1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements Float-to-string conversion functions.
// It is closely following the corresponding implementation
// in strconv/ftoa.go, but modified and simplified for Float.
package big
import (
"bytes"
"fmt"
"strconv"
)
// Text converts the floating-point number x to a string according
// to the given format and precision prec. The format is one of:
//
// 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits
// 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits
// 'f' -ddddd.dddd, no exponent
// 'g' like 'e' for large exponents, like 'f' otherwise
// 'G' like 'E' for large exponents, like 'f' otherwise
// 'x' -0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent
// 'p' -0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard)
// 'b' -ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard)
//
// For the power-of-two exponent formats, the mantissa is printed in normalized form:
//
// 'x' hexadecimal mantissa in [1, 2), or 0
// 'p' hexadecimal mantissa in [½, 1), or 0
// 'b' decimal integer mantissa using x.Prec() bits, or 0
//
// Note that the 'x' form is the one used by most other languages and libraries.
//
// If format is a different character, Text returns a "%" followed by the
// unrecognized format character.
//
// The precision prec controls the number of digits (excluding the exponent)
// printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats.
// For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point.
// For 'g' and 'G' it is the total number of digits. A negative precision selects
// the smallest number of decimal digits necessary to identify the value x uniquely
// using x.Prec() mantissa bits.
// The prec value is ignored for the 'b' and 'p' formats.
func (x *Float) Text(format byte, prec int) string {
cap := 10 // TODO(gri) determine a good/better value here
if prec > 0 {
cap += prec
}
return string(x.Append(make([]byte, 0, cap), format, prec))
}
// String formats x like x.Text('g', 10).
// (String must be called explicitly, Float.Format does not support %s verb.)
func (x *Float) String() string {
return x.Text('g', 10)
}
// Append appends to buf the string form of the floating-point number x,
// as generated by x.Text, and returns the extended buffer.
func (x *Float) Append(buf []byte, fmt byte, prec int) []byte {
// sign
if x.neg {
buf = append(buf, '-')
}
// Inf
if x.form == inf {
if !x.neg {
buf = append(buf, '+')
}
return append(buf, "Inf"...)
}
// pick off easy formats
switch fmt {
case 'b':
return x.fmtB(buf)
case 'p':
return x.fmtP(buf)
case 'x':
return x.fmtX(buf, prec)
}
// Algorithm:
// 1) convert Float to multiprecision decimal
// 2) round to desired precision
// 3) read digits out and format
// 1) convert Float to multiprecision decimal
var d decimal // == 0.0
if x.form == finite {
// x != 0
d.init(x.mant, int(x.exp)-x.mant.bitLen())
}
// 2) round to desired precision
shortest := false
if prec < 0 {
shortest = true
roundShortest(&d, x)
// Precision for shortest representation mode.
switch fmt {
case 'e', 'E':
prec = len(d.mant) - 1
case 'f':
prec = max(len(d.mant)-d.exp, 0)
case 'g', 'G':
prec = len(d.mant)
}
} else {
// round appropriately
switch fmt {
case 'e', 'E':
// one digit before and number of digits after decimal point
d.round(1 + prec)
case 'f':
// number of digits before and after decimal point
d.round(d.exp + prec)
case 'g', 'G':
if prec == 0 {
prec = 1
}
d.round(prec)
}
}
// 3) read digits out and format
switch fmt {
case 'e', 'E':
return fmtE(buf, fmt, prec, d)
case 'f':
return fmtF(buf, prec, d)
case 'g', 'G':
// trim trailing fractional zeros in %e format
eprec := prec
if eprec > len(d.mant) && len(d.mant) >= d.exp {
eprec = len(d.mant)
}
// %e is used if the exponent from the conversion
// is less than -4 or greater than or equal to the precision.
// If precision was the shortest possible, use eprec = 6 for
// this decision.
if shortest {
eprec = 6
}
exp := d.exp - 1
if exp < -4 || exp >= eprec {
if prec > len(d.mant) {
prec = len(d.mant)
}
return fmtE(buf, fmt+'e'-'g', prec-1, d)
}
if prec > d.exp {
prec = len(d.mant)
}
return fmtF(buf, max(prec-d.exp, 0), d)
}
// unknown format
if x.neg {
buf = buf[:len(buf)-1] // sign was added prematurely - remove it again
}
return append(buf, '%', fmt)
}
func roundShortest(d *decimal, x *Float) {
// if the mantissa is zero, the number is zero - stop now
if len(d.mant) == 0 {
return
}
// Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp]
// (possibly exclusive) round to x for the given precision of x.
// Compute the lower and upper bound in decimal form and find the
// shortest decimal number d such that lower <= d <= upper.
