1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements multi-precision floating-point numbers.
// Like in the GNU MPFR library (https://www.mpfr.org/), operands
// can be of mixed precision. Unlike MPFR, the rounding mode is
// not specified with each operation, but with each operand. The
// rounding mode of the result operand determines the rounding
// mode of an operation. This is a from-scratch implementation.
package big
import (
"fmt"
"math"
"math/bits"
)
const debugFloat = false // enable for debugging
// A nonzero finite Float represents a multi-precision floating point number
//
// sign × mantissa × 2**exponent
//
// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp.
// A Float may also be zero (+0, -0) or infinite (+Inf, -Inf).
// All Floats are ordered, and the ordering of two Floats x and y
// is defined by x.Cmp(y).
//
// Each Float value also has a precision, rounding mode, and accuracy.
// The precision is the maximum number of mantissa bits available to
// represent the value. The rounding mode specifies how a result should
// be rounded to fit into the mantissa bits, and accuracy describes the
// rounding error with respect to the exact result.
//
// Unless specified otherwise, all operations (including setters) that
// specify a *Float variable for the result (usually via the receiver
// with the exception of MantExp), round the numeric result according
// to the precision and rounding mode of the result variable.
//
// If the provided result precision is 0 (see below), it is set to the
// precision of the argument with the largest precision value before any
// rounding takes place, and the rounding mode remains unchanged. Thus,
// uninitialized Floats provided as result arguments will have their
// precision set to a reasonable value determined by the operands, and
// their mode is the zero value for RoundingMode (ToNearestEven).
//
// By setting the desired precision to 24 or 53 and using matching rounding
// mode (typically ToNearestEven), Float operations produce the same results
// as the corresponding float32 or float64 IEEE-754 arithmetic for operands
// that correspond to normal (i.e., not denormal) float32 or float64 numbers.
// Exponent underflow and overflow lead to a 0 or an Infinity for different
// values than IEEE-754 because Float exponents have a much larger range.
//
// The zero (uninitialized) value for a Float is ready to use and represents
// the number +0.0 exactly, with precision 0 and rounding mode ToNearestEven.
//
// Operations always take pointer arguments (*Float) rather
// than Float values, and each unique Float value requires
// its own unique *Float pointer. To "copy" a Float value,
// an existing (or newly allocated) Float must be set to
// a new value using the Float.Set method; shallow copies
// of Floats are not supported and may lead to errors.
type Float struct {
prec uint32
mode RoundingMode
acc Accuracy
form form
neg bool
mant nat
exp int32
}
// An ErrNaN panic is raised by a Float operation that would lead to
// a NaN under IEEE-754 rules. An ErrNaN implements the error interface.
type ErrNaN struct {
msg string
}
func (err ErrNaN) Error() string {
return err.msg
}
// NewFloat allocates and returns a new Float set to x,
// with precision 53 and rounding mode ToNearestEven.
// NewFloat panics with ErrNaN if x is a NaN.
func NewFloat(x float64) *Float {
if math.IsNaN(x) {
panic(ErrNaN{"NewFloat(NaN)"})
}
return new(Float).SetFloat64(x)
}
// Exponent and precision limits.
const (
MaxExp = math.MaxInt32 // largest supported exponent
MinExp = math.MinInt32 // smallest supported exponent
MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
)
// Internal representation: The mantissa bits x.mant of a nonzero finite
// Float x are stored in a nat slice long enough to hold up to x.prec bits;
// the slice may (but doesn't have to) be shorter if the mantissa contains
// trailing 0 bits. x.mant is normalized if the msb of x.mant == 1 (i.e.,
// the msb is shifted all the way "to the left"). Thus, if the mantissa has
// trailing 0 bits or x.prec is not a multiple of the Word size _W,
// x.mant[0] has trailing zero bits. The msb of the mantissa corresponds
// to the value 0.5; the exponent x.exp shifts the binary point as needed.
//
// A zero or non-finite Float x ignores x.mant and x.exp.
//
// x form neg mant exp
// ----------------------------------------------------------
// ±0 zero sign - -
// 0 < |x| < +Inf finite sign mantissa exponent
// ±Inf inf sign - -
// A form value describes the internal representation.
type form byte
// The form value order is relevant - do not change!
const (
zero form = iota
finite
inf
)
// RoundingMode determines how a Float value is rounded to the
// desired precision. Rounding may change the Float value; the
// rounding error is described by the Float's Accuracy.
type RoundingMode byte
// These constants define supported rounding modes.
const (
ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
ToNearestAway // == IEEE 754-2008 roundTiesToAway
ToZero // == IEEE 754-2008 roundTowardZero
AwayFromZero // no IEEE 754-2008 equivalent
ToNegativeInf // == IEEE 754-2008 roundTowardNegative
ToPositiveInf // == IEEE 754-2008 roundTowardPositive
)
//go:generate stringer -type=RoundingMode
// Accuracy describes the rounding error produced by the most recent
// operation that generated a Float value, relative to the exact value.
type Accuracy int8
// Constants describing the Accuracy of a Float.
const (
Below Accuracy = -1
Exact Accuracy = 0
Above Accuracy = +1
)
//go:generate stringer -type=Accuracy
// SetPrec sets z's precision to prec and returns the (possibly) rounded
// value of z. Rounding occurs according to z's rounding mode if the mantissa
// cannot be represented in prec bits without loss of precision.
// SetPrec(0) maps all finite values to ±0; infinite values remain unchanged.
