1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package strconv
// decimal to binary floating point conversion.
// Algorithm:
// 1) Store input in multiprecision decimal.
// 2) Multiply/divide decimal by powers of two until in range [0.5, 1)
// 3) Multiply by 2^precision and round to get mantissa.
import "math"
import "runtime"
var optimize = true // set to false to force slow-path conversions for testing
// commonPrefixLenIgnoreCase returns the length of the common
// prefix of s and prefix, with the character case of s ignored.
// The prefix argument must be all lower-case.
func commonPrefixLenIgnoreCase(s, prefix string) int {
n := len(prefix)
if n > len(s) {
n = len(s)
}
for i := 0; i < n; i++ {
c := s[i]
if 'A' <= c && c <= 'Z' {
c += 'a' - 'A'
}
if c != prefix[i] {
return i
}
}
return n
}
// special returns the floating-point value for the special,
// possibly signed floating-point representations inf, infinity,
// and NaN. The result is ok if a prefix of s contains one
// of these representations and n is the length of that prefix.
// The character case is ignored.
func special(s string) (f float64, n int, ok bool) {
if len(s) == 0 {
return 0, 0, false
}
sign := 1
nsign := 0
switch s[0] {
case '+', '-':
if s[0] == '-' {
sign = -1
}
nsign = 1
s = s[1:]
fallthrough
case 'i', 'I':
n := commonPrefixLenIgnoreCase(s, "infinity")
// Anything longer than "inf" is ok, but if we
// don't have "infinity", only consume "inf".
if 3 < n && n < 8 {
n = 3
}
if n == 3 || n == 8 {
return math.Inf(sign), nsign + n, true
}
case 'n', 'N':
if commonPrefixLenIgnoreCase(s, "nan") == 3 {
return math.NaN(), 3, true
}
}
return 0, 0, false
}
func (b *decimal) set(s string) (ok bool) {
i := 0
b.neg = false
b.trunc = false
// optional sign
if i >= len(s) {
return
}
switch {
case s[i] == '+':
i++
case s[i] == '-':
b.neg = true
i++
}
// digits
sawdot := false
sawdigits := false
for ; i < len(s); i++ {
switch {
case s[i] == '_':
// readFloat already checked underscores
continue
case s[i] == '.':
if sawdot {
return
}
sawdot = true
b.dp = b.nd
continue
case '0' <= s[i] && s[i] <= '9':
sawdigits = true
if s[i] == '0' && b.nd == 0 { // ignore leading zeros
b.dp--
continue
}
if b.nd < len(b.d) {
b.d[b.nd] = s[i]
b.nd++
} else if s[i] != '0' {
b.trunc = true
}
continue
}
break
}
if !sawdigits {
return
}
if !sawdot {
b.dp = b.nd
}
// optional exponent moves decimal point.
// if we read a very large, very long number,
// just be sure to move the decimal point by
// a lot (say, 100000). it doesn't matter if it's
// not the exact number.
if i < len(s) && lower(s[i]) == 'e' {
i++
if i >= len(s) {
return
}
esign := 1
if s[i] == '+' {
i++
} else if s[i] == '-' {
i++
esign = -1
}
if i >= len(s) || s[i] < '0' || s[i] > '9' {
return
}
e := 0
for ; i < len(s) && ('0' <= s[i] && s[i] <= '9' || s[i] == '_'); i++ {
if s[i] == '_' {
// readFloat already checked underscores
continue
}
if e < 10000 {
e = e*10 + int(s[i]) - '0'
}
}
b.dp += e * esign
}
if i != len(s) {
return
}
ok = true
return
}
// readFloat reads a decimal or hexadecimal mantissa and exponent from a float
// string representation in s; the number may be followed by other characters.
