1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Only build this file if libffi is supported.
// +build libffi
package runtime
import "unsafe"
// This file contains the code that converts a Go type to an FFI type.
// This has to be written in Go because it allocates memory in the Go heap.
// C functions to return pointers to libffi variables.
func ffi_type_pointer() *__ffi_type
func ffi_type_sint8() *__ffi_type
func ffi_type_sint16() *__ffi_type
func ffi_type_sint32() *__ffi_type
func ffi_type_sint64() *__ffi_type
func ffi_type_uint8() *__ffi_type
func ffi_type_uint16() *__ffi_type
func ffi_type_uint32() *__ffi_type
func ffi_type_uint64() *__ffi_type
func ffi_type_float() *__ffi_type
func ffi_type_double() *__ffi_type
func ffi_supports_complex() bool
func ffi_type_complex_float() *__ffi_type
func ffi_type_complex_double() *__ffi_type
func ffi_type_void() *__ffi_type
// C functions defined in libffi.
//extern ffi_prep_cif
func ffi_prep_cif(*_ffi_cif, _ffi_abi, uint32, *__ffi_type, **__ffi_type) _ffi_status
// ffiFuncToCIF is called from C code.
//go:linkname ffiFuncToCIF
// ffiFuncToCIF builds an _ffi_cif struct for function described by ft.
func ffiFuncToCIF(ft *functype, isInterface bool, isMethod bool, cif *_ffi_cif) {
nparams := len(ft.in)
nargs := nparams
if isInterface {
nargs++
}
args := make([]*__ffi_type, nargs)
i := 0
off := 0
if isInterface {
args[0] = ffi_type_pointer()
off = 1
} else if isMethod {
args[0] = ffi_type_pointer()
i = 1
}
for ; i < nparams; i++ {
args[i+off] = typeToFFI(ft.in[i])
}
rettype := funcReturnFFI(ft)
var pargs **__ffi_type
if len(args) > 0 {
pargs = &args[0]
}
status := ffi_prep_cif(cif, _FFI_DEFAULT_ABI, uint32(nargs), rettype, pargs)
if status != _FFI_OK {
throw("ffi_prep_cif failed")
}
}
// funcReturnFFI returns the FFI definition of the return type of ft.
func funcReturnFFI(ft *functype) *__ffi_type {
c := len(ft.out)
if c == 0 {
return ffi_type_void()
}
// Compile a function that returns a zero-sized value as
// though it returns void. This works around a problem in
// libffi: it can't represent a zero-sized value.
var size uintptr
for _, v := range ft.out {
size += v.size
}
if size == 0 {
return ffi_type_void()
}
if c == 1 {
return typeToFFI(ft.out[0])
}
elements := make([]*__ffi_type, c+1)
for i, v := range ft.out {
elements[i] = typeToFFI(v)
}
elements[c] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// typeToFFI returns the __ffi_type for a Go type.
func typeToFFI(typ *_type) *__ffi_type {
switch typ.kind & kindMask {
case kindBool:
switch unsafe.Sizeof(false) {
case 1:
return ffi_type_uint8()
case 4:
return ffi_type_uint32()
default:
throw("bad bool size")
return nil
}
case kindInt:
return intToFFI()
case kindInt8:
return ffi_type_sint8()
case kindInt16:
return ffi_type_sint16()
case kindInt32:
return ffi_type_sint32()
case kindInt64:
return ffi_type_sint64()
case kindUint:
switch unsafe.Sizeof(uint(0)) {
case 4:
return ffi_type_uint32()
case 8:
return ffi_type_uint64()
default:
throw("bad uint size")
return nil
}
case kindUint8:
return ffi_type_uint8()
case kindUint16:
return ffi_type_uint16()
case kindUint32:
return ffi_type_uint32()
case kindUint64:
return ffi_type_uint64()
case kindUintptr:
switch unsafe.Sizeof(uintptr(0)) {
case 4:
return ffi_type_uint32()
case 8:
return ffi_type_uint64()
default:
throw("bad uinptr size")
return nil
}
case kindFloat32:
return ffi_type_float()
case kindFloat64:
return ffi_type_double()
case kindComplex64:
if ffi_supports_complex() {
return ffi_type_complex_float()
} else {
return complexToFFI(ffi_type_float())
}
case kindComplex128:
if ffi_supports_complex() {
return ffi_type_complex_double()
} else {
return complexToFFI(ffi_type_double())
}
case kindArray:
return arrayToFFI((*arraytype)(unsafe.Pointer(typ)))
case kindChan, kindFunc, kindMap, kindPtr, kindUnsafePointer:
// These types are always simple pointers, and for FFI
// purposes nothing else matters.
return ffi_type_pointer()
case kindInterface:
return interfaceToFFI()
case kindSlice:
return sliceToFFI((*slicetype)(unsafe.Pointer(typ)))
case kindString:
return stringToFFI()
case kindStruct:
return structToFFI((*structtype)(unsafe.Pointer(typ)))
default:
throw("unknown type kind")
return nil
}
}
// interfaceToFFI returns an ffi_type for a Go interface type.