// If prec > MaxPrec, it is set to MaxPrec.
func (z *Float) SetPrec(prec uint) *Float {
z.acc = Exact // optimistically assume no rounding is needed
// special case
if prec == 0 {
z.prec = 0
if z.form == finite {
// truncate z to 0
z.acc = makeAcc(z.neg)
z.form = zero
}
return z
}
// general case
if prec > MaxPrec {
prec = MaxPrec
}
old := z.prec
z.prec = uint32(prec)
if z.prec < old {
z.round(0)
}
return z
}
func makeAcc(above bool) Accuracy {
if above {
return Above
}
return Below
}
// SetMode sets z's rounding mode to mode and returns an exact z.
// z remains unchanged otherwise.
// z.SetMode(z.Mode()) is a cheap way to set z's accuracy to Exact.
func (z *Float) SetMode(mode RoundingMode) *Float {
z.mode = mode
z.acc = Exact
return z
}
// Prec returns the mantissa precision of x in bits.
// The result may be 0 for |x| == 0 and |x| == Inf.
func (x *Float) Prec() uint {
return uint(x.prec)
}
// MinPrec returns the minimum precision required to represent x exactly
// (i.e., the smallest prec before x.SetPrec(prec) would start rounding x).
// The result is 0 for |x| == 0 and |x| == Inf.
func (x *Float) MinPrec() uint {
if x.form != finite {
return 0
}
return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
}
// Mode returns the rounding mode of x.
func (x *Float) Mode() RoundingMode {
return x.mode
}
// Acc returns the accuracy of x produced by the most recent
// operation, unless explicitly documented otherwise by that
// operation.
func (x *Float) Acc() Accuracy {
return x.acc
}
// Sign returns:
//
// -1 if x < 0
// 0 if x is ±0
// +1 if x > 0
//
func (x *Float) Sign() int {
if debugFloat {
x.validate()
}
if x.form == zero {
return 0
}
if x.neg {
return -1
}
return 1
}
// MantExp breaks x into its mantissa and exponent components
// and returns the exponent. If a non-nil mant argument is
// provided its value is set to the mantissa of x, with the
// same precision and rounding mode as x. The components
// satisfy x == mant × 2**exp, with 0.5 <= |mant| < 1.0.
// Calling MantExp with a nil argument is an efficient way to
// get the exponent of the receiver.
//
// Special cases are:
//
// ( ±0).MantExp(mant) = 0, with mant set to ±0
// (±Inf).MantExp(mant) = 0, with mant set to ±Inf
//
// x and mant may be the same in which case x is set to its
// mantissa value.
func (x *Float) MantExp(mant *Float) (exp int) {
if debugFloat {
x.validate()
}
if x.form == finite {
exp = int(x.exp)
}
if mant != nil {
mant.Copy(x)
if mant.form == finite {
mant.exp = 0
}
}
return
}
func (z *Float) setExpAndRound(exp int64, sbit uint) {
if exp < MinExp {
// underflow
z.acc = makeAcc(z.neg)
z.form = zero
return
}
if exp > MaxExp {
// overflow
z.acc = makeAcc(!z.neg)
z.form = inf
return
}
z.form = finite
z.exp = int32(exp)
z.round(sbit)
}
// SetMantExp sets z to mant × 2**exp and returns z.
// The result z has the same precision and rounding mode
// as mant. SetMantExp is an inverse of MantExp but does
// not require 0.5 <= |mant| < 1.0. Specifically, for a
// given x of type *Float, SetMantExp relates to MantExp
// as follows:
//
// mant := new(Float)
// new(Float).SetMantExp(mant, x.MantExp(mant)).Cmp(x) == 0
//
// Special cases are:
//
// z.SetMantExp( ±0, exp) = ±0
// z.SetMantExp(±Inf, exp) = ±Inf
//
// z and mant may be the same in which case z's exponent
// is set to exp.
func (z *Float) SetMantExp(mant *Float, exp int) *Float {
if debugFloat {
z.validate()
mant.validate()
}
z.Copy(mant)
if z.form == finite {
// 0 < |mant| < +Inf
z.setExpAndRound(int64(z.exp)+int64(exp), 0)
}
return z
}
// Signbit reports whether x is negative or negative zero.
func (x *Float) Signbit() bool {
return x.neg
}
// IsInf reports whether x is +Inf or -Inf.
func (x *Float) IsInf() bool {
return x.form == inf
}
// IsInt reports whether x is an integer.
// ±Inf values are not integers.
func (x *Float) IsInt() bool {
if debugFloat {
x.validate()
}
// special cases
if x.form != finite {
return x.form == zero
}
// x.form == finite
if x.exp <= 0 {
return false
}
// x.exp > 0
return x.prec <= uint32(x.exp) || x.MinPrec() <= uint(x.exp) // not enough bits for fractional mantissa
}
// debugging support
func (x *Float) validate() {
if !debugFloat {
// avoid performance bugs
panic("validate called but debugFloat is not set")
}
if x.form != finite {
return
}
m := len(x.mant)
if m == 0 {
panic("nonzero finite number with empty mantissa")
}
const msb = 1 << (_W - 1)
if x.mant[m-1]&msb == 0 {
panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Text('p', 0)))
}
if x.prec == 0 {
panic("zero precision finite number")
}
}
// round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
// sbit must be 0 or 1 and summarizes any "sticky bit" information one might
// have before calling round. z's mantissa must be normalized (with the msb set)
// or empty.