// TODO(gri) strconv/ftoa.do describes a shortcut in some cases.
// See if we can use it (in adjusted form) here as well.
// 1) Compute normalized mantissa mant and exponent exp for x such
// that the lsb of mant corresponds to 1/2 ulp for the precision of
// x (i.e., for mant we want x.prec + 1 bits).
mant := nat(nil).set(x.mant)
exp := int(x.exp) - mant.bitLen()
s := mant.bitLen() - int(x.prec+1)
switch {
case s < 0:
mant = mant.shl(mant, uint(-s))
case s > 0:
mant = mant.shr(mant, uint(+s))
}
exp += s
// x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec
// 2) Compute lower bound by subtracting 1/2 ulp.
var lower decimal
var tmp nat
lower.init(tmp.sub(mant, natOne), exp)
// 3) Compute upper bound by adding 1/2 ulp.
var upper decimal
upper.init(tmp.add(mant, natOne), exp)
// The upper and lower bounds are possible outputs only if
// the original mantissa is even, so that ToNearestEven rounding
// would round to the original mantissa and not the neighbors.
inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1
// Now we can figure out the minimum number of digits required.
// Walk along until d has distinguished itself from upper and lower.
for i, m := range d.mant {
l := lower.at(i)
u := upper.at(i)
// Okay to round down (truncate) if lower has a different digit
// or if lower is inclusive and is exactly the result of rounding
// down (i.e., and we have reached the final digit of lower).
okdown := l != m || inclusive && i+1 == len(lower.mant)
// Okay to round up if upper has a different digit and either upper
// is inclusive or upper is bigger than the result of rounding up.
okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant))
// If it's okay to do either, then round to the nearest one.
// If it's okay to do only one, do it.
switch {
case okdown && okup:
d.round(i + 1)
return
case okdown:
d.roundDown(i + 1)
return
case okup:
d.roundUp(i + 1)
return
}
}
}
// %e: d.ddddde±dd
func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte {
// first digit
ch := byte('0')
if len(d.mant) > 0 {
ch = d.mant[0]
}
buf = append(buf, ch)
// .moredigits
if prec > 0 {
buf = append(buf, '.')
i := 1
m := min(len(d.mant), prec+1)
if i < m {
buf = append(buf, d.mant[i:m]...)
i = m
}
for ; i <= prec; i++ {
buf = append(buf, '0')
}
}
// e±
buf = append(buf, fmt)
var exp int64
if len(d.mant) > 0 {
exp = int64(d.exp) - 1 // -1 because first digit was printed before '.'
}
if exp < 0 {
ch = '-'
exp = -exp
} else {
ch = '+'
}
buf = append(buf, ch)
// dd...d
if exp < 10 {
buf = append(buf, '0') // at least 2 exponent digits
}
return strconv.AppendInt(buf, exp, 10)
}
// %f: ddddddd.ddddd
func fmtF(buf []byte, prec int, d decimal) []byte {
// integer, padded with zeros as needed
if d.exp > 0 {
m := min(len(d.mant), d.exp)
buf = append(buf, d.mant[:m]...)
for ; m < d.exp; m++ {
buf = append(buf, '0')
}
} else {
buf = append(buf, '0')
}
// fraction
if prec > 0 {
buf = append(buf, '.')
for i := 0; i < prec; i++ {
buf = append(buf, d.at(d.exp+i))
}
}
return buf
}
// fmtB appends the string of x in the format mantissa "p" exponent
// with a decimal mantissa and a binary exponent, or 0" if x is zero,
// and returns the extended buffer.
// The mantissa is normalized such that is uses x.Prec() bits in binary
// representation.
// The sign of x is ignored, and x must not be an Inf.
// (The caller handles Inf before invoking fmtB.)
func (x *Float) fmtB(buf []byte) []byte {
if x.form == zero {
return append(buf, '0')
}
if debugFloat && x.form != finite {
panic("non-finite float")
}
// x != 0
// adjust mantissa to use exactly x.prec bits
m := x.mant
switch w := uint32(len(x.mant)) * _W; {
case w < x.prec:
m = nat(nil).shl(m, uint(x.prec-w))
case w > x.prec:
m = nat(nil).shr(m, uint(w-x.prec))
}
buf = append(buf, m.utoa(10)...)
buf = append(buf, 'p')
e := int64(x.exp) - int64(x.prec)
if e >= 0 {
buf = append(buf, '+')
}
return strconv.AppendInt(buf, e, 10)
}
// fmtX appends the string of x in the format "0x1." mantissa "p" exponent
// with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero,
// and returns the extended buffer.
// A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0.
