1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmplx
import (
"math"
"math/bits"
)
// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
// Complex circular tangent
//
// DESCRIPTION:
//
// If
// z = x + iy,
//
// then
//
// sin 2x + i sinh 2y
// w = --------------------.
// cos 2x + cosh 2y
//
// On the real axis the denominator is zero at odd multiples
// of PI/2. The denominator is evaluated by its Taylor
// series near these points.
//
// ctan(z) = -i ctanh(iz).
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 5200 7.1e-17 1.6e-17
// IEEE -10,+10 30000 7.2e-16 1.2e-16
// Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
// Tan returns the tangent of x.
func Tan(x complex128) complex128 {
switch re, im := real(x), imag(x); {
case math.IsInf(im, 0):
switch {
case math.IsInf(re, 0) || math.IsNaN(re):
return complex(math.Copysign(0, re), math.Copysign(1, im))
}
return complex(math.Copysign(0, math.Sin(2*re)), math.Copysign(1, im))
case re == 0 && math.IsNaN(im):
return x
}
d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
if math.Abs(d) < 0.25 {
d = tanSeries(x)
}
if d == 0 {
return Inf()
}
return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d)
}
// Complex hyperbolic tangent
//
// DESCRIPTION:
//
// tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) .
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// IEEE -10,+10 30000 1.7e-14 2.4e-16
// Tanh returns the hyperbolic tangent of x.
func Tanh(x complex128) complex128 {
switch re, im := real(x), imag(x); {
case math.IsInf(re, 0):
switch {
case math.IsInf(im, 0) || math.IsNaN(im):
return complex(math.Copysign(1, re), math.Copysign(0, im))
}
return complex(math.Copysign(1, re), math.Copysign(0, math.Sin(2*im)))
case im == 0 && math.IsNaN(re):
return x
}
d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
if d == 0 {
return Inf()
}
return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d)
}
// reducePi reduces the input argument x to the range (-Pi/2, Pi/2].
// x must be greater than or equal to 0. For small arguments it
// uses Cody-Waite reduction in 3 float64 parts based on:
// "Elementary Function Evaluation: Algorithms and Implementation"
// Jean-Michel Muller, 1997.
// For very large arguments it uses Payne-Hanek range reduction based on:
// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
// K. C. Ng et al, March 24, 1992.
func reducePi(x float64) float64 {
// reduceThreshold is the maximum value of x where the reduction using
// Cody-Waite reduction still gives accurate results. This threshold
// is set by t*PIn being representable as a float64 without error
// where t is given by t = floor(x * (1 / Pi)) and PIn are the leading partial
// terms of Pi. Since the leading terms, PI1 and PI2 below, have 30 and 32
// trailing zero bits respectively, t should have less than 30 significant bits.
// t < 1<<30 -> floor(x*(1/Pi)+0.5) < 1<<30 -> x < (1<<30-1) * Pi - 0.5
// So, conservatively we can take x < 1<<30.
const reduceThreshold float64 = 1 << 30
if math.Abs(x) < reduceThreshold {
// Use Cody-Waite reduction in three parts.
const (
// PI1, PI2 and PI3 comprise an extended precision value of PI
// such that PI ~= PI1 + PI2 + PI3. The parts are chosen so
// that PI1 and PI2 have an approximately equal number of trailing
// zero bits. This ensures that t*PI1 and t*PI2 are exact for
// large integer values of t. The full precision PI3 ensures the
// approximation of PI is accurate to 102 bits to handle cancellation
// during subtraction.
PI1 = 3.141592502593994 // 0x400921fb40000000
PI2 = 1.5099578831723193e-07 // 0x3e84442d00000000
PI3 = 1.0780605716316238e-14 // 0x3d08469898cc5170
)
t := x / math.Pi
t += 0.5
t = float64(int64(t)) // int64(t) = the multiple
return ((x - t*PI1) - t*PI2) - t*PI3
}
// Must apply Payne-Hanek range reduction
const (
mask = 0x7FF
shift = 64 - 11 - 1
bias = 1023
fracMask = 1<<shift - 1
)
// Extract out the integer and exponent such that,
// x = ix * 2 ** exp.
ix := math.Float64bits(x)
exp := int(ix>>shift&mask) - bias - shift
ix &= fracMask
ix |= 1 << shift
// mPi is the binary digits of 1/Pi as a uint64 array,
// that is, 1/Pi = Sum mPi[i]*2^(-64*i).