//
// CAUTION: The rounding modes ToNegativeInf, ToPositiveInf are affected by the
// sign of z. For correct rounding, the sign of z must be set correctly before
// calling round.
func (z *Float) round(sbit uint) {
if debugFloat {
z.validate()
}
z.acc = Exact
if z.form != finite {
// ±0 or ±Inf => nothing left to do
return
}
// z.form == finite && len(z.mant) > 0
// m > 0 implies z.prec > 0 (checked by validate)
m := uint32(len(z.mant)) // present mantissa length in words
bits := m * _W // present mantissa bits; bits > 0
if bits <= z.prec {
// mantissa fits => nothing to do
return
}
// bits > z.prec
// Rounding is based on two bits: the rounding bit (rbit) and the
// sticky bit (sbit). The rbit is the bit immediately before the
// z.prec leading mantissa bits (the "0.5"). The sbit is set if any
// of the bits before the rbit are set (the "0.25", "0.125", etc.):
//
// rbit sbit => "fractional part"
//
// 0 0 == 0
// 0 1 > 0 , < 0.5
// 1 0 == 0.5
// 1 1 > 0.5, < 1.0
// bits > z.prec: mantissa too large => round
r := uint(bits - z.prec - 1) // rounding bit position; r >= 0
rbit := z.mant.bit(r) & 1 // rounding bit; be safe and ensure it's a single bit
// The sticky bit is only needed for rounding ToNearestEven
// or when the rounding bit is zero. Avoid computation otherwise.
if sbit == 0 && (rbit == 0 || z.mode == ToNearestEven) {
sbit = z.mant.sticky(r)
}
sbit &= 1 // be safe and ensure it's a single bit
// cut off extra words
n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision
if m > n {
copy(z.mant, z.mant[m-n:]) // move n last words to front
z.mant = z.mant[:n]
}
// determine number of trailing zero bits (ntz) and compute lsb mask of mantissa's least-significant word
ntz := n*_W - z.prec // 0 <= ntz < _W
lsb := Word(1) << ntz
// round if result is inexact
if rbit|sbit != 0 {
// Make rounding decision: The result mantissa is truncated ("rounded down")
// by default. Decide if we need to increment, or "round up", the (unsigned)
// mantissa.
inc := false
switch z.mode {
case ToNegativeInf:
inc = z.neg
case ToZero:
// nothing to do
case ToNearestEven:
inc = rbit != 0 && (sbit != 0 || z.mant[0]&lsb != 0)
case ToNearestAway:
inc = rbit != 0
case AwayFromZero:
inc = true
case ToPositiveInf:
inc = !z.neg
default:
panic("unreachable")
}
// A positive result (!z.neg) is Above the exact result if we increment,
// and it's Below if we truncate (Exact results require no rounding).
// For a negative result (z.neg) it is exactly the opposite.
z.acc = makeAcc(inc != z.neg)
if inc {
// add 1 to mantissa
if addVW(z.mant, z.mant, lsb) != 0 {
// mantissa overflow => adjust exponent
if z.exp >= MaxExp {
// exponent overflow
z.form = inf
return
}
z.exp++
// adjust mantissa: divide by 2 to compensate for exponent adjustment
shrVU(z.mant, z.mant, 1)
// set msb == carry == 1 from the mantissa overflow above
const msb = 1 << (_W - 1)
z.mant[n-1] |= msb
}
}
}
// zero out trailing bits in least-significant word
z.mant[0] &^= lsb - 1
if debugFloat {
z.validate()
}
}
func (z *Float) setBits64(neg bool, x uint64) *Float {
if z.prec == 0 {
z.prec = 64
}
z.acc = Exact
z.neg = neg
if x == 0 {
z.form = zero
return z
}
// x != 0
z.form = finite
s := bits.LeadingZeros64(x)
z.mant = z.mant.setUint64(x << uint(s))
z.exp = int32(64 - s) // always fits
if z.prec < 64 {
z.round(0)
}
return z
}
// SetUint64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 64 (and rounding will have
// no effect).
func (z *Float) SetUint64(x uint64) *Float {
return z.setBits64(false, x)
}
// SetInt64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 64 (and rounding will have
// no effect).
func (z *Float) SetInt64(x int64) *Float {
u := x
if u < 0 {
u = -u
}
// We cannot simply call z.SetUint64(uint64(u)) and change
// the sign afterwards because the sign affects rounding.
return z.setBits64(x < 0, uint64(u))
}
// SetFloat64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 53 (and rounding will have
// no effect). SetFloat64 panics with ErrNaN if x is a NaN.
func (z *Float) SetFloat64(x float64) *Float {
if z.prec == 0 {
z.prec = 53
}
if math.IsNaN(x) {
panic(ErrNaN{"Float.SetFloat64(NaN)"})
}
z.acc = Exact
z.neg = math.Signbit(x) // handle -0, -Inf correctly
if x == 0 {
z.form = zero
return z
}
if math.IsInf(x, 0) {
z.form = inf
return z
}
// normalized x != 0
z.form = finite
fmant, exp := math.Frexp(x) // get normalized mantissa
z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
z.exp = int32(exp) // always fits
if z.prec < 53 {
z.round(0)
}
return z
}
// fnorm normalizes mantissa m by shifting it to the left
// such that the msb of the most-significant word (msw) is 1.
// It returns the shift amount. It assumes that len(m) != 0.
func fnorm(m nat) int64 {
if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
panic("msw of mantissa is 0")
}
s := nlz(m[len(m)-1])
if s > 0 {
c := shlVU(m, m, s)
if debugFloat && c != 0 {
panic("nlz or shlVU incorrect")
}
}
return int64(s)
}
// SetInt sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the larger of x.BitLen()
// or 64 (and rounding will have no effect).
func (z *Float) SetInt(x *Int) *Float {
// TODO(gri) can be more efficient if z.prec > 0
// but small compared to the size of x, or if there
// are many trailing 0's.
bits := uint32(x.BitLen())
if z.prec == 0 {
z.prec = umax32(bits, 64)
}
z.acc = Exact
z.neg = x.neg
if len(x.abs) == 0 {
z.form = zero
return z
}
// x != 0
z.mant = z.mant.set(x.abs)
fnorm(z.mant)
z.setExpAndRound(int64(bits), 0)
return z
}
// SetRat sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the largest of a.BitLen(),
// b.BitLen(), or 64; with x = a/b.
func (z *Float) SetRat(x *Rat) *Float {
if x.IsInt() {
return z.SetInt(x.Num())
}
var a, b Float
a.SetInt(x.Num())
b.SetInt(x.Denom())
if z.prec == 0 {
z.prec = umax32(a.prec, b.prec)
}
return z.Quo(&a, &b)
}
// SetInf sets z to the infinite Float -Inf if signbit is
// set, or +Inf if signbit is not set, and returns z. The
// precision of z is unchanged and the result is always
// Exact.
func (z *Float) SetInf(signbit bool) *Float {
z.acc = Exact
z.form = inf
z.neg = signbit
return z
}
// Set sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the precision of x
// before setting z (and rounding will have no effect).
