1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Cgo call and callback support.
package runtime
import (
"internal/goarch"
"unsafe"
)
// Functions called by cgo-generated code.
//go:linkname cgoCheckPointer
//go:linkname cgoCheckResult
var ncgocall uint64 // number of cgo calls in total for dead m
// Pointer checking for cgo code.
// We want to detect all cases where a program that does not use
// unsafe makes a cgo call passing a Go pointer to memory that
// contains a Go pointer. Here a Go pointer is defined as a pointer
// to memory allocated by the Go runtime. Programs that use unsafe
// can evade this restriction easily, so we don't try to catch them.
// The cgo program will rewrite all possibly bad pointer arguments to
// call cgoCheckPointer, where we can catch cases of a Go pointer
// pointing to a Go pointer.
// Complicating matters, taking the address of a slice or array
// element permits the C program to access all elements of the slice
// or array. In that case we will see a pointer to a single element,
// but we need to check the entire data structure.
// The cgoCheckPointer call takes additional arguments indicating that
// it was called on an address expression. An additional argument of
// true means that it only needs to check a single element. An
// additional argument of a slice or array means that it needs to
// check the entire slice/array, but nothing else. Otherwise, the
// pointer could be anything, and we check the entire heap object,
// which is conservative but safe.
// When and if we implement a moving garbage collector,
// cgoCheckPointer will pin the pointer for the duration of the cgo
// call. (This is necessary but not sufficient; the cgo program will
// also have to change to pin Go pointers that cannot point to Go
// pointers.)
// cgoCheckPointer checks if the argument contains a Go pointer that
// points to a Go pointer, and panics if it does.
func cgoCheckPointer(ptr any, arg any) {
if debug.cgocheck == 0 {
return
}
ep := efaceOf(&ptr)
t := ep._type
top := true
if arg != nil && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) {
p := ep.data
if t.kind&kindDirectIface == 0 {
p = *(*unsafe.Pointer)(p)
}
if p == nil || !cgoIsGoPointer(p) {
return
}
aep := efaceOf(&arg)
switch aep._type.kind & kindMask {
case kindBool:
if t.kind&kindMask == kindUnsafePointer {
// We don't know the type of the element.
break
}
pt := (*ptrtype)(unsafe.Pointer(t))
cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail)
return
case kindSlice:
// Check the slice rather than the pointer.
ep = aep
t = ep._type
case kindArray:
// Check the array rather than the pointer.
// Pass top as false since we have a pointer
// to the array.
ep = aep
t = ep._type
top = false
default:
throw("can't happen")
}
}
cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail)
}
const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
const cgoResultFail = "cgo result has Go pointer"
// cgoCheckArg is the real work of cgoCheckPointer. The argument p
// is either a pointer to the value (of type t), or the value itself,
// depending on indir. The top parameter is whether we are at the top
// level, where Go pointers are allowed.
func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
if t.ptrdata == 0 || p == nil {
// If the type has no pointers there is nothing to do.
return
}
switch t.kind & kindMask {
default:
throw("can't happen")
case kindArray:
at := (*arraytype)(unsafe.Pointer(t))
if !indir {
if at.len != 1 {
throw("can't happen")
}
cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg)
return
}
for i := uintptr(0); i < at.len; i++ {
cgoCheckArg(at.elem, p, true, top, msg)
p = add(p, at.elem.size)
}
case kindChan, kindMap:
// These types contain internal pointers that will
// always be allocated in the Go heap. It's never OK
// to pass them to C.
panic(errorString(msg))
case kindFunc:
if indir {
p = *(*unsafe.Pointer)(p)
}
if !cgoIsGoPointer(p) {
return
}
panic(errorString(msg))
case kindInterface:
it := *(**_type)(p)
if it == nil {
return
}
// A type known at compile time is OK since it's
// constant. A type not known at compile time will be
// in the heap and will not be OK.
if inheap(uintptr(unsafe.Pointer(it))) {
panic(errorString(msg))
}
p = *(*unsafe.Pointer)(add(p, goarch.PtrSize))
if !cgoIsGoPointer(p) {
return
}
if !top {
panic(errorString(msg))
}
cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg)
case kindSlice:
st := (*slicetype)(unsafe.Pointer(t))
s := (*slice)(p)
p = s.array
if p == nil || !cgoIsGoPointer(p) {
return
}
if !top {
panic(errorString(msg))
}
if st.elem.ptrdata == 0 {
return
}
for i := 0; i < s.cap; i++ {
cgoCheckArg(st.elem, p, true, false, msg)
p = add(p, st.elem.size)
}
case kindString:
ss := (*stringStruct)(p)
if !cgoIsGoPointer(ss.str) {
return
}
if !top {
panic(errorString(msg))
}
case kindStruct:
st := (*structtype)(unsafe.Pointer(t))
if !indir {
if len(st.fields) != 1 {
throw("can't happen")
}
cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg)
return
}
for _, f := range st.fields {
if f.typ.ptrdata == 0 {
continue
}
cgoCheckArg(f.typ, add(p, f.offset()), true, top, msg)
}
case kindPtr, kindUnsafePointer:
if indir {
p = *(*unsafe.Pointer)(p)
if p == nil {
return
}
}
if !cgoIsGoPointer(p) {
return
}
if !top {
panic(errorString(msg))
}
cgoCheckUnknownPointer(p, msg)
}
}
// cgoCheckUnknownPointer is called for an arbitrary pointer into Go
// memory. It checks whether that Go memory contains any other
// pointer into Go memory. If it does, we panic.
// The return values are unused but useful to see in panic tracebacks.
func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
if inheap(uintptr(p)) {
b, span, _ := findObject(uintptr(p), 0, 0, false)
base = b
if base == 0 {
return
}
hbits := heapBitsForAddr(base)
n := span.elemsize
for i = uintptr(0); i < n; i += goarch.PtrSize {
if !hbits.morePointers() {
// No more possible pointers.
break
}
if hbits.isPointer() && cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) {
panic(errorString(msg))
}
hbits = hbits.next()
}
return
}
lo := 0
hi := len(gcRootsIndex)
for lo < hi {
m := lo + (hi-lo)/2
pr := gcRootsIndex[m]
addr := uintptr(pr.decl)
if cgoInRange(p, addr, addr+pr.size) {
cgoCheckBits(pr.decl, pr.gcdata, 0, pr.ptrdata)
return
}
if uintptr(p) < addr {
hi = m
} else {
lo = m + 1
}
}
return
}
// cgoIsGoPointer reports whether the pointer is a Go pointer--a
// pointer to Go memory. We only care about Go memory that might
// contain pointers.
//go:nosplit
//go:nowritebarrierrec
func cgoIsGoPointer(p unsafe.Pointer) bool {
if p == nil {
return false
}
if inHeapOrStack(uintptr(p)) {
return true
}
roots := gcRoots
for roots != nil {
for i := 0; i < roots.count; i++ {
pr := roots.roots[i]
addr := uintptr(pr.decl)
if cgoInRange(p, addr, addr+pr.size) {
return true
}
}
roots = roots.next
}
return false
}
// cgoInRange reports whether p is between start and end.
//go:nosplit
//go:nowritebarrierrec
func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
return start <= uintptr(p) && uintptr(p) < end
}
// cgoCheckResult is called to check the result parameter of an
// exported Go function. It panics if the result is or contains a Go
// pointer.
func cgoCheckResult(val any) {
if debug.cgocheck == 0 {
return
}
ep := efaceOf(&val)
t := ep._type
cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail)
}
|