1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ignore_due_to_generics
package netip_test
import (
"bytes"
"encoding"
"fmt"
"net"
. "net/netip"
"reflect"
"strings"
"testing"
)
var corpus = []string{
// Basic zero IPv4 address.
"0.0.0.0",
// Basic non-zero IPv4 address.
"192.168.140.255",
// IPv4 address in windows-style "print all the digits" form.
"010.000.015.001",
// IPv4 address with a silly amount of leading zeros.
"000001.00000002.00000003.000000004",
// 4-in-6 with octet with leading zero
"::ffff:1.2.03.4",
// Basic zero IPv6 address.
"::",
// Localhost IPv6.
"::1",
// Fully expanded IPv6 address.
"fd7a:115c:a1e0:ab12:4843:cd96:626b:430b",
// IPv6 with elided fields in the middle.
"fd7a:115c::626b:430b",
// IPv6 with elided fields at the end.
"fd7a:115c:a1e0:ab12:4843:cd96::",
// IPv6 with single elided field at the end.
"fd7a:115c:a1e0:ab12:4843:cd96:626b::",
"fd7a:115c:a1e0:ab12:4843:cd96:626b:0",
// IPv6 with single elided field in the middle.
"fd7a:115c:a1e0::4843:cd96:626b:430b",
"fd7a:115c:a1e0:0:4843:cd96:626b:430b",
// IPv6 with the trailing 32 bits written as IPv4 dotted decimal. (4in6)
"::ffff:192.168.140.255",
"::ffff:192.168.140.255",
// IPv6 with a zone specifier.
"fd7a:115c:a1e0:ab12:4843:cd96:626b:430b%eth0",
// IPv6 with dotted decimal and zone specifier.
"1:2::ffff:192.168.140.255%eth1",
"1:2::ffff:c0a8:8cff%eth1",
// IPv6 with capital letters.
"FD9E:1A04:F01D::1",
"fd9e:1a04:f01d::1",
// Empty string.
"",
// Garbage non-IP.
"bad",
// Single number. Some parsers accept this as an IPv4 address in
// big-endian uint32 form, but we don't.
"1234",
// IPv4 with a zone specifier.
"1.2.3.4%eth0",
// IPv4 field must have at least one digit.
".1.2.3",
"1.2.3.",
"1..2.3",
// IPv4 address too long.
"1.2.3.4.5",
// IPv4 in dotted octal form.
"0300.0250.0214.0377",
// IPv4 in dotted hex form.
"0xc0.0xa8.0x8c.0xff",
// IPv4 in class B form.
"192.168.12345",
// IPv4 in class B form, with a small enough number to be
// parseable as a regular dotted decimal field.
"127.0.1",
// IPv4 in class A form.
"192.1234567",
// IPv4 in class A form, with a small enough number to be
// parseable as a regular dotted decimal field.
"127.1",
// IPv4 field has value >255.
"192.168.300.1",
// IPv4 with too many fields.
"192.168.0.1.5.6",
// IPv6 with not enough fields.
"1:2:3:4:5:6:7",
// IPv6 with too many fields.
"1:2:3:4:5:6:7:8:9",
// IPv6 with 8 fields and a :: expander.
"1:2:3:4::5:6:7:8",
// IPv6 with a field bigger than 2b.
"fe801::1",
// IPv6 with non-hex values in field.
"fe80:tail:scal:e::",
// IPv6 with a zone delimiter but no zone.
"fe80::1%",
// IPv6 with a zone specifier of zero.
"::ffff:0:0%0",
// IPv6 (without ellipsis) with too many fields for trailing embedded IPv4.
"ffff:ffff:ffff:ffff:ffff:ffff:ffff:192.168.140.255",
// IPv6 (with ellipsis) with too many fields for trailing embedded IPv4.
"ffff::ffff:ffff:ffff:ffff:ffff:ffff:192.168.140.255",
// IPv6 with invalid embedded IPv4.
"::ffff:192.168.140.bad",
// IPv6 with multiple ellipsis ::.
"fe80::1::1",
// IPv6 with invalid non hex/colon character.
"fe80:1?:1",
// IPv6 with truncated bytes after single colon.
"fe80:",
// AddrPort strings.
"1.2.3.4:51820",
"[fd7a:115c:a1e0:ab12:4843:cd96:626b:430b]:80",
"[::ffff:c000:0280]:65535",
"[::ffff:c000:0280%eth0]:1",
// Prefix strings.