// Rounding is performed according to z's precision and rounding
// mode; and z's accuracy reports the result error relative to the
// exact (not rounded) result.
func (z *Float) Set(x *Float) *Float {
if debugFloat {
x.validate()
}
z.acc = Exact
if z != x {
z.form = x.form
z.neg = x.neg
if x.form == finite {
z.exp = x.exp
z.mant = z.mant.set(x.mant)
}
if z.prec == 0 {
z.prec = x.prec
} else if z.prec < x.prec {
z.round(0)
}
}
return z
}
// Copy sets z to x, with the same precision, rounding mode, and
// accuracy as x, and returns z. x is not changed even if z and
// x are the same.
func (z *Float) Copy(x *Float) *Float {
if debugFloat {
x.validate()
}
if z != x {
z.prec = x.prec
z.mode = x.mode
z.acc = x.acc
z.form = x.form
z.neg = x.neg
if z.form == finite {
z.mant = z.mant.set(x.mant)
z.exp = x.exp
}
}
return z
}
// msb32 returns the 32 most significant bits of x.
func msb32(x nat) uint32 {
i := len(x) - 1
if i < 0 {
return 0
}
if debugFloat && x[i]&(1<<(_W-1)) == 0 {
panic("x not normalized")
}
switch _W {
case 32:
return uint32(x[i])
case 64:
return uint32(x[i] >> 32)
}
panic("unreachable")
}
// msb64 returns the 64 most significant bits of x.
func msb64(x nat) uint64 {
i := len(x) - 1
if i < 0 {
return 0
}
if debugFloat && x[i]&(1<<(_W-1)) == 0 {
panic("x not normalized")
}
switch _W {
case 32:
v := uint64(x[i]) << 32
if i > 0 {
v |= uint64(x[i-1])
}
return v
case 64:
return uint64(x[i])
}
panic("unreachable")
}
// Uint64 returns the unsigned integer resulting from truncating x
// towards zero. If 0 <= x <= math.MaxUint64, the result is Exact
// if x is an integer and Below otherwise.
// The result is (0, Above) for x < 0, and (math.MaxUint64, Below)
// for x > math.MaxUint64.
func (x *Float) Uint64() (uint64, Accuracy) {
if debugFloat {
x.validate()
}
switch x.form {
case finite:
if x.neg {
return 0, Above
}
// 0 < x < +Inf
if x.exp <= 0 {
// 0 < x < 1
return 0, Below
}
// 1 <= x < Inf
if x.exp <= 64 {
// u = trunc(x) fits into a uint64
u := msb64(x.mant) >> (64 - uint32(x.exp))
if x.MinPrec() <= 64 {
return u, Exact
}
return u, Below // x truncated
}
// x too large
return math.MaxUint64, Below
case zero:
return 0, Exact
case inf:
if x.neg {
return 0, Above
}
return math.MaxUint64, Below
}
panic("unreachable")
}
// Int64 returns the integer resulting from truncating x towards zero.
// If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is
// an integer, and Above (x < 0) or Below (x > 0) otherwise.
// The result is (math.MinInt64, Above) for x < math.MinInt64,
// and (math.MaxInt64, Below) for x > math.MaxInt64.
func (x *Float) Int64() (int64, Accuracy) {
if debugFloat {
x.validate()
}
switch x.form {
case finite:
// 0 < |x| < +Inf
acc := makeAcc(x.neg)
if x.exp <= 0 {
// 0 < |x| < 1
return 0, acc
}
// x.exp > 0
// 1 <= |x| < +Inf
if x.exp <= 63 {
// i = trunc(x) fits into an int64 (excluding math.MinInt64)
i := int64(msb64(x.mant) >> (64 - uint32(x.exp)))
if x.neg {
i = -i
}
if x.MinPrec() <= uint(x.exp) {
return i, Exact
}
return i, acc // x truncated
}
if x.neg {
// check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
if x.exp == 64 && x.MinPrec() == 1 {
acc = Exact
}
return math.MinInt64, acc
}
// x too large
return math.MaxInt64, Below
case zero:
return 0, Exact
case inf:
if x.neg {
return math.MinInt64, Above
}
return math.MaxInt64, Below
}
panic("unreachable")
}
// Float32 returns the float32 value nearest to x. If x is too small to be
// represented by a float32 (|x| < math.SmallestNonzeroFloat32), the result
// is (0, Below) or (-0, Above), respectively, depending on the sign of x.
// If x is too large to be represented by a float32 (|x| > math.MaxFloat32),
// the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x.
func (x *Float) Float32() (float32, Accuracy) {
if debugFloat {
x.validate()
}
switch x.form {
case finite:
// 0 < |x| < +Inf
const (
fbits = 32 // float size
mbits = 23 // mantissa size (excluding implicit msb)
ebits = fbits - mbits - 1 // 8 exponent size
bias = 1<<(ebits-1) - 1 // 127 exponent bias
dmin = 1 - bias - mbits // -149 smallest unbiased exponent (denormal)
emin = 1 - bias // -126 smallest unbiased exponent (normal)
emax = bias // 127 largest unbiased exponent (normal)
)
// Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float32 mantissa.
e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0
// Compute precision p for float32 mantissa.
