1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package strings implements simple functions to manipulate UTF-8 encoded strings.
//
// For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
package strings
import (
"internal/bytealg"
"unicode"
"unicode/utf8"
)
// explode splits s into a slice of UTF-8 strings,
// one string per Unicode character up to a maximum of n (n < 0 means no limit).
// Invalid UTF-8 sequences become correct encodings of U+FFFD.
func explode(s string, n int) []string {
l := utf8.RuneCountInString(s)
if n < 0 || n > l {
n = l
}
a := make([]string, n)
for i := 0; i < n-1; i++ {
ch, size := utf8.DecodeRuneInString(s)
a[i] = s[:size]
s = s[size:]
if ch == utf8.RuneError {
a[i] = string(utf8.RuneError)
}
}
if n > 0 {
a[n-1] = s
}
return a
}
// Count counts the number of non-overlapping instances of substr in s.
// If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
func Count(s, substr string) int {
// special case
if len(substr) == 0 {
return utf8.RuneCountInString(s) + 1
}
if len(substr) == 1 {
return bytealg.CountString(s, substr[0])
}
n := 0
for {
i := Index(s, substr)
if i == -1 {
return n
}
n++
s = s[i+len(substr):]
}
}
// Contains reports whether substr is within s.
func Contains(s, substr string) bool {
return Index(s, substr) >= 0
}
// ContainsAny reports whether any Unicode code points in chars are within s.
func ContainsAny(s, chars string) bool {
return IndexAny(s, chars) >= 0
}
// ContainsRune reports whether the Unicode code point r is within s.
func ContainsRune(s string, r rune) bool {
return IndexRune(s, r) >= 0
}
// LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
func LastIndex(s, substr string) int {
n := len(substr)
switch {
case n == 0:
return len(s)
case n == 1:
return LastIndexByte(s, substr[0])
case n == len(s):
if substr == s {
return 0
}
return -1
case n > len(s):
return -1
}
// Rabin-Karp search from the end of the string
hashss, pow := bytealg.HashStrRev(substr)
last := len(s) - n
var h uint32
for i := len(s) - 1; i >= last; i-- {
h = h*bytealg.PrimeRK + uint32(s[i])
}
if h == hashss && s[last:] == substr {
return last
}
for i := last - 1; i >= 0; i-- {
h *= bytealg.PrimeRK
h += uint32(s[i])
h -= pow * uint32(s[i+n])
if h == hashss && s[i:i+n] == substr {
return i
}
}
return -1
}
// IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s.
func IndexByte(s string, c byte) int {
return bytealg.IndexByteString(s, c)
}
// IndexRune returns the index of the first instance of the Unicode code point
// r, or -1 if rune is not present in s.
// If r is utf8.RuneError, it returns the first instance of any
// invalid UTF-8 byte sequence.
func IndexRune(s string, r rune) int {
switch {
case 0 <= r && r < utf8.RuneSelf:
return IndexByte(s, byte(r))
case r == utf8.RuneError:
for i, r := range s {
if r == utf8.RuneError {
return i
}
}
return -1
case !utf8.ValidRune(r):
return -1
default:
return Index(s, string(r))
}
}
// IndexAny returns the index of the first instance of any Unicode code point
// from chars in s, or -1 if no Unicode code point from chars is present in s.
func IndexAny(s, chars string) int {
if chars == "" {
// Avoid scanning all of s.
return -1
}
if len(chars) == 1 {
// Avoid scanning all of s.
r := rune(chars[0])
if r >= utf8.RuneSelf {
r = utf8.RuneError
}
return IndexRune(s, r)
}
if len(s) > 8 {
if as, isASCII := makeASCIISet(chars); isASCII {
for i := 0; i < len(s); i++ {
if as.contains(s[i]) {
return i
}
}
return -1
}
}
for i, c := range s {
if IndexRune(chars, c) >= 0 {
return i
}
}
return -1
}
// LastIndexAny returns the index of the last instance of any Unicode code
// point from chars in s, or -1 if no Unicode code point from chars is
// present in s.
