1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file provides Go implementations of elementary multi-precision
// arithmetic operations on word vectors. These have the suffix _g.
// These are needed for platforms without assembly implementations of these routines.
// This file also contains elementary operations that can be implemented
// sufficiently efficiently in Go.
package big
import "math/bits"
// A Word represents a single digit of a multi-precision unsigned integer.
type Word uint
const (
_S = _W / 8 // word size in bytes
_W = bits.UintSize // word size in bits
_B = 1 << _W // digit base
_M = _B - 1 // digit mask
)
// Many of the loops in this file are of the form
// for i := 0; i < len(z) && i < len(x) && i < len(y); i++
// i < len(z) is the real condition.
// However, checking i < len(x) && i < len(y) as well is faster than
// having the compiler do a bounds check in the body of the loop;
// remarkably it is even faster than hoisting the bounds check
// out of the loop, by doing something like
// _, _ = x[len(z)-1], y[len(z)-1]
// There are other ways to hoist the bounds check out of the loop,
// but the compiler's BCE isn't powerful enough for them (yet?).
// See the discussion in CL 164966.
// ----------------------------------------------------------------------------
// Elementary operations on words
//
// These operations are used by the vector operations below.
// z1<<_W + z0 = x*y
func mulWW_g(x, y Word) (z1, z0 Word) {
hi, lo := bits.Mul(uint(x), uint(y))
return Word(hi), Word(lo)
}
// z1<<_W + z0 = x*y + c
func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
hi, lo := bits.Mul(uint(x), uint(y))
var cc uint
lo, cc = bits.Add(lo, uint(c), 0)
return Word(hi + cc), Word(lo)
}
// nlz returns the number of leading zeros in x.
// Wraps bits.LeadingZeros call for convenience.
func nlz(x Word) uint {
return uint(bits.LeadingZeros(uint(x)))
}
// The resulting carry c is either 0 or 1.
func addVV_g(z, x, y []Word) (c Word) {
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
zi, cc := bits.Add(uint(x[i]), uint(y[i]), uint(c))
z[i] = Word(zi)
c = Word(cc)
}
return
}
// The resulting carry c is either 0 or 1.
func subVV_g(z, x, y []Word) (c Word) {
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
zi, cc := bits.Sub(uint(x[i]), uint(y[i]), uint(c))
z[i] = Word(zi)
c = Word(cc)
}
return
}
// The resulting carry c is either 0 or 1.
func addVW_g(z, x []Word, y Word) (c Word) {
c = y
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
zi, cc := bits.Add(uint(x[i]), uint(c), 0)
z[i] = Word(zi)
c = Word(cc)
}
return
}
// addVWlarge is addVW, but intended for large z.
// The only difference is that we check on every iteration
// whether we are done with carries,
// and if so, switch to a much faster copy instead.
// This is only a good idea for large z,
// because the overhead of the check and the function call
// outweigh the benefits when z is small.
func addVWlarge(z, x []Word, y Word) (c Word) {
c = y
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
if c == 0 {
copy(z[i:], x[i:])
return
}
zi, cc := bits.Add(uint(x[i]), uint(c), 0)
z[i] = Word(zi)
c = Word(cc)
}
return
}
func subVW_g(z, x []Word, y Word) (c Word) {
c = y
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
z[i] = Word(zi)
c = Word(cc)
}
return
}
// subVWlarge is to subVW as addVWlarge is to addVW.
func subVWlarge(z, x []Word, y Word) (c Word) {
c = y
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
if c == 0 {
copy(z[i:], x[i:])
return
}
zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
z[i] = Word(zi)
c = Word(cc)
}
return
}
func shlVU_g(z, x []Word, s uint) (c Word) {
if s == 0 {
copy(z, x)
return
}
if len(z) == 0 {
return
}
s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
ŝ := _W - s
ŝ &= _W - 1 // ditto
c = x[len(z)-1] >> ŝ
for i := len(z) - 1; i > 0; i-- {
z[i] = x[i]<<s | x[i-1]>>ŝ
}
z[0] = x[0] << s
return
}
func shrVU_g(z, x []Word, s uint) (c Word) {
if s == 0 {
copy(z, x)
return
}
if len(z) == 0 {
return
}
if len(x) != len(z) {
// This is an invariant guaranteed by the caller.