// If the exponent is too small, we have a denormal number before
// rounding and fewer than p mantissa bits of precision available
// (the exponent remains fixed but the mantissa gets shifted right).
p := mbits + 1 // precision of normal float
if e < emin {
// recompute precision
p = mbits + 1 - emin + int(e)
// If p == 0, the mantissa of x is shifted so much to the right
// that its msb falls immediately to the right of the float32
// mantissa space. In other words, if the smallest denormal is
// considered "1.0", for p == 0, the mantissa value m is >= 0.5.
// If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
// If m == 0.5, it is rounded down to even, i.e., 0.0.
// If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
// underflow to ±0
if x.neg {
var z float32
return -z, Above
}
return 0.0, Below
}
// otherwise, round up
// We handle p == 0 explicitly because it's easy and because
// Float.round doesn't support rounding to 0 bits of precision.
if p == 0 {
if x.neg {
return -math.SmallestNonzeroFloat32, Below
}
return math.SmallestNonzeroFloat32, Above
}
}
// p > 0
// round
var r Float
r.prec = uint32(p)
r.Set(x)
e = r.exp - 1
// Rounding may have caused r to overflow to ±Inf
// (rounding never causes underflows to 0).
// If the exponent is too large, also overflow to ±Inf.
if r.form == inf || e > emax {
// overflow
if x.neg {
return float32(math.Inf(-1)), Below
}
return float32(math.Inf(+1)), Above
}
// e <= emax
// Determine sign, biased exponent, and mantissa.
var sign, bexp, mant uint32
if x.neg {
sign = 1 << (fbits - 1)
}
// Rounding may have caused a denormal number to
// become normal. Check again.
if e < emin {
// denormal number: recompute precision
// Since rounding may have at best increased precision
// and we have eliminated p <= 0 early, we know p > 0.
// bexp == 0 for denormals
p = mbits + 1 - emin + int(e)
mant = msb32(r.mant) >> uint(fbits-p)
} else {
// normal number: emin <= e <= emax
bexp = uint32(e+bias) << mbits
mant = msb32(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
}
return math.Float32frombits(sign | bexp | mant), r.acc
case zero:
if x.neg {
var z float32
return -z, Exact
}
return 0.0, Exact
case inf:
if x.neg {
return float32(math.Inf(-1)), Exact
}
return float32(math.Inf(+1)), Exact
}
panic("unreachable")
}
// Float64 returns the float64 value nearest to x. If x is too small to be
// represented by a float64 (|x| < math.SmallestNonzeroFloat64), the result
// is (0, Below) or (-0, Above), respectively, depending on the sign of x.
// If x is too large to be represented by a float64 (|x| > math.MaxFloat64),
// the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x.
func (x *Float) Float64() (float64, Accuracy) {
if debugFloat {
x.validate()
}
switch x.form {
case finite:
// 0 < |x| < +Inf
const (
fbits = 64 // float size
mbits = 52 // mantissa size (excluding implicit msb)
ebits = fbits - mbits - 1 // 11 exponent size
bias = 1<<(ebits-1) - 1 // 1023 exponent bias
dmin = 1 - bias - mbits // -1074 smallest unbiased exponent (denormal)
emin = 1 - bias // -1022 smallest unbiased exponent (normal)
emax = bias // 1023 largest unbiased exponent (normal)
)
// Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float64 mantissa.
e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0
// Compute precision p for float64 mantissa.
// If the exponent is too small, we have a denormal number before
// rounding and fewer than p mantissa bits of precision available
// (the exponent remains fixed but the mantissa gets shifted right).
p := mbits + 1 // precision of normal float
if e < emin {
// recompute precision
p = mbits + 1 - emin + int(e)
// If p == 0, the mantissa of x is shifted so much to the right
// that its msb falls immediately to the right of the float64
// mantissa space. In other words, if the smallest denormal is
// considered "1.0", for p == 0, the mantissa value m is >= 0.5.
// If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
// If m == 0.5, it is rounded down to even, i.e., 0.0.
// If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
// underflow to ±0
if x.neg {
var z float64
return -z, Above
}
return 0.0, Below
}
// otherwise, round up
// We handle p == 0 explicitly because it's easy and because
// Float.round doesn't support rounding to 0 bits of precision.
if p == 0 {
if x.neg {
return -math.SmallestNonzeroFloat64, Below
}
return math.SmallestNonzeroFloat64, Above
}
}
// p > 0
// round
var r Float
r.prec = uint32(p)
r.Set(x)
e = r.exp - 1
// Rounding may have caused r to overflow to ±Inf
// (rounding never causes underflows to 0).
// If the exponent is too large, also overflow to ±Inf.
if r.form == inf || e > emax {
// overflow
if x.neg {
return math.Inf(-1), Below
}
return math.Inf(+1), Above
}
// e <= emax
// Determine sign, biased exponent, and mantissa.
var sign, bexp, mant uint64
if x.neg {
sign = 1 << (fbits - 1)
}
// Rounding may have caused a denormal number to
// become normal. Check again.
if e < emin {
// denormal number: recompute precision
// Since rounding may have at best increased precision
// and we have eliminated p <= 0 early, we know p > 0.
// bexp == 0 for denormals
p = mbits + 1 - emin + int(e)
mant = msb64(r.mant) >> uint(fbits-p)
} else {
// normal number: emin <= e <= emax
bexp = uint64(e+bias) << mbits
mant = msb64(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
}
return math.Float64frombits(sign | bexp | mant), r.acc
case zero:
if x.neg {
var z float64
return -z, Exact
}
return 0.0, Exact
case inf:
if x.neg {
return math.Inf(-1), Exact
}
return math.Inf(+1), Exact
}
panic("unreachable")
}
// Int returns the result of truncating x towards zero;
// or nil if x is an infinity.