// The sign of x is ignored, and x must not be an Inf.
// (The caller handles Inf before invoking fmtX.)
func (x *Float) fmtX(buf []byte, prec int) []byte {
if x.form == zero {
buf = append(buf, "0x0"...)
if prec > 0 {
buf = append(buf, '.')
for i := 0; i < prec; i++ {
buf = append(buf, '0')
}
}
buf = append(buf, "p+00"...)
return buf
}
if debugFloat && x.form != finite {
panic("non-finite float")
}
// round mantissa to n bits
var n uint
if prec < 0 {
n = 1 + (x.MinPrec()-1+3)/4*4 // round MinPrec up to 1 mod 4
} else {
n = 1 + 4*uint(prec)
}
// n%4 == 1
x = new(Float).SetPrec(n).SetMode(x.mode).Set(x)
// adjust mantissa to use exactly n bits
m := x.mant
switch w := uint(len(x.mant)) * _W; {
case w < n:
m = nat(nil).shl(m, n-w)
case w > n:
m = nat(nil).shr(m, w-n)
}
exp64 := int64(x.exp) - 1 // avoid wrap-around
hm := m.utoa(16)
if debugFloat && hm[0] != '1' {
panic("incorrect mantissa: " + string(hm))
}
buf = append(buf, "0x1"...)
if len(hm) > 1 {
buf = append(buf, '.')
buf = append(buf, hm[1:]...)
}
buf = append(buf, 'p')
if exp64 >= 0 {
buf = append(buf, '+')
} else {
exp64 = -exp64
buf = append(buf, '-')
}
// Force at least two exponent digits, to match fmt.
if exp64 < 10 {
buf = append(buf, '0')
}
return strconv.AppendInt(buf, exp64, 10)
}
// fmtP appends the string of x in the format "0x." mantissa "p" exponent
// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero,
// and returns the extended buffer.
// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
// The sign of x is ignored, and x must not be an Inf.
// (The caller handles Inf before invoking fmtP.)
func (x *Float) fmtP(buf []byte) []byte {
if x.form == zero {
return append(buf, '0')
}
if debugFloat && x.form != finite {
panic("non-finite float")
}
// x != 0
// remove trailing 0 words early
// (no need to convert to hex 0's and trim later)
m := x.mant
i := 0
for i < len(m) && m[i] == 0 {
i++
}
m = m[i:]
buf = append(buf, "0x."...)
buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...)
buf = append(buf, 'p')
if x.exp >= 0 {
buf = append(buf, '+')
}
return strconv.AppendInt(buf, int64(x.exp), 10)
}
func min(x, y int) int {
if x < y {
return x
}
return y
}
var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter
// Format implements fmt.Formatter. It accepts all the regular
// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F',
// 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the
// interpretation of 'p'. The 'v' format is handled like 'g'.
// Format also supports specification of the minimum precision
// in digits, the output field width, as well as the format flags
// '+' and ' ' for sign control, '0' for space or zero padding,
// and '-' for left or right justification. See the fmt package
// for details.
func (x *Float) Format(s fmt.State, format rune) {
prec, hasPrec := s.Precision()
if !hasPrec {
prec = 6 // default precision for 'e', 'f'
}
switch format {
case 'e', 'E', 'f', 'b', 'p', 'x':
// nothing to do
case 'F':
// (*Float).Text doesn't support 'F'; handle like 'f'
format = 'f'
case 'v':
// handle like 'g'
format = 'g'
fallthrough
case 'g', 'G':
if !hasPrec {
prec = -1 // default precision for 'g', 'G'
}
default:
fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String())
return
}
var buf []byte
buf = x.Append(buf, byte(format), prec)
if len(buf) == 0 {
buf = []byte("?") // should never happen, but don't crash
}
// len(buf) > 0
var sign string
switch {
case buf[0] == '-':
sign = "-"
buf = buf[1:]
case buf[0] == '+':
// +Inf
sign = "+"
if s.Flag(' ') {
sign = " "
}
buf = buf[1:]
case s.Flag('+'):
sign = "+"
case s.Flag(' '):
sign = " "
}
var padding int
if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) {
padding = width - len(sign) - len(buf)
}
switch {
case s.Flag('0') && !x.IsInf():
// 0-padding on left
writeMultiple(s, sign, 1)
writeMultiple(s, "0", padding)
s.Write(buf)
case s.Flag('-'):
// padding on right
writeMultiple(s, sign, 1)
s.Write(buf)
writeMultiple(s, " ", padding)
default:
// padding on left
writeMultiple(s, " ", padding)
writeMultiple(s, sign, 1)
s.Write(buf)
}
}
|