"1.2.3.4/24",
"fd7a:115c:a1e0:ab12:4843:cd96:626b:430b/118",
"::ffff:c000:0280/96",
"::ffff:c000:0280%eth0/37",
}
func FuzzParse(f *testing.F) {
for _, seed := range corpus {
f.Add(seed)
}
f.Fuzz(func(t *testing.T, s string) {
ip, _ := ParseAddr(s)
checkStringParseRoundTrip(t, ip, ParseAddr)
checkEncoding(t, ip)
// Check that we match the net's IP parser, modulo zones.
if !strings.Contains(s, "%") {
stdip := net.ParseIP(s)
if !ip.IsValid() != (stdip == nil) {
t.Errorf("ParseAddr zero != net.ParseIP nil: ip=%q stdip=%q", ip, stdip)
}
if ip.IsValid() && !ip.Is4In6() {
buf, err := ip.MarshalText()
if err != nil {
t.Fatal(err)
}
buf2, err := stdip.MarshalText()
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf, buf2) {
t.Errorf("Addr.MarshalText() != net.IP.MarshalText(): ip=%q stdip=%q", ip, stdip)
}
if ip.String() != stdip.String() {
t.Errorf("Addr.String() != net.IP.String(): ip=%q stdip=%q", ip, stdip)
}
if ip.IsGlobalUnicast() != stdip.IsGlobalUnicast() {
t.Errorf("Addr.IsGlobalUnicast() != net.IP.IsGlobalUnicast(): ip=%q stdip=%q", ip, stdip)
}
if ip.IsInterfaceLocalMulticast() != stdip.IsInterfaceLocalMulticast() {
t.Errorf("Addr.IsInterfaceLocalMulticast() != net.IP.IsInterfaceLocalMulticast(): ip=%q stdip=%q", ip, stdip)
}
if ip.IsLinkLocalMulticast() != stdip.IsLinkLocalMulticast() {
t.Errorf("Addr.IsLinkLocalMulticast() != net.IP.IsLinkLocalMulticast(): ip=%q stdip=%q", ip, stdip)
}
if ip.IsLinkLocalUnicast() != stdip.IsLinkLocalUnicast() {
t.Errorf("Addr.IsLinkLocalUnicast() != net.IP.IsLinkLocalUnicast(): ip=%q stdip=%q", ip, stdip)
}
if ip.IsLoopback() != stdip.IsLoopback() {
t.Errorf("Addr.IsLoopback() != net.IP.IsLoopback(): ip=%q stdip=%q", ip, stdip)
}
if ip.IsMulticast() != stdip.IsMulticast() {
t.Errorf("Addr.IsMulticast() != net.IP.IsMulticast(): ip=%q stdip=%q", ip, stdip)
}
if ip.IsPrivate() != stdip.IsPrivate() {
t.Errorf("Addr.IsPrivate() != net.IP.IsPrivate(): ip=%q stdip=%q", ip, stdip)
}
if ip.IsUnspecified() != stdip.IsUnspecified() {
t.Errorf("Addr.IsUnspecified() != net.IP.IsUnspecified(): ip=%q stdip=%q", ip, stdip)
}
}
}
// Check that .Next().Prev() and .Prev().Next() preserve the IP.
if ip.IsValid() && ip.Next().IsValid() && ip.Next().Prev() != ip {
t.Errorf(".Next.Prev did not round trip: ip=%q .next=%q .next.prev=%q", ip, ip.Next(), ip.Next().Prev())
}
if ip.IsValid() && ip.Prev().IsValid() && ip.Prev().Next() != ip {
t.Errorf(".Prev.Next did not round trip: ip=%q .prev=%q .prev.next=%q", ip, ip.Prev(), ip.Prev().Next())
}
port, err := ParseAddrPort(s)
if err == nil {
checkStringParseRoundTrip(t, port, ParseAddrPort)
checkEncoding(t, port)
}
port = AddrPortFrom(ip, 80)
checkStringParseRoundTrip(t, port, ParseAddrPort)
checkEncoding(t, port)
ipp, err := ParsePrefix(s)
if err == nil {
checkStringParseRoundTrip(t, ipp, ParsePrefix)
checkEncoding(t, ipp)
}
ipp = PrefixFrom(ip, 8)
checkStringParseRoundTrip(t, ipp, ParsePrefix)
checkEncoding(t, ipp)
})
}
// checkTextMarshaler checks that x's MarshalText and UnmarshalText functions round trip correctly.