// readFloat reports the number of bytes consumed (i), and whether the number
// is valid (ok).
func readFloat(s string) (mantissa uint64, exp int, neg, trunc, hex bool, i int, ok bool) {
underscores := false
// optional sign
if i >= len(s) {
return
}
switch {
case s[i] == '+':
i++
case s[i] == '-':
neg = true
i++
}
// digits
base := uint64(10)
maxMantDigits := 19 // 10^19 fits in uint64
expChar := byte('e')
if i+2 < len(s) && s[i] == '0' && lower(s[i+1]) == 'x' {
base = 16
maxMantDigits = 16 // 16^16 fits in uint64
i += 2
expChar = 'p'
hex = true
}
sawdot := false
sawdigits := false
nd := 0
ndMant := 0
dp := 0
loop:
for ; i < len(s); i++ {
switch c := s[i]; true {
case c == '_':
underscores = true
continue
case c == '.':
if sawdot {
break loop
}
sawdot = true
dp = nd
continue
case '0' <= c && c <= '9':
sawdigits = true
if c == '0' && nd == 0 { // ignore leading zeros
dp--
continue
}
nd++
if ndMant < maxMantDigits {
mantissa *= base
mantissa += uint64(c - '0')
ndMant++
} else if c != '0' {
trunc = true
}
continue
case base == 16 && 'a' <= lower(c) && lower(c) <= 'f':
sawdigits = true
nd++
if ndMant < maxMantDigits {
mantissa *= 16
mantissa += uint64(lower(c) - 'a' + 10)
ndMant++
} else {
trunc = true
}
continue
}
break
}
if !sawdigits {
return
}
if !sawdot {
dp = nd
}
if base == 16 {
dp *= 4
ndMant *= 4
}
// optional exponent moves decimal point.
// if we read a very large, very long number,
// just be sure to move the decimal point by
// a lot (say, 100000). it doesn't matter if it's
// not the exact number.
if i < len(s) && lower(s[i]) == expChar {
i++
if i >= len(s) {
return
}
esign := 1
if s[i] == '+' {
i++
} else if s[i] == '-' {
i++
esign = -1
}
if i >= len(s) || s[i] < '0' || s[i] > '9' {
return
}
e := 0
for ; i < len(s) && ('0' <= s[i] && s[i] <= '9' || s[i] == '_'); i++ {
if s[i] == '_' {
underscores = true
continue
}
if e < 10000 {
e = e*10 + int(s[i]) - '0'
}
}
dp += e * esign
} else if base == 16 {
// Must have exponent.
return
}
if mantissa != 0 {
exp = dp - ndMant
}
if underscores && !underscoreOK(s[:i]) {
return
}
ok = true
return
}
// decimal power of ten to binary power of two.
var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26}
func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) {
var exp int
var mant uint64
// Zero is always a special case.
if d.nd == 0 {
mant = 0
exp = flt.bias
goto out
}
// Obvious overflow/underflow.
// These bounds are for 64-bit floats.
// Will have to change if we want to support 80-bit floats in the future.
if d.dp > 310 {
goto overflow
}
if d.dp < -330 {
// zero
mant = 0
exp = flt.bias
goto out
}
// Scale by powers of two until in range [0.5, 1.0)
exp = 0
for d.dp > 0 {
var n int
if d.dp >= len(powtab) {
n = 27
} else {
n = powtab[d.dp]
}
d.Shift(-n)
exp += n
}
for d.dp < 0 || d.dp == 0 && d.d[0] < '5' {
var n int
if -d.dp >= len(powtab) {
n = 27
} else {
n = powtab[-d.dp]
}
d.Shift(n)
exp -= n
}
// Our range is [0.5,1) but floating point range is [1,2).
exp--
// Minimum representable exponent is flt.bias+1.
// If the exponent is smaller, move it up and
// adjust d accordingly.
if exp < flt.bias+1 {
n := flt.bias + 1 - exp
d.Shift(-n)
exp += n
}
if exp-flt.bias >= 1<<flt.expbits-1 {
goto overflow
}
// Extract 1+flt.mantbits bits.
d.Shift(int(1 + flt.mantbits))
mant = d.RoundedInteger()
// Rounding might have added a bit; shift down.
if mant == 2<<flt.mantbits {
mant >>= 1
exp++
if exp-flt.bias >= 1<<flt.expbits-1 {
goto overflow
}
}
// Denormalized?
if mant&(1<<flt.mantbits) == 0 {
exp = flt.bias
}
goto out
overflow:
// ±Inf
mant = 0
exp = 1<<flt.expbits - 1 + flt.bias
overflow = true
out:
// Assemble bits.
bits := mant & (uint64(1)<<flt.mantbits - 1)
bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
if d.neg {
bits |= 1 << flt.mantbits << flt.expbits
}
return bits, overflow
}
// Exact powers of 10.
var float64pow10 = []float64{
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22,
}
var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}
// If possible to convert decimal representation to 64-bit float f exactly,
// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits.