func LastIndexAny(s, chars string) int {
if chars == "" {
// Avoid scanning all of s.
return -1
}
if len(s) == 1 {
rc := rune(s[0])
if rc >= utf8.RuneSelf {
rc = utf8.RuneError
}
if IndexRune(chars, rc) >= 0 {
return 0
}
return -1
}
if len(s) > 8 {
if as, isASCII := makeASCIISet(chars); isASCII {
for i := len(s) - 1; i >= 0; i-- {
if as.contains(s[i]) {
return i
}
}
return -1
}
}
if len(chars) == 1 {
rc := rune(chars[0])
if rc >= utf8.RuneSelf {
rc = utf8.RuneError
}
for i := len(s); i > 0; {
r, size := utf8.DecodeLastRuneInString(s[:i])
i -= size
if rc == r {
return i
}
}
return -1
}
for i := len(s); i > 0; {
r, size := utf8.DecodeLastRuneInString(s[:i])
i -= size
if IndexRune(chars, r) >= 0 {
return i
}
}
return -1
}
// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
func LastIndexByte(s string, c byte) int {
for i := len(s) - 1; i >= 0; i-- {
if s[i] == c {
return i
}
}
return -1
}
// Generic split: splits after each instance of sep,
// including sepSave bytes of sep in the subarrays.
func genSplit(s, sep string, sepSave, n int) []string {
if n == 0 {
return nil
}
if sep == "" {
return explode(s, n)
}
if n < 0 {
n = Count(s, sep) + 1
}
a := make([]string, n)
n--
i := 0
for i < n {
m := Index(s, sep)
if m < 0 {
break
}
a[i] = s[:m+sepSave]
s = s[m+len(sep):]
i++
}
a[i] = s
return a[:i+1]
}
// SplitN slices s into substrings separated by sep and returns a slice of
// the substrings between those separators.
//
// The count determines the number of substrings to return:
// n > 0: at most n substrings; the last substring will be the unsplit remainder.
// n == 0: the result is nil (zero substrings)
// n < 0: all substrings
//
// Edge cases for s and sep (for example, empty strings) are handled
// as described in the documentation for Split.
//
// To split around the first instance of a separator, see Cut.
func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
// SplitAfterN slices s into substrings after each instance of sep and
// returns a slice of those substrings.
//
// The count determines the number of substrings to return:
// n > 0: at most n substrings; the last substring will be the unsplit remainder.
// n == 0: the result is nil (zero substrings)
// n < 0: all substrings
//
// Edge cases for s and sep (for example, empty strings) are handled
// as described in the documentation for SplitAfter.
func SplitAfterN(s, sep string, n int) []string {
return genSplit(s, sep, len(sep), n)
}
// Split slices s into all substrings separated by sep and returns a slice of
// the substrings between those separators.
//
// If s does not contain sep and sep is not empty, Split returns a
// slice of length 1 whose only element is s.
//
// If sep is empty, Split splits after each UTF-8 sequence. If both s
// and sep are empty, Split returns an empty slice.
//
// It is equivalent to SplitN with a count of -1.
//
// To split around the first instance of a separator, see Cut.
func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
// SplitAfter slices s into all substrings after each instance of sep and
// returns a slice of those substrings.
//
// If s does not contain sep and sep is not empty, SplitAfter returns
// a slice of length 1 whose only element is s.
//
// If sep is empty, SplitAfter splits after each UTF-8 sequence. If
// both s and sep are empty, SplitAfter returns an empty slice.
//
// It is equivalent to SplitAfterN with a count of -1.
func SplitAfter(s, sep string) []string {
return genSplit(s, sep, len(sep), -1)
}
var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
// Fields splits the string s around each instance of one or more consecutive white space
// characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
// empty slice if s contains only white space.
func Fields(s string) []string {
// First count the fields.