// This is used for both empty and non-empty interface types.
func interfaceToFFI() *__ffi_type {
elements := make([]*__ffi_type, 3)
elements[0] = ffi_type_pointer()
elements[1] = elements[0]
elements[2] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// stringToFFI returns an ffi_type for a Go string type.
func stringToFFI() *__ffi_type {
elements := make([]*__ffi_type, 3)
elements[0] = ffi_type_pointer()
elements[1] = intToFFI()
elements[2] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// structToFFI returns an ffi_type for a Go struct type.
func structToFFI(typ *structtype) *__ffi_type {
c := len(typ.fields)
if c == 0 {
return emptyStructToFFI()
}
if typ.typ.kind&kindDirectIface != 0 {
return ffi_type_pointer()
}
fields := make([]*__ffi_type, 0, c+1)
checkPad := false
lastzero := false
for i, v := range typ.fields {
// Skip zero-sized fields; they confuse libffi,
// and there is no value to pass in any case.
// We do have to check whether the alignment of the
// zero-sized field introduces any padding for the
// next field.
if v.typ.size == 0 {
checkPad = true
lastzero = true
continue
}
lastzero = false
if checkPad {
off := uintptr(0)
for j := i - 1; j >= 0; j-- {
if typ.fields[j].typ.size > 0 {
off = typ.fields[j].offset() + typ.fields[j].typ.size
break
}
}
off += uintptr(v.typ.align) - 1
off &^= uintptr(v.typ.align) - 1
if off != v.offset() {
fields = append(fields, padFFI(v.offset()-off))
}
checkPad = false
}
fields = append(fields, typeToFFI(v.typ))
}
if lastzero {
// The compiler adds one byte padding to non-empty struct ending
// with a zero-sized field (types.cc:get_backend_struct_fields).
// Add this padding to the FFI type.
fields = append(fields, ffi_type_uint8())
}
fields = append(fields, nil)
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &fields[0],
}
}
// sliceToFFI returns an ffi_type for a Go slice type.
func sliceToFFI(typ *slicetype) *__ffi_type {
elements := make([]*__ffi_type, 4)
elements[0] = ffi_type_pointer()
elements[1] = intToFFI()
elements[2] = elements[1]
elements[3] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// complexToFFI returns an ffi_type for a Go complex type.
// This is only used if libffi does not support complex types internally
// for this target.
func complexToFFI(ffiFloatType *__ffi_type) *__ffi_type {
elements := make([]*__ffi_type, 3)
elements[0] = ffiFloatType
elements[1] = ffiFloatType
elements[2] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// arrayToFFI returns an ffi_type for a Go array type.
func arrayToFFI(typ *arraytype) *__ffi_type {
if typ.len == 0 {
return emptyStructToFFI()
}
if typ.typ.kind&kindDirectIface != 0 {
return ffi_type_pointer()
}
elements := make([]*__ffi_type, typ.len+1)
et := typeToFFI(typ.elem)
for i := uintptr(0); i < typ.len; i++ {
elements[i] = et
}
elements[typ.len] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// intToFFI returns an ffi_type for the Go int type.
func intToFFI() *__ffi_type {
switch unsafe.Sizeof(0) {
case 4:
return ffi_type_sint32()
case 8:
return ffi_type_sint64()
default:
throw("bad int size")
return nil
}
}
// emptyStructToFFI returns an ffi_type for an empty struct.
// The libffi library won't accept a struct with no fields.
func emptyStructToFFI() *__ffi_type {
elements := make([]*__ffi_type, 2)
elements[0] = ffi_type_void()
elements[1] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// padFFI returns a padding field of the given size
func padFFI(size uintptr) *__ffi_type {
elements := make([]*__ffi_type, size+1)
for i := uintptr(0); i < size; i++ {
elements[i] = ffi_type_uint8()
}
elements[size] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
//go:linkname makeCIF reflect.makeCIF
// makeCIF is used by the reflect package to allocate a CIF.
func makeCIF(ft *functype) *_ffi_cif {
cif := new(_ffi_cif)
ffiFuncToCIF(ft, false, false, cif)
return cif
}
|