// Three common cases:
// value is exact integer
// value is exact integer * exact power of ten
// value is exact integer / exact power of ten
// These all produce potentially inexact but correctly rounded answers.
func atof64exact(mantissa uint64, exp int, neg bool) (f float64, ok bool) {
if mantissa>>float64info.mantbits != 0 {
return
}
// gccgo gets this wrong on 32-bit i386 when not using -msse.
// See TestRoundTrip in atof_test.go for a test case.
if runtime.GOARCH == "386" {
return
}
f = float64(mantissa)
if neg {
f = -f
}
switch {
case exp == 0:
// an integer.
return f, true
// Exact integers are <= 10^15.
// Exact powers of ten are <= 10^22.
case exp > 0 && exp <= 15+22: // int * 10^k
// If exponent is big but number of digits is not,
// can move a few zeros into the integer part.
if exp > 22 {
f *= float64pow10[exp-22]
exp = 22
}
if f > 1e15 || f < -1e15 {
// the exponent was really too large.
return
}
return f * float64pow10[exp], true
case exp < 0 && exp >= -22: // int / 10^k
return f / float64pow10[-exp], true
}
return
}
// If possible to compute mantissa*10^exp to 32-bit float f exactly,
// entirely in floating-point math, do so, avoiding the machinery above.
func atof32exact(mantissa uint64, exp int, neg bool) (f float32, ok bool) {
if mantissa>>float32info.mantbits != 0 {
return
}
f = float32(mantissa)
if neg {
f = -f
}
switch {
case exp == 0:
return f, true
// Exact integers are <= 10^7.
// Exact powers of ten are <= 10^10.
case exp > 0 && exp <= 7+10: // int * 10^k
// If exponent is big but number of digits is not,
// can move a few zeros into the integer part.
if exp > 10 {
f *= float32pow10[exp-10]
exp = 10
}
if f > 1e7 || f < -1e7 {
// the exponent was really too large.
return
}
return f * float32pow10[exp], true
case exp < 0 && exp >= -10: // int / 10^k
return f / float32pow10[-exp], true
}
return
}
// atofHex converts the hex floating-point string s
// to a rounded float32 or float64 value (depending on flt==&float32info or flt==&float64info)
// and returns it as a float64.
// The string s has already been parsed into a mantissa, exponent, and sign (neg==true for negative).
// If trunc is true, trailing non-zero bits have been omitted from the mantissa.
func atofHex(s string, flt *floatInfo, mantissa uint64, exp int, neg, trunc bool) (float64, error) {
maxExp := 1<<flt.expbits + flt.bias - 2
minExp := flt.bias + 1
exp += int(flt.mantbits) // mantissa now implicitly divided by 2^mantbits.
// Shift mantissa and exponent to bring representation into float range.
// Eventually we want a mantissa with a leading 1-bit followed by mantbits other bits.
// For rounding, we need two more, where the bottom bit represents
// whether that bit or any later bit was non-zero.
// (If the mantissa has already lost non-zero bits, trunc is true,
// and we OR in a 1 below after shifting left appropriately.)
for mantissa != 0 && mantissa>>(flt.mantbits+2) == 0 {
mantissa <<= 1
exp--
}
if trunc {
mantissa |= 1
}
for mantissa>>(1+flt.mantbits+2) != 0 {
mantissa = mantissa>>1 | mantissa&1
exp++
}
// If exponent is too negative,
// denormalize in hopes of making it representable.
// (The -2 is for the rounding bits.)
for mantissa > 1 && exp < minExp-2 {
mantissa = mantissa>>1 | mantissa&1
exp++
}
// Round using two bottom bits.
round := mantissa & 3
mantissa >>= 2
round |= mantissa & 1 // round to even (round up if mantissa is odd)
exp += 2
if round == 3 {
mantissa++
if mantissa == 1<<(1+flt.mantbits) {
mantissa >>= 1
exp++
}
}
if mantissa>>flt.mantbits == 0 { // Denormal or zero.
