1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ignore
// Generate tables for small malloc size classes.
//
// See malloc.go for overview.
//
// The size classes are chosen so that rounding an allocation
// request up to the next size class wastes at most 12.5% (1.125x).
//
// Each size class has its own page count that gets allocated
// and chopped up when new objects of the size class are needed.
// That page count is chosen so that chopping up the run of
// pages into objects of the given size wastes at most 12.5% (1.125x)
// of the memory. It is not necessary that the cutoff here be
// the same as above.
//
// The two sources of waste multiply, so the worst possible case
// for the above constraints would be that allocations of some
// size might have a 26.6% (1.266x) overhead.
// In practice, only one of the wastes comes into play for a
// given size (sizes < 512 waste mainly on the round-up,
// sizes > 512 waste mainly on the page chopping).
// For really small sizes, alignment constraints force the
// overhead higher.
package main
import (
"bytes"
"flag"
"fmt"
"go/format"
"io"
"log"
"math"
"math/bits"
"os"
)
// Generate msize.go
var stdout = flag.Bool("stdout", false, "write to stdout instead of sizeclasses.go")
func main() {
flag.Parse()
var b bytes.Buffer
fmt.Fprintln(&b, "// Code generated by mksizeclasses.go; DO NOT EDIT.")
fmt.Fprintln(&b, "//go:generate go run mksizeclasses.go")
fmt.Fprintln(&b)
fmt.Fprintln(&b, "package runtime")
classes := makeClasses()
printComment(&b, classes)
printClasses(&b, classes)
out, err := format.Source(b.Bytes())
if err != nil {
log.Fatal(err)
}
if *stdout {
_, err = os.Stdout.Write(out)
} else {
err = os.WriteFile("sizeclasses.go", out, 0666)
}
if err != nil {
log.Fatal(err)
}
}
const (
// Constants that we use and will transfer to the runtime.
maxSmallSize = 32 << 10
smallSizeDiv = 8
smallSizeMax = 1024
largeSizeDiv = 128
pageShift = 13
// Derived constants.
pageSize = 1 << pageShift
)
type class struct {
size int // max size
npages int // number of pages
}
func powerOfTwo(x int) bool {
return x != 0 && x&(x-1) == 0
}
func makeClasses() []class {
var classes []class
classes = append(classes, class{}) // class #0 is a dummy entry
align := 8
for size := align; size <= maxSmallSize; size += align {
if powerOfTwo(size) { // bump alignment once in a while
if size >= 2048 {
align = 256
} else if size >= 128 {
align = size / 8
} else if size >= 32 {
align = 16 // heap bitmaps assume 16 byte alignment for allocations >= 32 bytes.
}
}
if !powerOfTwo(align) {
panic("incorrect alignment")
}
// Make the allocnpages big enough that
// the leftover is less than 1/8 of the total,
// so wasted space is at most 12.5%.
allocsize := pageSize
for allocsize%size > allocsize/8 {
allocsize += pageSize
}
npages := allocsize / pageSize
// If the previous sizeclass chose the same
// allocation size and fit the same number of
// objects into the page, we might as well
// use just this size instead of having two
// different sizes.
if len(classes) > 1 && npages == classes[len(classes)-1].npages && allocsize/size == allocsize/classes[len(classes)-1].size {
classes[len(classes)-1].size = size
continue
}
classes = append(classes, class{size: size, npages: npages})
}
// Increase object sizes if we can fit the same number of larger objects
// into the same number of pages. For example, we choose size 8448 above
// with 6 objects in 7 pages. But we can well use object size 9472,
// which is also 6 objects in 7 pages but +1024 bytes (+12.12%).
// We need to preserve at least largeSizeDiv alignment otherwise
// sizeToClass won't work.
for i := range classes {
if i == 0 {
continue
}
c := &classes[i]
psize := c.npages * pageSize
new_size := (psize / (psize / c.size)) &^ (largeSizeDiv - 1)
if new_size > c.size {
c.size = new_size
}
}
if len(classes) != 68 {
panic("number of size classes has changed")
}
for i := range classes {
computeDivMagic(&classes[i])
}
return classes
}
// computeDivMagic checks that the division required to compute object
// index from span offset can be computed using 32-bit multiplication.
// n / c.size is implemented as (n * (^uint32(0)/uint32(c.size) + 1)) >> 32
// for all 0 <= n <= c.npages * pageSize
func computeDivMagic(c *class) {
// divisor
d := c.size
if d == 0 {
return
}
// maximum input value for which the formula needs to work.
max := c.npages * pageSize
// As reported in [1], if n and d are unsigned N-bit integers, we
// can compute n / d as ⌊n * c / 2^F⌋, where c is ⌈2^F / d⌉ and F is
// computed with:
//
// Algorithm 2: Algorithm to select the number of fractional bits
// and the scaled approximate reciprocal in the case of unsigned
// integers.
//
// if d is a power of two then
// Let F ← log₂(d) and c = 1.
// else
// Let F ← N + L where L is the smallest integer
// such that d ≤ (2^(N+L) mod d) + 2^L.
// end if
//
// [1] "Faster Remainder by Direct Computation: Applications to
// Compilers and Software Libraries" Daniel Lemire, Owen Kaser,
// Nathan Kurz arXiv:1902.01961
//
// To minimize the risk of introducing errors, we implement the
// algorithm exactly as stated, rather than trying to adapt it to
// fit typical Go idioms.