// The result is Exact if x.IsInt(); otherwise it is Below
// for x > 0, and Above for x < 0.
// If a non-nil *Int argument z is provided, Int stores
// the result in z instead of allocating a new Int.
func (x *Float) Int(z *Int) (*Int, Accuracy) {
if debugFloat {
x.validate()
}
if z == nil && x.form <= finite {
z = new(Int)
}
switch x.form {
case finite:
// 0 < |x| < +Inf
acc := makeAcc(x.neg)
if x.exp <= 0 {
// 0 < |x| < 1
return z.SetInt64(0), acc
}
// x.exp > 0
// 1 <= |x| < +Inf
// determine minimum required precision for x
allBits := uint(len(x.mant)) * _W
exp := uint(x.exp)
if x.MinPrec() <= exp {
acc = Exact
}
// shift mantissa as needed
if z == nil {
z = new(Int)
}
z.neg = x.neg
switch {
case exp > allBits:
z.abs = z.abs.shl(x.mant, exp-allBits)
default:
z.abs = z.abs.set(x.mant)
case exp < allBits:
z.abs = z.abs.shr(x.mant, allBits-exp)
}
return z, acc
case zero:
return z.SetInt64(0), Exact
case inf:
return nil, makeAcc(x.neg)
}
panic("unreachable")
}
// Rat returns the rational number corresponding to x;
// or nil if x is an infinity.
// The result is Exact if x is not an Inf.
// If a non-nil *Rat argument z is provided, Rat stores
// the result in z instead of allocating a new Rat.
func (x *Float) Rat(z *Rat) (*Rat, Accuracy) {
if debugFloat {
x.validate()
}
if z == nil && x.form <= finite {
z = new(Rat)
}
switch x.form {
case finite:
// 0 < |x| < +Inf
allBits := int32(len(x.mant)) * _W
// build up numerator and denominator
z.a.neg = x.neg
switch {
case x.exp > allBits:
z.a.abs = z.a.abs.shl(x.mant, uint(x.exp-allBits))
z.b.abs = z.b.abs[:0] // == 1 (see Rat)
// z already in normal form
default:
z.a.abs = z.a.abs.set(x.mant)
z.b.abs = z.b.abs[:0] // == 1 (see Rat)
// z already in normal form
case x.exp < allBits:
z.a.abs = z.a.abs.set(x.mant)
t := z.b.abs.setUint64(1)
z.b.abs = t.shl(t, uint(allBits-x.exp))
z.norm()
}
return z, Exact
case zero:
return z.SetInt64(0), Exact
case inf:
return nil, makeAcc(x.neg)
}
panic("unreachable")
}
// Abs sets z to the (possibly rounded) value |x| (the absolute value of x)
// and returns z.
func (z *Float) Abs(x *Float) *Float {
z.Set(x)
z.neg = false
return z
}
// Neg sets z to the (possibly rounded) value of x with its sign negated,
// and returns z.
func (z *Float) Neg(x *Float) *Float {
z.Set(x)
z.neg = !z.neg
return z
}
func validateBinaryOperands(x, y *Float) {
if !debugFloat {
// avoid performance bugs
panic("validateBinaryOperands called but debugFloat is not set")
}
if len(x.mant) == 0 {
panic("empty mantissa for x")
}
if len(y.mant) == 0 {
panic("empty mantissa for y")
}
}
// z = x + y, ignoring signs of x and y for the addition
// but using the sign of z for rounding the result.
// x and y must have a non-empty mantissa and valid exponent.
func (z *Float) uadd(x, y *Float) {
// Note: This implementation requires 2 shifts most of the
// time. It is also inefficient if exponents or precisions
// differ by wide margins. The following article describes
// an efficient (but much more complicated) implementation
// compatible with the internal representation used here:
//
// Vincent Lefèvre: "The Generic Multiple-Precision Floating-
// Point Addition With Exact Rounding (as in the MPFR Library)"
// http://www.vinc17.net/research/papers/rnc6.pdf
if debugFloat {
validateBinaryOperands(x, y)
}
// compute exponents ex, ey for mantissa with "binary point"
// on the right (mantissa.0) - use int64 to avoid overflow
ex := int64(x.exp) - int64(len(x.mant))*_W
ey := int64(y.exp) - int64(len(y.mant))*_W
al := alias(z.mant, x.mant) || alias(z.mant, y.mant)
// TODO(gri) having a combined add-and-shift primitive
// could make this code significantly faster
switch {
case ex < ey:
if al {
t := nat(nil).shl(y.mant, uint(ey-ex))
z.mant = z.mant.add(x.mant, t)
} else {
z.mant = z.mant.shl(y.mant, uint(ey-ex))
z.mant = z.mant.add(x.mant, z.mant)
}
default:
// ex == ey, no shift needed
z.mant = z.mant.add(x.mant, y.mant)
case ex > ey:
if al {
t := nat(nil).shl(x.mant, uint(ex-ey))
z.mant = z.mant.add(t, y.mant)
} else {
z.mant = z.mant.shl(x.mant, uint(ex-ey))
z.mant = z.mant.add(z.mant, y.mant)
}
ex = ey
}
// len(z.mant) > 0
z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
}
// z = x - y for |x| > |y|, ignoring signs of x and y for the subtraction
// but using the sign of z for rounding the result.
// x and y must have a non-empty mantissa and valid exponent.
func (z *Float) usub(x, y *Float) {
// This code is symmetric to uadd.