// This is an exact count if s is ASCII, otherwise it is an approximation.
n := 0
wasSpace := 1
// setBits is used to track which bits are set in the bytes of s.
setBits := uint8(0)
for i := 0; i < len(s); i++ {
r := s[i]
setBits |= r
isSpace := int(asciiSpace[r])
n += wasSpace & ^isSpace
wasSpace = isSpace
}
if setBits >= utf8.RuneSelf {
// Some runes in the input string are not ASCII.
return FieldsFunc(s, unicode.IsSpace)
}
// ASCII fast path
a := make([]string, n)
na := 0
fieldStart := 0
i := 0
// Skip spaces in the front of the input.
for i < len(s) && asciiSpace[s[i]] != 0 {
i++
}
fieldStart = i
for i < len(s) {
if asciiSpace[s[i]] == 0 {
i++
continue
}
a[na] = s[fieldStart:i]
na++
i++
// Skip spaces in between fields.
for i < len(s) && asciiSpace[s[i]] != 0 {
i++
}
fieldStart = i
}
if fieldStart < len(s) { // Last field might end at EOF.
a[na] = s[fieldStart:]
}
return a
}
// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
// and returns an array of slices of s. If all code points in s satisfy f(c) or the
// string is empty, an empty slice is returned.
//
// FieldsFunc makes no guarantees about the order in which it calls f(c)
// and assumes that f always returns the same value for a given c.
func FieldsFunc(s string, f func(rune) bool) []string {
// A span is used to record a slice of s of the form s[start:end].
// The start index is inclusive and the end index is exclusive.
type span struct {
start int
end int
}
spans := make([]span, 0, 32)
// Find the field start and end indices.
// Doing this in a separate pass (rather than slicing the string s
// and collecting the result substrings right away) is significantly
// more efficient, possibly due to cache effects.
start := -1 // valid span start if >= 0
for end, rune := range s {
if f(rune) {
if start >= 0 {
spans = append(spans, span{start, end})
// Set start to a negative value.
// Note: using -1 here consistently and reproducibly
// slows down this code by a several percent on amd64.
start = ^start
}
} else {
if start < 0 {
start = end
}
}
}
// Last field might end at EOF.
if start >= 0 {
spans = append(spans, span{start, len(s)})
}
// Create strings from recorded field indices.
a := make([]string, len(spans))
for i, span := range spans {
a[i] = s[span.start:span.end]
}
return a
}
// Join concatenates the elements of its first argument to create a single string. The separator
// string sep is placed between elements in the resulting string.
func Join(elems []string, sep string) string {
switch len(elems) {
case 0:
return ""
case 1:
return elems[0]
}
n := len(sep) * (len(elems) - 1)
for i := 0; i < len(elems); i++ {
n += len(elems[i])
}
var b Builder
b.Grow(n)
b.WriteString(elems[0])
for _, s := range elems[1:] {
b.WriteString(sep)
b.WriteString(s)
}
return b.String()
}
// HasPrefix tests whether the string s begins with prefix.
func HasPrefix(s, prefix string) bool {
return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
}
// HasSuffix tests whether the string s ends with suffix.
func HasSuffix(s, suffix string) bool {
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
}
// Map returns a copy of the string s with all its characters modified
// according to the mapping function. If mapping returns a negative value, the character is
// dropped from the string with no replacement.
func Map(mapping func(rune) rune, s string) string {
// In the worst case, the string can grow when mapped, making
// things unpleasant. But it's so rare we barge in assuming it's
// fine. It could also shrink but that falls out naturally.