N := bits.Len(uint(max))
var F int
if powerOfTwo(d) {
F = int(math.Log2(float64(d)))
if d != 1<<F {
panic("imprecise log2")
}
} else {
for L := 0; ; L++ {
if d <= ((1<<(N+L))%d)+(1<<L) {
F = N + L
break
}
}
}
// Also, noted in the paper, F is the smallest number of fractional
// bits required. We use 32 bits, because it works for all size
// classes and is fast on all CPU architectures that we support.
if F > 32 {
fmt.Printf("d=%d max=%d N=%d F=%d\n", c.size, max, N, F)
panic("size class requires more than 32 bits of precision")
}
// Brute force double-check with the exact computation that will be
// done by the runtime.
m := ^uint32(0)/uint32(c.size) + 1
for n := 0; n <= max; n++ {
if uint32((uint64(n)*uint64(m))>>32) != uint32(n/c.size) {
fmt.Printf("d=%d max=%d m=%d n=%d\n", d, max, m, n)
panic("bad 32-bit multiply magic")
}
}
}
func printComment(w io.Writer, classes []class) {
fmt.Fprintf(w, "// %-5s %-9s %-10s %-7s %-10s %-9s %-9s\n", "class", "bytes/obj", "bytes/span", "objects", "tail waste", "max waste", "min align")
prevSize := 0
var minAligns [pageShift + 1]int
for i, c := range classes {
if i == 0 {
continue
}
spanSize := c.npages * pageSize
objects := spanSize / c.size
tailWaste := spanSize - c.size*(spanSize/c.size)
maxWaste := float64((c.size-prevSize-1)*objects+tailWaste) / float64(spanSize)
alignBits := bits.TrailingZeros(uint(c.size))
if alignBits > pageShift {
// object alignment is capped at page alignment
alignBits = pageShift
}
for i := range minAligns {
if i > alignBits {
minAligns[i] = 0
} else if minAligns[i] == 0 {
minAligns[i] = c.size
}
}
prevSize = c.size
fmt.Fprintf(w, "// %5d %9d %10d %7d %10d %8.2f%% %9d\n", i, c.size, spanSize, objects, tailWaste, 100*maxWaste, 1<<alignBits)
}
fmt.Fprintf(w, "\n")
fmt.Fprintf(w, "// %-9s %-4s %-12s\n", "alignment", "bits", "min obj size")
for bits, size := range minAligns {
if size == 0 {
break
}
if bits+1 < len(minAligns) && size == minAligns[bits+1] {
continue
}
fmt.Fprintf(w, "// %9d %4d %12d\n", 1<<bits, bits, size)
}
fmt.Fprintf(w, "\n")
}
func printClasses(w io.Writer, classes []class) {
fmt.Fprintln(w, "const (")
fmt.Fprintf(w, "_MaxSmallSize = %d\n", maxSmallSize)
fmt.Fprintf(w, "smallSizeDiv = %d\n", smallSizeDiv)
fmt.Fprintf(w, "smallSizeMax = %d\n", smallSizeMax)
fmt.Fprintf(w, "largeSizeDiv = %d\n", largeSizeDiv)
fmt.Fprintf(w, "_NumSizeClasses = %d\n", len(classes))
fmt.Fprintf(w, "_PageShift = %d\n", pageShift)
fmt.Fprintln(w, ")")
fmt.Fprint(w, "var class_to_size = [_NumSizeClasses]uint16 {")
for _, c := range classes {
fmt.Fprintf(w, "%d,", c.size)
}
fmt.Fprintln(w, "}")
fmt.Fprint(w, "var class_to_allocnpages = [_NumSizeClasses]uint8 {")
for _, c := range classes {
fmt.Fprintf(w, "%d,", c.npages)
}
fmt.Fprintln(w, "}")
fmt.Fprint(w, "var class_to_divmagic = [_NumSizeClasses]uint32 {")
for _, c := range classes {
if c.size == 0 {
fmt.Fprintf(w, "0,")
continue
}
fmt.Fprintf(w, "^uint32(0)/%d+1,", c.size)
}
fmt.Fprintln(w, "}")
// map from size to size class, for small sizes.
sc := make([]int, smallSizeMax/smallSizeDiv+1)
for i := range sc {
size := i * smallSizeDiv
for j, c := range classes {
if c.size >= size {
sc[i] = j
break
}
}
}
fmt.Fprint(w, "var size_to_class8 = [smallSizeMax/smallSizeDiv+1]uint8 {")
for _, v := range sc {
fmt.Fprintf(w, "%d,", v)
}
fmt.Fprintln(w, "}")
// map from size to size class, for large sizes.
sc = make([]int, (maxSmallSize-smallSizeMax)/largeSizeDiv+1)
for i := range sc {
size := smallSizeMax + i*largeSizeDiv
for j, c := range classes {
if c.size >= size {
sc[i] = j
break
}
}
}
fmt.Fprint(w, "var size_to_class128 = [(_MaxSmallSize-smallSizeMax)/largeSizeDiv+1]uint8 {")
for _, v := range sc {
fmt.Fprintf(w, "%d,", v)
}
fmt.Fprintln(w, "}")
}
|