// We have not factored the common code out because
// eventually uadd (and usub) should be optimized
// by special-casing, and the code will diverge.
if debugFloat {
validateBinaryOperands(x, y)
}
ex := int64(x.exp) - int64(len(x.mant))*_W
ey := int64(y.exp) - int64(len(y.mant))*_W
al := alias(z.mant, x.mant) || alias(z.mant, y.mant)
switch {
case ex < ey:
if al {
t := nat(nil).shl(y.mant, uint(ey-ex))
z.mant = t.sub(x.mant, t)
} else {
z.mant = z.mant.shl(y.mant, uint(ey-ex))
z.mant = z.mant.sub(x.mant, z.mant)
}
default:
// ex == ey, no shift needed
z.mant = z.mant.sub(x.mant, y.mant)
case ex > ey:
if al {
t := nat(nil).shl(x.mant, uint(ex-ey))
z.mant = t.sub(t, y.mant)
} else {
z.mant = z.mant.shl(x.mant, uint(ex-ey))
z.mant = z.mant.sub(z.mant, y.mant)
}
ex = ey
}
// operands may have canceled each other out
if len(z.mant) == 0 {
z.acc = Exact
z.form = zero
z.neg = false
return
}
// len(z.mant) > 0
z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
}
// z = x * y, ignoring signs of x and y for the multiplication
// but using the sign of z for rounding the result.
// x and y must have a non-empty mantissa and valid exponent.
func (z *Float) umul(x, y *Float) {
if debugFloat {
validateBinaryOperands(x, y)
}
// Note: This is doing too much work if the precision
// of z is less than the sum of the precisions of x
// and y which is often the case (e.g., if all floats
// have the same precision).
// TODO(gri) Optimize this for the common case.
e := int64(x.exp) + int64(y.exp)
if x == y {
z.mant = z.mant.sqr(x.mant)
} else {
z.mant = z.mant.mul(x.mant, y.mant)
}
z.setExpAndRound(e-fnorm(z.mant), 0)
}
// z = x / y, ignoring signs of x and y for the division
// but using the sign of z for rounding the result.
// x and y must have a non-empty mantissa and valid exponent.
func (z *Float) uquo(x, y *Float) {
if debugFloat {
validateBinaryOperands(x, y)
}
// mantissa length in words for desired result precision + 1
// (at least one extra bit so we get the rounding bit after
// the division)
n := int(z.prec/_W) + 1
// compute adjusted x.mant such that we get enough result precision
xadj := x.mant
if d := n - len(x.mant) + len(y.mant); d > 0 {
// d extra words needed => add d "0 digits" to x
xadj = make(nat, len(x.mant)+d)
copy(xadj[d:], x.mant)
}
// TODO(gri): If we have too many digits (d < 0), we should be able
// to shorten x for faster division. But we must be extra careful
// with rounding in that case.
// Compute d before division since there may be aliasing of x.mant
// (via xadj) or y.mant with z.mant.
d := len(xadj) - len(y.mant)
// divide
var r nat
z.mant, r = z.mant.div(nil, xadj, y.mant)
e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W
// The result is long enough to include (at least) the rounding bit.
// If there's a non-zero remainder, the corresponding fractional part
// (if it were computed), would have a non-zero sticky bit (if it were
// zero, it couldn't have a non-zero remainder).
var sbit uint
if len(r) > 0 {
sbit = 1
}
z.setExpAndRound(e-fnorm(z.mant), sbit)
}
// ucmp returns -1, 0, or +1, depending on whether
// |x| < |y|, |x| == |y|, or |x| > |y|.
// x and y must have a non-empty mantissa and valid exponent.
func (x *Float) ucmp(y *Float) int {
if debugFloat {
validateBinaryOperands(x, y)
}
switch {
case x.exp < y.exp:
return -1
case x.exp > y.exp:
return +1
}
// x.exp == y.exp
// compare mantissas
i := len(x.mant)
j := len(y.mant)
for i > 0 || j > 0 {
var xm, ym Word
if i > 0 {
i--
xm = x.mant[i]
}
if j > 0 {
j--
ym = y.mant[j]
}
switch {
case xm < ym:
return -1
case xm > ym:
return +1
}
}
return 0
}
// Handling of sign bit as defined by IEEE 754-2008, section 6.3:
//
// When neither the inputs nor result are NaN, the sign of a product or
// quotient is the exclusive OR of the operands’ signs; the sign of a sum,
// or of a difference x−y regarded as a sum x+(−y), differs from at most
// one of the addends’ signs; and the sign of the result of conversions,
// the quantize operation, the roundToIntegral operations, and the
// roundToIntegralExact (see 5.3.1) is the sign of the first or only operand.
// These rules shall apply even when operands or results are zero or infinite.
//
// When the sum of two operands with opposite signs (or the difference of
// two operands with like signs) is exactly zero, the sign of that sum (or
// difference) shall be +0 in all rounding-direction attributes except
// roundTowardNegative; under that attribute, the sign of an exact zero
// sum (or difference) shall be −0. However, x+x = x−(−x) retains the same
// sign as x even when x is zero.
//
// See also: https://play.golang.org/p/RtH3UCt5IH
// Add sets z to the rounded sum x+y and returns z. If z's precision is 0,
// it is changed to the larger of x's or y's precision before the operation.