panic("len(x) != len(z)")
}
s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
ŝ := _W - s
ŝ &= _W - 1 // ditto
c = x[0] << ŝ
for i := 1; i < len(z); i++ {
z[i-1] = x[i-1]>>s | x[i]<<ŝ
}
z[len(z)-1] = x[len(z)-1] >> s
return
}
func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
c = r
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
c, z[i] = mulAddWWW_g(x[i], y, c)
}
return
}
func addMulVVW_g(z, x []Word, y Word) (c Word) {
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
z1, z0 := mulAddWWW_g(x[i], y, z[i])
lo, cc := bits.Add(uint(z0), uint(c), 0)
c, z[i] = Word(cc), Word(lo)
c += z1
}
return
}
// q = ( x1 << _W + x0 - r)/y. m = floor(( _B^2 - 1 ) / d - _B). Requiring x1<y.
// An approximate reciprocal with a reference to "Improved Division by Invariant Integers
// (IEEE Transactions on Computers, 11 Jun. 2010)"
func divWW(x1, x0, y, m Word) (q, r Word) {
s := nlz(y)
if s != 0 {
x1 = x1<<s | x0>>(_W-s)
x0 <<= s
y <<= s
}
d := uint(y)
// We know that
// m = ⎣(B^2-1)/d⎦-B
// ⎣(B^2-1)/d⎦ = m+B
// (B^2-1)/d = m+B+delta1 0 <= delta1 <= (d-1)/d
// B^2/d = m+B+delta2 0 <= delta2 <= 1
// The quotient we're trying to compute is
// quotient = ⎣(x1*B+x0)/d⎦
// = ⎣(x1*B*(B^2/d)+x0*(B^2/d))/B^2⎦
// = ⎣(x1*B*(m+B+delta2)+x0*(m+B+delta2))/B^2⎦
// = ⎣(x1*m+x1*B+x0)/B + x0*m/B^2 + delta2*(x1*B+x0)/B^2⎦
// The latter two terms of this three-term sum are between 0 and 1.
// So we can compute just the first term, and we will be low by at most 2.
t1, t0 := bits.Mul(uint(m), uint(x1))
_, c := bits.Add(t0, uint(x0), 0)
t1, _ = bits.Add(t1, uint(x1), c)
// The quotient is either t1, t1+1, or t1+2.
// We'll try t1 and adjust if needed.
qq := t1
// compute remainder r=x-d*q.
dq1, dq0 := bits.Mul(d, qq)
r0, b := bits.Sub(uint(x0), dq0, 0)
r1, _ := bits.Sub(uint(x1), dq1, b)
// The remainder we just computed is bounded above by B+d:
// r = x1*B + x0 - d*q.
// = x1*B + x0 - d*⎣(x1*m+x1*B+x0)/B⎦
// = x1*B + x0 - d*((x1*m+x1*B+x0)/B-alpha) 0 <= alpha < 1
// = x1*B + x0 - x1*d/B*m - x1*d - x0*d/B + d*alpha
// = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
// = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
// = x1*B + x0 - x1*d/B*((B^2-1)/d-B-beta) - x1*d - x0*d/B + d*alpha 0 <= beta < 1
// = x1*B + x0 - x1*B + x1/B + x1*d + x1*d/B*beta - x1*d - x0*d/B + d*alpha
// = x0 + x1/B + x1*d/B*beta - x0*d/B + d*alpha
// = x0*(1-d/B) + x1*(1+d*beta)/B + d*alpha
// < B*(1-d/B) + d*B/B + d because x0<B (and 1-d/B>0), x1<d, 1+d*beta<=B, alpha<1
// = B - d + d + d
// = B+d
// So r1 can only be 0 or 1. If r1 is 1, then we know q was too small.
// Add 1 to q and subtract d from r. That guarantees that r is <B, so
// we no longer need to keep track of r1.
if r1 != 0 {
qq++
r0 -= d
}
// If the remainder is still too large, increment q one more time.
if r0 >= d {
qq++
r0 -= d
}
return Word(qq), Word(r0 >> s)
}
// reciprocalWord return the reciprocal of the divisor. rec = floor(( _B^2 - 1 ) / u - _B). u = d1 << nlz(d1).
func reciprocalWord(d1 Word) Word {
u := uint(d1 << nlz(d1))
x1 := ^u
x0 := uint(_M)
rec, _ := bits.Div(x1, x0, u) // (_B^2-1)/U-_B = (_B*(_M-C)+_M)/U
return Word(rec)
}
|