// The output buffer b is initialized on demand, the first
// time a character differs.
var b Builder
for i, c := range s {
r := mapping(c)
if r == c && c != utf8.RuneError {
continue
}
var width int
if c == utf8.RuneError {
c, width = utf8.DecodeRuneInString(s[i:])
if width != 1 && r == c {
continue
}
} else {
width = utf8.RuneLen(c)
}
b.Grow(len(s) + utf8.UTFMax)
b.WriteString(s[:i])
if r >= 0 {
b.WriteRune(r)
}
s = s[i+width:]
break
}
// Fast path for unchanged input
if b.Cap() == 0 { // didn't call b.Grow above
return s
}
for _, c := range s {
r := mapping(c)
if r >= 0 {
// common case
// Due to inlining, it is more performant to determine if WriteByte should be
// invoked rather than always call WriteRune
if r < utf8.RuneSelf {
b.WriteByte(byte(r))
} else {
// r is not a ASCII rune.
b.WriteRune(r)
}
}
}
return b.String()
}
// Repeat returns a new string consisting of count copies of the string s.
//
// It panics if count is negative or if
// the result of (len(s) * count) overflows.
func Repeat(s string, count int) string {
if count == 0 {
return ""
}
// Since we cannot return an error on overflow,
// we should panic if the repeat will generate
// an overflow.
// See Issue golang.org/issue/16237
if count < 0 {
panic("strings: negative Repeat count")
} else if len(s)*count/count != len(s) {
panic("strings: Repeat count causes overflow")
}
n := len(s) * count
var b Builder
b.Grow(n)
b.WriteString(s)
for b.Len() < n {
if b.Len() <= n/2 {
b.WriteString(b.String())
} else {
b.WriteString(b.String()[:n-b.Len()])
break
}
}
return b.String()
}
// ToUpper returns s with all Unicode letters mapped to their upper case.
func ToUpper(s string) string {
isASCII, hasLower := true, false
for i := 0; i < len(s); i++ {
c := s[i]
if c >= utf8.RuneSelf {
isASCII = false
break
}
hasLower = hasLower || ('a' <= c && c <= 'z')
}
if isASCII { // optimize for ASCII-only strings.
if !hasLower {
return s
}
var b Builder
b.Grow(len(s))
for i := 0; i < len(s); i++ {
c := s[i]
if 'a' <= c && c <= 'z' {
c -= 'a' - 'A'
}
b.WriteByte(c)
}
return b.String()
}
return Map(unicode.ToUpper, s)
}
// ToLower returns s with all Unicode letters mapped to their lower case.
func ToLower(s string) string {
isASCII, hasUpper := true, false
for i := 0; i < len(s); i++ {
c := s[i]
if c >= utf8.RuneSelf {
isASCII = false
break
}
hasUpper = hasUpper || ('A' <= c && c <= 'Z')
}
if isASCII { // optimize for ASCII-only strings.
if !hasUpper {
return s
}
var b Builder
b.Grow(len(s))
for i := 0; i < len(s); i++ {
c := s[i]
if 'A' <= c && c <= 'Z' {
c += 'a' - 'A'
}
b.WriteByte(c)
}
return b.String()
}
return Map(unicode.ToLower, s)
}
// ToTitle returns a copy of the string s with all Unicode letters mapped to
// their Unicode title case.
func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
// upper case using the case mapping specified by c.
func ToUpperSpecial(c unicode.SpecialCase, s string) string {
return Map(c.ToUpper, s)
}
// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
// lower case using the case mapping specified by c.
func ToLowerSpecial(c unicode.SpecialCase, s string) string {
return Map(c.ToLower, s)
}
// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
// Unicode title case, giving priority to the special casing rules.
func ToTitleSpecial(c unicode.SpecialCase, s string) string {
return Map(c.ToTitle, s)
}
// ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences
// replaced by the replacement string, which may be empty.
func ToValidUTF8(s, replacement string) string {
var b Builder
for i, c := range s {
if c != utf8.RuneError {
continue
}
_, wid := utf8.DecodeRuneInString(s[i:])
if wid == 1 {
b.Grow(len(s) + len(replacement))
b.WriteString(s[:i])
s = s[i:]
break
}
}
// Fast path for unchanged input
if b.Cap() == 0 { // didn't call b.Grow above
return s
}
invalid := false // previous byte was from an invalid UTF-8 sequence
for i := 0; i < len(s); {
c := s[i]
if c < utf8.RuneSelf {
i++
invalid = false
b.WriteByte(c)
continue
}
_, wid := utf8.DecodeRuneInString(s[i:])
if wid == 1 {
i++
if !invalid {
invalid = true
b.WriteString(replacement)
}
continue
}
invalid = false
b.WriteString(s[i : i+wid])
i += wid
}
return b.String()
}
// isSeparator reports whether the rune could mark a word boundary.
