1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big
import (
"fmt"
"math"
"math/rand"
"runtime"
"testing"
)
// TestFloatSqrt64 tests that Float.Sqrt of numbers with 53bit mantissa
// behaves like float math.Sqrt.
func TestFloatSqrt64(t *testing.T) {
// This test fails for gccgo on 386 with a one ULP difference,
// presumably due to the use of extended precision floating
// point.
if runtime.Compiler == "gccgo" && runtime.GOARCH == "386" {
t.Skip("skipping on gccgo for 386; gets a one ULP difference")
}
for i := 0; i < 1e5; i++ {
if i == 1e2 && testing.Short() {
break
}
r := rand.Float64()
got := new(Float).SetPrec(53)
got.Sqrt(NewFloat(r))
want := NewFloat(math.Sqrt(r))
if got.Cmp(want) != 0 {
t.Fatalf("Sqrt(%g) =\n got %g;\nwant %g", r, got, want)
}
}
}
func TestFloatSqrt(t *testing.T) {
for _, test := range []struct {
x string
want string
}{
// Test values were generated on Wolfram Alpha using query
// 'sqrt(N) to 350 digits'
// 350 decimal digits give up to 1000 binary digits.
{"0.03125", "0.17677669529663688110021109052621225982120898442211850914708496724884155980776337985629844179095519659187673077886403712811560450698134215158051518713749197892665283324093819909447499381264409775757143376369499645074628431682460775184106467733011114982619404115381053858929018135497032545349940642599871090667456829147610370507757690729404938184321879"},
{"0.125", "0.35355339059327376220042218105242451964241796884423701829416993449768311961552675971259688358191039318375346155772807425623120901396268430316103037427498395785330566648187639818894998762528819551514286752738999290149256863364921550368212935466022229965238808230762107717858036270994065090699881285199742181334913658295220741015515381458809876368643757"},
{"0.5", "0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078636750692311545614851246241802792536860632206074854996791570661133296375279637789997525057639103028573505477998580298513726729843100736425870932044459930477616461524215435716072541988130181399762570399484362669827316590441482031030762917619752737287514"},
{"2.0", "1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714701095599716059702745345968620147285174186408891986095523292304843087143214508397626036279952514079896872533965463318088296406206152583523950547457503"},
{"3.0", "1.7320508075688772935274463415058723669428052538103806280558069794519330169088000370811461867572485756756261414154067030299699450949989524788116555120943736485280932319023055820679748201010846749232650153123432669033228866506722546689218379712270471316603678615880190499865373798593894676503475065760507566183481296061009476021871903250831458295239598"},
{"4.0", "2.0"},
{"1p512", "1p256"},
{"4p1024", "2p512"},
{"9p2048", "3p1024"},
{"1p-1024", "1p-512"},
{"4p-2048", "2p-1024"},
{"9p-4096", "3p-2048"},
} {
for _, prec := range []uint{24, 53, 64, 65, 100, 128, 129, 200, 256, 400, 600, 800, 1000} {
x := new(Float).SetPrec(prec)
x.Parse(test.x, 10)
got := new(Float).SetPrec(prec).Sqrt(x)
want := new(Float).SetPrec(prec)
want.Parse(test.want, 10)
if got.Cmp(want) != 0 {
t.Errorf("prec = %d, Sqrt(%v) =\ngot %g;\nwant %g",
prec, test.x, got, want)
}
// Square test.
// If got holds the square root of x to precision p, then
// got = √x + k
// for some k such that |k| < 2**(-p). Thus,
// got² = (√x + k)² = x + 2k√n + k²
// and the error must satisfy
// err = |got² - x| ≈ | 2k√n | < 2**(-p+1)*√n
// Ignoring the k² term for simplicity.
// err = |got² - x|
// (but do intermediate steps with 32 guard digits to
// avoid introducing spurious rounding-related errors)
sq := new(Float).SetPrec(prec+32).Mul(got, got)
diff := new(Float).Sub(sq, x)
err := diff.Abs(diff).SetPrec(prec)
// maxErr = 2**(-p+1)*√x
one := new(Float).SetPrec(prec).SetInt64(1)
maxErr := new(Float).Mul(new(Float).SetMantExp(one, -int(prec)+1), got)
if err.Cmp(maxErr) >= 0 {
t.Errorf("prec = %d, Sqrt(%v) =\ngot err %g;\nwant maxErr %g",
prec, test.x, err, maxErr)
}
}
}
}
func TestFloatSqrtSpecial(t *testing.T) {
for _, test := range []struct {
x *Float
want *Float
}{
{NewFloat(+0), NewFloat(+0)},
{NewFloat(-0), NewFloat(-0)},
{NewFloat(math.Inf(+1)), NewFloat(math.Inf(+1))},
} {
got := new(Float).Sqrt(test.x)
if got.neg != test.want.neg || got.form != test.want.form {
t.Errorf("Sqrt(%v) = %v (neg: %v); want %v (neg: %v)",
test.x, got, got.neg, test.want, test.want.neg)
}
}
}
// Benchmarks
func BenchmarkFloatSqrt(b *testing.B) {
for _, prec := range []uint{64, 128, 256, 1e3, 1e4, 1e5, 1e6} {
x := NewFloat(2)
z := new(Float).SetPrec(prec)
b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) {
b.ReportAllocs()
for n := 0; n < b.N; n++ {
z.Sqrt(x)
}
})
}
}
|