" {
			resp.Err = errMsg
			return resp
		}
		resp.InterestingDuration = dur
		if coverageEnabled {
			resp.CoverageData = coverageSnapshot
		}
		return resp
	}
	for {
		select {
		case <-ctx.Done():
			return resp
		default:
			if mem.header().count%chainedMutations == 0 {
				copy(vals, originalVals)
				ws.m.r.save(&mem.header().randState, &mem.header().randInc)
			}
			ws.m.mutate(vals, cap(mem.valueRef()))
			entry := CorpusEntry{Values: vals}
			dur, cov, errMsg := fuzzOnce(entry)
			if errMsg != "" {
				resp.Err = errMsg
				return resp
			}
			if cov != nil {
				resp.CoverageData = cov
				resp.InterestingDuration = dur
				return resp
			}
			if shouldStop() {
				return resp
			}
		}
	}
}
func (ws *workerServer) minimize(ctx context.Context, args minimizeArgs) (resp minimizeResponse) {
	start := time.Now()
	defer func() { resp.Duration = time.Now().Sub(start) }()
	mem := <-ws.memMu
	defer func() { ws.memMu <- mem }()
	vals, err := unmarshalCorpusFile(mem.valueCopy())
	if err != nil {
		panic(err)
	}
	inpHash := sha256.Sum256(mem.valueCopy())
	if args.Timeout != 0 {
		var cancel func()
		ctx, cancel = context.WithTimeout(ctx, args.Timeout)
		defer cancel()
	}
	// Minimize the values in vals, then write to shared memory. We only write
	// to shared memory after completing minimization.
	success, err := ws.minimizeInput(ctx, vals, mem, args)
	if success {
		writeToMem(vals, mem)
		outHash := sha256.Sum256(mem.valueCopy())
		mem.header().rawInMem = false
		resp.WroteToMem = true
		if err != nil {
			resp.Err = err.Error()
		} else {
			// If the values didn't change during minimization then coverageSnapshot is likely
			// a dirty snapshot which represents the very last step of minimization, not the
			// coverage for the initial input. In that case just return the coverage we were
			// given initially, since it more accurately represents the coverage map for the
			// input we are returning.
			if outHash != inpHash {
				resp.CoverageData = coverageSnapshot
			} else {
				resp.CoverageData = args.KeepCoverage
			}
		}
	}
	return resp
}
// minimizeInput applies a series of minimizing transformations on the provided
// vals, ensuring that each minimization still causes an error, or keeps
// coverage, in fuzzFn. It uses the context to determine how long to run,
// stopping once closed. It returns a bool indicating whether minimization was
// successful and an error if one was found.
func (ws *workerServer) minimizeInput(ctx context.Context, vals []any, mem *sharedMem, args minimizeArgs) (success bool, retErr error) {
	keepCoverage := args.KeepCoverage
	memBytes := mem.valueRef()
	bPtr := &memBytes
	count := &mem.header().count
	shouldStop := func() bool {
		return ctx.Err() != nil ||
			(args.Limit > 0 && *count >= args.Limit)
	}
	if shouldStop() {
		return false, nil
	}
	// Check that the original value preserves coverage or causes an error.
	// If not, then whatever caused us to think the value was interesting may
	// have been a flake, and we can't minimize it.
	*count++
	_, retErr = ws.fuzzFn(CorpusEntry{Values: vals})
	if keepCoverage != nil {
		if !hasCoverageBit(keepCoverage, coverageSnapshot) || retErr != nil {
			return false, nil
		}
	} else if retErr == nil {
		return false, nil
	}
	mem.header().rawInMem = true
	// tryMinimized runs the fuzz function with candidate replacing the value
	// at index valI. tryMinimized returns whether the input with candidate is
	// interesting for the same reason as the original input: it returns
	// an error if one was expected, or it preserves coverage.
	tryMinimized := func(candidate []byte) bool {
		prev := vals[args.Index]
		switch prev.(type) {
		case []byte:
			vals[args.Index] = candidate
		case string:
			vals[args.Index] = string(candidate)
		default:
			panic("impossible")
		}
		copy(*bPtr, candidate)
		*bPtr = (*bPtr)[:len(candidate)]
		mem.setValueLen(len(candidate))
		*count++
		_, err := ws.fuzzFn(CorpusEntry{Values: vals})
		if err != nil {
			retErr = err
			if keepCoverage != nil {
				// Now that we've found a crash, that's more important than any
				// minimization of interesting inputs that was being done. Clear out
				// keepCoverage to only minimize the crash going forward.
				keepCoverage = nil
			}
			return true
		}
		// Minimization should preserve coverage bits.
		if keepCoverage != nil && isCoverageSubset(keepCoverage, coverageSnapshot) {
			return true
		}
		vals[args.Index] = prev
		return false
	}
	switch v := vals[args.Index].(type) {
	case string:
		minimizeBytes([]byte(v), tryMinimized, shouldStop)
	case []byte:
		minimizeBytes(v, tryMinimized, shouldStop)
	default:
		panic("impossible")
	}
	return true, retErr
}
func writeToMem(vals []any, mem *sharedMem) {
	b := marshalCorpusFile(vals...)