// 19 64-bit digits give 1216 bits of precision
// to handle the largest possible float64 exponent.
var mPi = [...]uint64{
0x0000000000000000,
0x517cc1b727220a94,
0xfe13abe8fa9a6ee0,
0x6db14acc9e21c820,
0xff28b1d5ef5de2b0,
0xdb92371d2126e970,
0x0324977504e8c90e,
0x7f0ef58e5894d39f,
0x74411afa975da242,
0x74ce38135a2fbf20,
0x9cc8eb1cc1a99cfa,
0x4e422fc5defc941d,
0x8ffc4bffef02cc07,
0xf79788c5ad05368f,
0xb69b3f6793e584db,
0xa7a31fb34f2ff516,
0xba93dd63f5f2f8bd,
0x9e839cfbc5294975,
0x35fdafd88fc6ae84,
0x2b0198237e3db5d5,
}
// Use the exponent to extract the 3 appropriate uint64 digits from mPi,
// B ~ (z0, z1, z2), such that the product leading digit has the exponent -64.
// Note, exp >= 50 since x >= reduceThreshold and exp < 971 for maximum float64.
digit, bitshift := uint(exp+64)/64, uint(exp+64)%64
z0 := (mPi[digit] << bitshift) | (mPi[digit+1] >> (64 - bitshift))
z1 := (mPi[digit+1] << bitshift) | (mPi[digit+2] >> (64 - bitshift))
z2 := (mPi[digit+2] << bitshift) | (mPi[digit+3] >> (64 - bitshift))
// Multiply mantissa by the digits and extract the upper two digits (hi, lo).
z2hi, _ := bits.Mul64(z2, ix)
z1hi, z1lo := bits.Mul64(z1, ix)
z0lo := z0 * ix
lo, c := bits.Add64(z1lo, z2hi, 0)
hi, _ := bits.Add64(z0lo, z1hi, c)
// Find the magnitude of the fraction.
lz := uint(bits.LeadingZeros64(hi))
e := uint64(bias - (lz + 1))
// Clear implicit mantissa bit and shift into place.
hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
hi >>= 64 - shift
// Include the exponent and convert to a float.
hi |= e << shift
x = math.Float64frombits(hi)
// map to (-Pi/2, Pi/2]
if x > 0.5 {
x--
}
return math.Pi * x
}
// Taylor series expansion for cosh(2y) - cos(2x)
func tanSeries(z complex128) float64 {
const MACHEP = 1.0 / (1 << 53)
x := math.Abs(2 * real(z))
y := math.Abs(2 * imag(z))
x = reducePi(x)
x = x * x
y = y * y
x2 := 1.0
y2 := 1.0
f := 1.0
rn := 0.0
d := 0.0
for {
rn++
f *= rn
rn++
f *= rn
x2 *= x
y2 *= y
t := y2 + x2
t /= f
d += t
rn++
f *= rn
rn++
f *= rn
x2 *= x
y2 *= y
t = y2 - x2
t /= f
d += t
if !(math.Abs(t/d) > MACHEP) {
// Caution: Use ! and > instead of <= for correct behavior if t/d is NaN.
// See issue 17577.
break
}
}
return d
}
// Complex circular cotangent
//
// DESCRIPTION:
//
// If
// z = x + iy,
//
// then
//
// sin 2x - i sinh 2y
// w = --------------------.
// cosh 2y - cos 2x
//
// On the real axis, the denominator has zeros at even
// multiples of PI/2. Near these points it is evaluated
// by a Taylor series.
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 3000 6.5e-17 1.6e-17
// IEEE -10,+10 30000 9.2e-16 1.2e-16
// Also tested by ctan * ccot = 1 + i0.
// Cot returns the cotangent of x.
func Cot(x complex128) complex128 {
d := math.Cosh(2*imag(x)) - math.Cos(2*real(x))
if math.Abs(d) < 0.25 {
d = tanSeries(x)
}
if d == 0 {
return Inf()
}
return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d)
}
|