// TODO: update when package unicode captures more of the properties.
func isSeparator(r rune) bool {
// ASCII alphanumerics and underscore are not separators
if r <= 0x7F {
switch {
case '0' <= r && r <= '9':
return false
case 'a' <= r && r <= 'z':
return false
case 'A' <= r && r <= 'Z':
return false
case r == '_':
return false
}
return true
}
// Letters and digits are not separators
if unicode.IsLetter(r) || unicode.IsDigit(r) {
return false
}
// Otherwise, all we can do for now is treat spaces as separators.
return unicode.IsSpace(r)
}
// Title returns a copy of the string s with all Unicode letters that begin words
// mapped to their Unicode title case.
//
// Deprecated: The rule Title uses for word boundaries does not handle Unicode
// punctuation properly. Use golang.org/x/text/cases instead.
func Title(s string) string {
// Use a closure here to remember state.
// Hackish but effective. Depends on Map scanning in order and calling
// the closure once per rune.
prev := ' '
return Map(
func(r rune) rune {
if isSeparator(prev) {
prev = r
return unicode.ToTitle(r)
}
prev = r
return r
},
s)
}
// TrimLeftFunc returns a slice of the string s with all leading
// Unicode code points c satisfying f(c) removed.
func TrimLeftFunc(s string, f func(rune) bool) string {
i := indexFunc(s, f, false)
if i == -1 {
return ""
}
return s[i:]
}
// TrimRightFunc returns a slice of the string s with all trailing
// Unicode code points c satisfying f(c) removed.
func TrimRightFunc(s string, f func(rune) bool) string {
i := lastIndexFunc(s, f, false)
if i >= 0 && s[i] >= utf8.RuneSelf {
_, wid := utf8.DecodeRuneInString(s[i:])
i += wid
} else {
i++
}
return s[0:i]
}
// TrimFunc returns a slice of the string s with all leading
// and trailing Unicode code points c satisfying f(c) removed.
func TrimFunc(s string, f func(rune) bool) string {
return TrimRightFunc(TrimLeftFunc(s, f), f)
}
// IndexFunc returns the index into s of the first Unicode
// code point satisfying f(c), or -1 if none do.
func IndexFunc(s string, f func(rune) bool) int {
return indexFunc(s, f, true)
}
// LastIndexFunc returns the index into s of the last
// Unicode code point satisfying f(c), or -1 if none do.
func LastIndexFunc(s string, f func(rune) bool) int {
return lastIndexFunc(s, f, true)
}
// indexFunc is the same as IndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func indexFunc(s string, f func(rune) bool, truth bool) int {
for i, r := range s {
if f(r) == truth {
return i
}
}
return -1
}
// lastIndexFunc is the same as LastIndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
for i := len(s); i > 0; {
r, size := utf8.DecodeLastRuneInString(s[0:i])
i -= size
if f(r) == truth {
return i
}
}
return -1
}
// asciiSet is a 32-byte value, where each bit represents the presence of a
// given ASCII character in the set. The 128-bits of the lower 16 bytes,
// starting with the least-significant bit of the lowest word to the
// most-significant bit of the highest word, map to the full range of all
// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
// ensuring that any non-ASCII character will be reported as not in the set.