	mem.setValue(b)
}
// ping does nothing. The coordinator calls this method to ensure the worker
// has called F.Fuzz and can communicate.
func (ws *workerServer) ping(ctx context.Context, args pingArgs) pingResponse {
	return pingResponse{}
}
// workerClient is a minimalist RPC client. The coordinator process uses a
// workerClient to call methods in each worker process (handled by
// workerServer).
type workerClient struct {
	workerComm
	m *mutator
	// mu is the mutex protecting the workerComm.fuzzIn pipe. This must be
	// locked before making calls to the workerServer. It prevents
	// workerClient.Close from closing fuzzIn while workerClient methods are
	// writing to it concurrently, and prevents multiple callers from writing to
	// fuzzIn concurrently.
	mu sync.Mutex
}
func newWorkerClient(comm workerComm, m *mutator) *workerClient {
	return &workerClient{workerComm: comm, m: m}
}
// Close shuts down the connection to the RPC server (the worker process) by
// closing fuzz_in. Close drains fuzz_out (avoiding a SIGPIPE in the worker),
// and closes it after the worker process closes the other end.
func (wc *workerClient) Close() error {
	wc.mu.Lock()
	defer wc.mu.Unlock()
	// Close fuzzIn. This signals to the server that there are no more calls,
	// and it should exit.
	if err := wc.fuzzIn.Close(); err != nil {
		wc.fuzzOut.Close()
		return err
	}
	// Drain fuzzOut and close it. When the server exits, the kernel will close
	// its end of fuzzOut, and we'll get EOF.
	if _, err := io.Copy(ioutil.Discard, wc.fuzzOut); err != nil {
		wc.fuzzOut.Close()
		return err
	}
	return wc.fuzzOut.Close()
}
// errSharedMemClosed is returned by workerClient methods that cannot access
// shared memory because it was closed and unmapped by another goroutine. That
// can happen when worker.cleanup is called in the worker goroutine while a
// workerClient.fuzz call runs concurrently.
//
// This error should not be reported. It indicates the operation was
// interrupted.
var errSharedMemClosed = errors.New("internal error: shared memory was closed and unmapped")
// minimize tells the worker to call the minimize method. See
// workerServer.minimize.
func (wc *workerClient) minimize(ctx context.Context, entryIn CorpusEntry, args minimizeArgs) (entryOut CorpusEntry, resp minimizeResponse, retErr error) {
	wc.mu.Lock()
	defer wc.mu.Unlock()
	mem, ok := <-wc.memMu
	if !ok {
		return CorpusEntry{}, minimizeResponse{}, errSharedMemClosed
	}
	mem.header().count = 0
	inp, err := corpusEntryData(entryIn)
	if err != nil {
		return CorpusEntry{}, minimizeResponse{}, err
	}
	mem.setValue(inp)
	defer func() { wc.memMu <- mem }()
	entryOut = entryIn
	entryOut.Values, err = unmarshalCorpusFile(inp)
	if err != nil {
		return CorpusEntry{}, minimizeResponse{}, fmt.Errorf("workerClient.minimize unmarshaling provided value: %v", err)
	}
	for i, v := range entryOut.Values {
		if !isMinimizable(reflect.TypeOf(v)) {
			continue
		}
		wc.memMu <- mem
		args.Index = i
		c := call{Minimize: &args}
		callErr := wc.callLocked(ctx, c, &resp)
		mem, ok = <-wc.memMu
		if !ok {
			return CorpusEntry{}, minimizeResponse{}, errSharedMemClosed
		}
		if callErr != nil {
			retErr = callErr
			if !mem.header().rawInMem {
				// An unrecoverable error occurred before minimization began.
				return entryIn, minimizeResponse{}, retErr
			}
			// An unrecoverable error occurred during minimization. mem now
			// holds the raw, unmarshalled bytes of entryIn.Values[i] that
			// caused the error.
			switch entryOut.Values[i].(type) {
			case string:
				entryOut.Values[i] = string(mem.valueCopy())
			case []byte:
				entryOut.Values[i] = mem.valueCopy()
			default:
				panic("impossible")
			}
			entryOut.Data = marshalCorpusFile(entryOut.Values...)