func checkTextMarshaler(t *testing.T, x encoding.TextMarshaler) {
buf, err := x.MarshalText()
if err != nil {
t.Fatal(err)
}
y := reflect.New(reflect.TypeOf(x)).Interface().(encoding.TextUnmarshaler)
err = y.UnmarshalText(buf)
if err != nil {
t.Logf("(%v).MarshalText() = %q", x, buf)
t.Fatalf("(%T).UnmarshalText(%q) = %v", y, buf, err)
}
e := reflect.ValueOf(y).Elem().Interface()
if !reflect.DeepEqual(x, e) {
t.Logf("(%v).MarshalText() = %q", x, buf)
t.Logf("(%T).UnmarshalText(%q) = %v", y, buf, y)
t.Fatalf("MarshalText/UnmarshalText failed to round trip: %#v != %#v", x, e)
}
buf2, err := y.(encoding.TextMarshaler).MarshalText()
if err != nil {
t.Logf("(%v).MarshalText() = %q", x, buf)
t.Logf("(%T).UnmarshalText(%q) = %v", y, buf, y)
t.Fatalf("failed to MarshalText a second time: %v", err)
}
if !bytes.Equal(buf, buf2) {
t.Logf("(%v).MarshalText() = %q", x, buf)
t.Logf("(%T).UnmarshalText(%q) = %v", y, buf, y)
t.Logf("(%v).MarshalText() = %q", y, buf2)
t.Fatalf("second MarshalText differs from first: %q != %q", buf, buf2)
}
}
// checkBinaryMarshaler checks that x's MarshalText and UnmarshalText functions round trip correctly.
func checkBinaryMarshaler(t *testing.T, x encoding.BinaryMarshaler) {
buf, err := x.MarshalBinary()
if err != nil {
t.Fatal(err)
}
y := reflect.New(reflect.TypeOf(x)).Interface().(encoding.BinaryUnmarshaler)
err = y.UnmarshalBinary(buf)
if err != nil {
t.Logf("(%v).MarshalBinary() = %q", x, buf)
t.Fatalf("(%T).UnmarshalBinary(%q) = %v", y, buf, err)
}
e := reflect.ValueOf(y).Elem().Interface()
if !reflect.DeepEqual(x, e) {
t.Logf("(%v).MarshalBinary() = %q", x, buf)
t.Logf("(%T).UnmarshalBinary(%q) = %v", y, buf, y)
t.Fatalf("MarshalBinary/UnmarshalBinary failed to round trip: %#v != %#v", x, e)
}
buf2, err := y.(encoding.BinaryMarshaler).MarshalBinary()
if err != nil {
t.Logf("(%v).MarshalBinary() = %q", x, buf)
t.Logf("(%T).UnmarshalBinary(%q) = %v", y, buf, y)
t.Fatalf("failed to MarshalBinary a second time: %v", err)
}
if !bytes.Equal(buf, buf2) {
t.Logf("(%v).MarshalBinary() = %q", x, buf)
t.Logf("(%T).UnmarshalBinary(%q) = %v", y, buf, y)
t.Logf("(%v).MarshalBinary() = %q", y, buf2)
t.Fatalf("second MarshalBinary differs from first: %q != %q", buf, buf2)
}
}
func checkTextMarshalMatchesString(t *testing.T, x netipType) {
buf, err := x.MarshalText()
if err != nil {
t.Fatal(err)
}
str := x.String()
if string(buf) != str {
t.Fatalf("%v: MarshalText = %q, String = %q", x, buf, str)
}
}
type appendMarshaler interface {
encoding.TextMarshaler
AppendTo([]byte) []byte
}
// checkTextMarshalMatchesAppendTo checks that x's MarshalText matches x's AppendTo.
func checkTextMarshalMatchesAppendTo(t *testing.T, x appendMarshaler) {
buf, err := x.MarshalText()
if err != nil {
t.Fatal(err)
}
buf2 := make([]byte, 0, len(buf))
buf2 = x.AppendTo(buf2)
if !bytes.Equal(buf, buf2) {
t.Fatalf("%v: MarshalText = %q, AppendTo = %q", x, buf, buf2)
}
}
type netipType interface {
encoding.BinaryMarshaler
encoding.TextMarshaler
fmt.Stringer
IsValid() bool
}
type netipTypeCmp interface {
comparable
netipType
}
// checkStringParseRoundTrip checks that x's String method and the provided parse function can round trip correctly.
func checkStringParseRoundTrip[P netipTypeCmp](t *testing.T, x P, parse func(string) (P, error)) {
if !x.IsValid() {
// Ignore invalid values.
return
}
s := x.String()
y, err := parse(s)
if err != nil {
t.Fatalf("s=%q err=%v", s, err)
}
if x != y {
t.Fatalf("%T round trip identity failure: s=%q x=%#v y=%#v", x, s, x, y)
}
s2 := y.String()
if s != s2 {
t.Fatalf("%T String round trip identity failure: s=%#v s2=%#v", x, s, s2)
}
}
func checkEncoding(t *testing.T, x netipType) {
if x.IsValid() {
checkTextMarshaler(t, x)
checkBinaryMarshaler(t, x)
checkTextMarshalMatchesString(t, x)
}
if am, ok := x.(appendMarshaler); ok {
checkTextMarshalMatchesAppendTo(t, am)
}
}
|