// Rounding is performed according to z's precision and rounding mode; and
// z's accuracy reports the result error relative to the exact (not rounded)
// result. Add panics with ErrNaN if x and y are infinities with opposite
// signs. The value of z is undefined in that case.
func (z *Float) Add(x, y *Float) *Float {
if debugFloat {
x.validate()
y.validate()
}
if z.prec == 0 {
z.prec = umax32(x.prec, y.prec)
}
if x.form == finite && y.form == finite {
// x + y (common case)
// Below we set z.neg = x.neg, and when z aliases y this will
// change the y operand's sign. This is fine, because if an
// operand aliases the receiver it'll be overwritten, but we still
// want the original x.neg and y.neg values when we evaluate
// x.neg != y.neg, so we need to save y.neg before setting z.neg.
yneg := y.neg
z.neg = x.neg
if x.neg == yneg {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z.uadd(x, y)
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.ucmp(y) > 0 {
z.usub(x, y)
} else {
z.neg = !z.neg
z.usub(y, x)
}
}
if z.form == zero && z.mode == ToNegativeInf && z.acc == Exact {
z.neg = true
}
return z
}
if x.form == inf && y.form == inf && x.neg != y.neg {
// +Inf + -Inf
// -Inf + +Inf
// value of z is undefined but make sure it's valid
z.acc = Exact
z.form = zero
z.neg = false
panic(ErrNaN{"addition of infinities with opposite signs"})
}
if x.form == zero && y.form == zero {
// ±0 + ±0
z.acc = Exact
z.form = zero
z.neg = x.neg && y.neg // -0 + -0 == -0
return z
}
if x.form == inf || y.form == zero {
// ±Inf + y
// x + ±0
return z.Set(x)
}
// ±0 + y
// x + ±Inf
return z.Set(y)
}
// Sub sets z to the rounded difference x-y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
// Sub panics with ErrNaN if x and y are infinities with equal
// signs. The value of z is undefined in that case.
func (z *Float) Sub(x, y *Float) *Float {
if debugFloat {
x.validate()
y.validate()
}
if z.prec == 0 {
z.prec = umax32(x.prec, y.prec)
}
if x.form == finite && y.form == finite {
// x - y (common case)
yneg := y.neg
z.neg = x.neg
if x.neg != yneg {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z.uadd(x, y)
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.ucmp(y) > 0 {
z.usub(x, y)
} else {
z.neg = !z.neg
z.usub(y, x)
}
}
if z.form == zero && z.mode == ToNegativeInf && z.acc == Exact {
z.neg = true
}
return z
}
if x.form == inf && y.form == inf && x.neg == y.neg {
// +Inf - +Inf
// -Inf - -Inf
// value of z is undefined but make sure it's valid
z.acc = Exact
z.form = zero
z.neg = false
panic(ErrNaN{"subtraction of infinities with equal signs"})
}
if x.form == zero && y.form == zero {
// ±0 - ±0
z.acc = Exact
z.form = zero
z.neg = x.neg && !y.neg // -0 - +0 == -0
return z
}
if x.form == inf || y.form == zero {
// ±Inf - y
// x - ±0
return z.Set(x)
}
// ±0 - y
// x - ±Inf
return z.Neg(y)
}
// Mul sets z to the rounded product x*y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
// Mul panics with ErrNaN if one operand is zero and the other
// operand an infinity. The value of z is undefined in that case.
func (z *Float) Mul(x, y *Float) *Float {
if debugFloat {
x.validate()
y.validate()
}
if z.prec == 0 {
z.prec = umax32(x.prec, y.prec)
}
z.neg = x.neg != y.neg
if x.form == finite && y.form == finite {
// x * y (common case)
z.umul(x, y)
return z
}
z.acc = Exact
if x.form == zero && y.form == inf || x.form == inf && y.form == zero {
// ±0 * ±Inf
// ±Inf * ±0
// value of z is undefined but make sure it's valid
z.form = zero
z.neg = false
panic(ErrNaN{"multiplication of zero with infinity"})
}
if x.form == inf || y.form == inf {
// ±Inf * y
// x * ±Inf
z.form = inf
return z
}
// ±0 * y
// x * ±0
z.form = zero
return z
}
// Quo sets z to the rounded quotient x/y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
// Quo panics with ErrNaN if both operands are zero or infinities.
// The value of z is undefined in that case.
func (z *Float) Quo(x, y *Float) *Float {
if debugFloat {
x.validate()
y.validate()
}
if z.prec == 0 {
z.prec = umax32(x.prec, y.prec)
}
z.neg = x.neg != y.neg
if x.form == finite && y.form == finite {
// x / y (common case)
z.uquo(x, y)
return z
}
z.acc = Exact
if x.form == zero && y.form == zero || x.form == inf && y.form == inf {
// ±0 / ±0
// ±Inf / ±Inf
// value of z is undefined but make sure it's valid
z.form = zero
z.neg = false
panic(ErrNaN{"division of zero by zero or infinity by infinity"})
}
if x.form == zero || y.form == inf {
// ±0 / y
// x / ±Inf
z.form = zero
return z
}
// x / ±0
// ±Inf / y
z.form = inf
return z
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y (incl. -0 == 0, -Inf == -Inf, and +Inf == +Inf)
// +1 if x > y
//
func (x *Float) Cmp(y *Float) int {
if debugFloat {
x.validate()
y.validate()
}
mx := x.ord()
my := y.ord()
switch {
case mx < my:
return -1
case mx > my:
return +1
}
// mx == my
// only if |mx| == 1 we have to compare the mantissae
switch mx {
case -1:
return y.ucmp(x)
case +1:
return x.ucmp(y)
}
return 0
}
// ord classifies x and returns:
//
// -2 if -Inf == x
// -1 if -Inf < x < 0
// 0 if x == 0 (signed or unsigned)
// +1 if 0 < x < +Inf
// +2 if x == +Inf
//
func (x *Float) ord() int {
var m int
switch x.form {
case finite:
m = 1
case zero:
return 0
case inf:
m = 2
}
if x.neg {
m = -m
}
return m
}
func umax32(x, y uint32) uint32 {
if x > y {
return x
}
return y
}
|