			// Stop minimizing; another unrecoverable error is likely to occur.
			break
		}
		if resp.WroteToMem {
			// Minimization succeeded, and mem holds the marshaled data.
			entryOut.Data = mem.valueCopy()
			entryOut.Values, err = unmarshalCorpusFile(entryOut.Data)
			if err != nil {
				return CorpusEntry{}, minimizeResponse{}, fmt.Errorf("workerClient.minimize unmarshaling minimized value: %v", err)
			}
		}
		// Prepare for next iteration of the loop.
		if args.Timeout != 0 {
			args.Timeout -= resp.Duration
			if args.Timeout <= 0 {
				break
			}
		}
		if args.Limit != 0 {
			args.Limit -= mem.header().count
			if args.Limit <= 0 {
				break
			}
		}
	}
	resp.Count = mem.header().count
	h := sha256.Sum256(entryOut.Data)
	entryOut.Path = fmt.Sprintf("%x", h[:4])
	return entryOut, resp, retErr
}
// fuzz tells the worker to call the fuzz method. See workerServer.fuzz.
func (wc *workerClient) fuzz(ctx context.Context, entryIn CorpusEntry, args fuzzArgs) (entryOut CorpusEntry, resp fuzzResponse, isInternalError bool, err error) {
	wc.mu.Lock()
	defer wc.mu.Unlock()
	mem, ok := <-wc.memMu
	if !ok {
		return CorpusEntry{}, fuzzResponse{}, true, errSharedMemClosed
	}
	mem.header().count = 0
	inp, err := corpusEntryData(entryIn)
	if err != nil {
		return CorpusEntry{}, fuzzResponse{}, true, err
	}
	mem.setValue(inp)
	wc.memMu <- mem
	c := call{Fuzz: &args}
	callErr := wc.callLocked(ctx, c, &resp)
	if resp.InternalErr != "" {
		return CorpusEntry{}, fuzzResponse{}, true, errors.New(resp.InternalErr)
	}
	mem, ok = <-wc.memMu
	if !ok {
		return CorpusEntry{}, fuzzResponse{}, true, errSharedMemClosed
	}
	defer func() { wc.memMu <- mem }()
	resp.Count = mem.header().count
	if !bytes.Equal(inp, mem.valueRef()) {
		return CorpusEntry{}, fuzzResponse{}, true, errors.New("workerServer.fuzz modified input")
	}
	needEntryOut := callErr != nil || resp.Err != "" ||
		(!args.Warmup && resp.CoverageData != nil)
	if needEntryOut {
		valuesOut, err := unmarshalCorpusFile(inp)
		if err != nil {
			return CorpusEntry{}, fuzzResponse{}, true, fmt.Errorf("unmarshaling fuzz input value after call: %v", err)
		}
		wc.m.r.restore(mem.header().randState, mem.header().randInc)
		if !args.Warmup {
			// Only mutate the valuesOut if fuzzing actually occurred.
			numMutations := ((resp.Count - 1) % chainedMutations) + 1
			for i := int64(0); i < numMutations; i++ {
				wc.m.mutate(valuesOut, cap(mem.valueRef()))
			}
		}
		dataOut := marshalCorpusFile(valuesOut...)
		h := sha256.Sum256(dataOut)
		name := fmt.Sprintf("%x", h[:4])
		entryOut = CorpusEntry{
			Parent:     entryIn.Path,
			Path:       name,
			Data:       dataOut,
			Generation: entryIn.Generation + 1,
		}
		if args.Warmup {
			// The bytes weren't mutated, so if entryIn was a seed corpus value,
			// then entryOut is too.
			entryOut.IsSeed = entryIn.IsSeed
		}
	}
	return entryOut, resp, false, callErr
}
// ping tells the worker to call the ping method. See workerServer.ping.
func (wc *workerClient) ping(ctx context.Context) error {
	wc.mu.Lock()
	defer wc.mu.Unlock()
	c := call{Ping: &pingArgs{}}
	var resp pingResponse
	return wc.callLocked(ctx, c, &resp)
}
// callLocked sends an RPC from the coordinator to the worker process and waits
// for the response. The callLocked may be cancelled with ctx.
func (wc *workerClient) callLocked(ctx context.Context, c call, resp any) (err error) {
	enc := json.NewEncoder(wc.fuzzIn)
	dec := json.NewDecoder(&contextReader{ctx: ctx, r: wc.fuzzOut})
	if err := enc.Encode(c); err != nil {
		return err
	}
	return dec.Decode(resp)
}
// contextReader wraps a Reader with a Context. If the context is cancelled
// while the underlying reader is blocked, Read returns immediately.
//
// This is useful for reading from a pipe. Closing a pipe file descriptor does
// not unblock pending Reads on that file descriptor. All copies of the pipe's
// other file descriptor (the write end) must be closed in all processes that
// inherit it. This is difficult to do correctly in the situation we care about
// (process group termination).
type contextReader struct {
	ctx context.Context
	r   io.Reader
}
func (cr *contextReader) Read(b []byte) (int, error) {
	if ctxErr := cr.ctx.Err(); ctxErr != nil {
		return 0, ctxErr
	}
	done := make(chan struct{})
	// This goroutine may stay blocked after Read returns because the underlying
	// read is blocked.
	var n int
	var err error
	go func() {
		n, err = cr.r.Read(b)
		close(done)
	}()
	select {
	case <-cr.ctx.Done():
		return 0, cr.ctx.Err()
	case <-done:
		return n, err
	}
}
 
     |