exp = flt.bias
}
var err error
if exp > maxExp { // infinity and range error
mantissa = 1 << flt.mantbits
exp = maxExp + 1
err = rangeError(fnParseFloat, s)
}
bits := mantissa & (1<<flt.mantbits - 1)
bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
if neg {
bits |= 1 << flt.mantbits << flt.expbits
}
if flt == &float32info {
return float64(math.Float32frombits(uint32(bits))), err
}
return math.Float64frombits(bits), err
}
const fnParseFloat = "ParseFloat"
func atof32(s string) (f float32, n int, err error) {
if val, n, ok := special(s); ok {
return float32(val), n, nil
}
mantissa, exp, neg, trunc, hex, n, ok := readFloat(s)
if !ok {
return 0, n, syntaxError(fnParseFloat, s)
}
if hex {
f, err := atofHex(s[:n], &float32info, mantissa, exp, neg, trunc)
return float32(f), n, err
}
if optimize {
// Try pure floating-point arithmetic conversion, and if that fails,
// the Eisel-Lemire algorithm.
if !trunc {
if f, ok := atof32exact(mantissa, exp, neg); ok {
return f, n, nil
}
}
f, ok := eiselLemire32(mantissa, exp, neg)
if ok {
if !trunc {
return f, n, nil
}
// Even if the mantissa was truncated, we may
// have found the correct result. Confirm by
// converting the upper mantissa bound.
fUp, ok := eiselLemire32(mantissa+1, exp, neg)
if ok && f == fUp {
return f, n, nil
}
}
}
// Slow fallback.
var d decimal
if !d.set(s[:n]) {
return 0, n, syntaxError(fnParseFloat, s)
}
b, ovf := d.floatBits(&float32info)
f = math.Float32frombits(uint32(b))
if ovf {
err = rangeError(fnParseFloat, s)
}
return f, n, err
}
func atof64(s string) (f float64, n int, err error) {
if val, n, ok := special(s); ok {
return val, n, nil
}
mantissa, exp, neg, trunc, hex, n, ok := readFloat(s)
if !ok {
return 0, n, syntaxError(fnParseFloat, s)
}
if hex {
f, err := atofHex(s[:n], &float64info, mantissa, exp, neg, trunc)
return f, n, err
}
if optimize {
// Try pure floating-point arithmetic conversion, and if that fails,
// the Eisel-Lemire algorithm.
if !trunc {
if f, ok := atof64exact(mantissa, exp, neg); ok {
return f, n, nil
}
}
f, ok := eiselLemire64(mantissa, exp, neg)
if ok {
if !trunc {
return f, n, nil
}
// Even if the mantissa was truncated, we may
// have found the correct result. Confirm by
// converting the upper mantissa bound.
fUp, ok := eiselLemire64(mantissa+1, exp, neg)
if ok && f == fUp {
return f, n, nil
}
}
}
// Slow fallback.
var d decimal
if !d.set(s[:n]) {
return 0, n, syntaxError(fnParseFloat, s)
}
b, ovf := d.floatBits(&float64info)
f = math.Float64frombits(b)
if ovf {
err = rangeError(fnParseFloat, s)
}
return f, n, err
}
// ParseFloat converts the string s to a floating-point number
// with the precision specified by bitSize: 32 for float32, or 64 for float64.
// When bitSize=32, the result still has type float64, but it will be
// convertible to float32 without changing its value.
//
// ParseFloat accepts decimal and hexadecimal floating-point number syntax.
// If s is well-formed and near a valid floating-point number,
// ParseFloat returns the nearest floating-point number rounded
// using IEEE754 unbiased rounding.
// (Parsing a hexadecimal floating-point value only rounds when
// there are more bits in the hexadecimal representation than
// will fit in the mantissa.)
//
// The errors that ParseFloat returns have concrete type *NumError
// and include err.Num = s.
//
// If s is not syntactically well-formed, ParseFloat returns err.Err = ErrSyntax.
//
// If s is syntactically well-formed but is more than 1/2 ULP
// away from the largest floating point number of the given size,
// ParseFloat returns f = ±Inf, err.Err = ErrRange.
//
// ParseFloat recognizes the strings "NaN", and the (possibly signed) strings "Inf" and "Infinity"
// as their respective special floating point values. It ignores case when matching.
func ParseFloat(s string, bitSize int) (float64, error) {
f, n, err := parseFloatPrefix(s, bitSize)
if n != len(s) && (err == nil || err.(*NumError).Err != ErrSyntax) {
return 0, syntaxError(fnParseFloat, s)
}
return f, err
}
func parseFloatPrefix(s string, bitSize int) (float64, int, error) {
if bitSize == 32 {
f, n, err := atof32(s)
return float64(f), n, err
}
return atof64(s)
}
|