1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package debug
import (
"runtime"
"sort"
"time"
)
// GCStats collect information about recent garbage collections.
type GCStats struct {
LastGC time.Time // time of last collection
NumGC int64 // number of garbage collections
PauseTotal time.Duration // total pause for all collections
Pause []time.Duration // pause history, most recent first
PauseEnd []time.Time // pause end times history, most recent first
PauseQuantiles []time.Duration
}
// ReadGCStats reads statistics about garbage collection into stats.
// The number of entries in the pause history is system-dependent;
// stats.Pause slice will be reused if large enough, reallocated otherwise.
// ReadGCStats may use the full capacity of the stats.Pause slice.
// If stats.PauseQuantiles is non-empty, ReadGCStats fills it with quantiles
// summarizing the distribution of pause time. For example, if
// len(stats.PauseQuantiles) is 5, it will be filled with the minimum,
// 25%, 50%, 75%, and maximum pause times.
func ReadGCStats(stats *GCStats) {
// Create a buffer with space for at least two copies of the
// pause history tracked by the runtime. One will be returned
// to the caller and the other will be used as transfer buffer
// for end times history and as a temporary buffer for
// computing quantiles.
const maxPause = len(((*runtime.MemStats)(nil)).PauseNs)
if cap(stats.Pause) < 2*maxPause+3 {
stats.Pause = make([]time.Duration, 2*maxPause+3)
}
// readGCStats fills in the pause and end times histories (up to
// maxPause entries) and then three more: Unix ns time of last GC,
// number of GC, and total pause time in nanoseconds. Here we
// depend on the fact that time.Duration's native unit is
// nanoseconds, so the pauses and the total pause time do not need
// any conversion.
readGCStats(&stats.Pause)
n := len(stats.Pause) - 3
stats.LastGC = time.Unix(0, int64(stats.Pause[n]))
stats.NumGC = int64(stats.Pause[n+1])
stats.PauseTotal = stats.Pause[n+2]
n /= 2 // buffer holds pauses and end times
stats.Pause = stats.Pause[:n]
if cap(stats.PauseEnd) < maxPause {
stats.PauseEnd = make([]time.Time, 0, maxPause)
}
stats.PauseEnd = stats.PauseEnd[:0]
for _, ns := range stats.Pause[n : n+n] {
stats.PauseEnd = append(stats.PauseEnd, time.Unix(0, int64(ns)))
}
if len(stats.PauseQuantiles) > 0 {
if n == 0 {
for i := range stats.PauseQuantiles {
stats.PauseQuantiles[i] = 0
}
} else {
// There's room for a second copy of the data in stats.Pause.
// See the allocation at the top of the function.
sorted := stats.Pause[n : n+n]
copy(sorted, stats.Pause)
sort.Slice(sorted, func(i, j int) bool { return sorted[i] < sorted[j] })
nq := len(stats.PauseQuantiles) - 1
for i := 0; i < nq; i++ {
stats.PauseQuantiles[i] = sorted[len(sorted)*i/nq]
}
stats.PauseQuantiles[nq] = sorted[len(sorted)-1]
}
}
}
// SetGCPercent sets the garbage collection target percentage:
// a collection is triggered when the ratio of freshly allocated data
// to live data remaining after the previous collection reaches this percentage.
// SetGCPercent returns the previous setting.
// The initial setting is the value of the GOGC environment variable
// at startup, or 100 if the variable is not set.
// A negative percentage disables garbage collection.
func SetGCPercent(percent int) int {
return int(setGCPercent(int32(percent)))
}
// FreeOSMemory forces a garbage collection followed by an
// attempt to return as much memory to the operating system
// as possible. (Even if this is not called, the runtime gradually
// returns memory to the operating system in a background task.)
func FreeOSMemory() {
freeOSMemory()
}
// SetMaxStack sets the maximum amount of memory that
// can be used by a single goroutine stack.
// If any goroutine exceeds this limit while growing its stack,
// the program crashes.
// SetMaxStack returns the previous setting.
// The initial setting is 1 GB on 64-bit systems, 250 MB on 32-bit systems.
// There may be a system-imposed maximum stack limit regardless
// of the value provided to SetMaxStack.
//
// SetMaxStack is useful mainly for limiting the damage done by
// goroutines that enter an infinite recursion. It only limits future
// stack growth.
func SetMaxStack(bytes int) int {
return setMaxStack(bytes)
}
// SetMaxThreads sets the maximum number of operating system
// threads that the Go program can use. If it attempts to use more than
// this many, the program crashes.
// SetMaxThreads returns the previous setting.
// The initial setting is 10,000 threads.
//
// The limit controls the number of operating system threads, not the number
// of goroutines. A Go program creates a new thread only when a goroutine
// is ready to run but all the existing threads are blocked in system calls, cgo calls,
// or are locked to other goroutines due to use of runtime.LockOSThread.
//
// SetMaxThreads is useful mainly for limiting the damage done by
// programs that create an unbounded number of threads. The idea is
// to take down the program before it takes down the operating system.
func SetMaxThreads(threads int) int {
return setMaxThreads(threads)
}
// SetPanicOnFault controls the runtime's behavior when a program faults
// at an unexpected (non-nil) address. Such faults are typically caused by
// bugs such as runtime memory corruption, so the default response is to crash
// the program. Programs working with memory-mapped files or unsafe
// manipulation of memory may cause faults at non-nil addresses in less
// dramatic situations; SetPanicOnFault allows such programs to request
// that the runtime trigger only a panic, not a crash.
// The runtime.Error that the runtime panics with may have an additional method:
// Addr() uintptr
// If that method exists, it returns the memory address which triggered the fault.
// The results of Addr are best-effort and the veracity of the result
// may depend on the platform.
// SetPanicOnFault applies only to the current goroutine.
// It returns the previous setting.
func SetPanicOnFault(enabled bool) bool {
return setPanicOnFault(enabled)
}
// WriteHeapDump writes a description of the heap and the objects in
// it to the given file descriptor.
//
// WriteHeapDump suspends the execution of all goroutines until the heap
// dump is completely written. Thus, the file descriptor must not be
// connected to a pipe or socket whose other end is in the same Go
// process; instead, use a temporary file or network socket.
//
// The heap dump format is defined at https://golang.org/s/go15heapdump.
func WriteHeapDump(fd uintptr)
// SetTraceback sets the amount of detail printed by the runtime in
// the traceback it prints before exiting due to an unrecovered panic
// or an internal runtime error.
// The level argument takes the same values as the GOTRACEBACK
// environment variable. For example, SetTraceback("all") ensure
// that the program prints all goroutines when it crashes.
// See the package runtime documentation for details.
// If SetTraceback is called with a level lower than that of the
// environment variable, the call is ignored.
func SetTraceback(level string)
|