// This allocates a total of 32 bytes even though the upper half
// is unused to avoid bounds checks in asciiSet.contains.
type asciiSet [8]uint32
// makeASCIISet creates a set of ASCII characters and reports whether all
// characters in chars are ASCII.
func makeASCIISet(chars string) (as asciiSet, ok bool) {
for i := 0; i < len(chars); i++ {
c := chars[i]
if c >= utf8.RuneSelf {
return as, false
}
as[c/32] |= 1 << (c % 32)
}
return as, true
}
// contains reports whether c is inside the set.
func (as *asciiSet) contains(c byte) bool {
return (as[c/32] & (1 << (c % 32))) != 0
}
// Trim returns a slice of the string s with all leading and
// trailing Unicode code points contained in cutset removed.
func Trim(s, cutset string) string {
if s == "" || cutset == "" {
return s
}
if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0])
}
if as, ok := makeASCIISet(cutset); ok {
return trimLeftASCII(trimRightASCII(s, &as), &as)
}
return trimLeftUnicode(trimRightUnicode(s, cutset), cutset)
}
// TrimLeft returns a slice of the string s with all leading
// Unicode code points contained in cutset removed.
//
// To remove a prefix, use TrimPrefix instead.
func TrimLeft(s, cutset string) string {
if s == "" || cutset == "" {
return s
}
if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
return trimLeftByte(s, cutset[0])
}
if as, ok := makeASCIISet(cutset); ok {
return trimLeftASCII(s, &as)
}
return trimLeftUnicode(s, cutset)
}
func trimLeftByte(s string, c byte) string {
for len(s) > 0 && s[0] == c {
s = s[1:]
}
return s
}
func trimLeftASCII(s string, as *asciiSet) string {
for len(s) > 0 {
if !as.contains(s[0]) {
break
}
s = s[1:]
}
return s
}
func trimLeftUnicode(s, cutset string) string {
for len(s) > 0 {
r, n := rune(s[0]), 1
if r >= utf8.RuneSelf {
r, n = utf8.DecodeRuneInString(s)
}
if !ContainsRune(cutset, r) {
break
}
s = s[n:]
}
return s
}
// TrimRight returns a slice of the string s, with all trailing
// Unicode code points contained in cutset removed.
//
// To remove a suffix, use TrimSuffix instead.
func TrimRight(s, cutset string) string {
if s == "" || cutset == "" {
return s
}
if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
return trimRightByte(s, cutset[0])
}
if as, ok := makeASCIISet(cutset); ok {
return trimRightASCII(s, &as)
}
return trimRightUnicode(s, cutset)
}
func trimRightByte(s string, c byte) string {
for len(s) > 0 && s[len(s)-1] == c {
s = s[:len(s)-1]
}
return s
}
func trimRightASCII(s string, as *asciiSet) string {
for len(s) > 0 {
if !as.contains(s[len(s)-1]) {
break
}
s = s[:len(s)-1]
}
return s
}
func trimRightUnicode(s, cutset string) string {
for len(s) > 0 {
r, n := rune(s[len(s)-1]), 1
if r >= utf8.RuneSelf {
r, n = utf8.DecodeLastRuneInString(s)
}
if !ContainsRune(cutset, r) {
break
}
s = s[:len(s)-n]
}
return s
}
// TrimSpace returns a slice of the string s, with all leading
// and trailing white space removed, as defined by Unicode.
func TrimSpace(s string) string {
// Fast path for ASCII: look for the first ASCII non-space byte
start := 0
for ; start < len(s); start++ {
c := s[start]
if c >= utf8.RuneSelf {
// If we run into a non-ASCII byte, fall back to the
// slower unicode-aware method on the remaining bytes
return TrimFunc(s[start:], unicode.IsSpace)
}
if asciiSpace[c] == 0 {
break
}
}
// Now look for the first ASCII non-space byte from the end
stop := len(s)
for ; stop > start; stop-- {
c := s[stop-1]
if c >= utf8.RuneSelf {
return TrimFunc(s[start:stop], unicode.IsSpace)
}
if asciiSpace[c] == 0 {
break
}
}
// At this point s[start:stop] starts and ends with an ASCII
// non-space bytes, so we're done. Non-ASCII cases have already
// been handled above.
return s[start:stop]
}
// TrimPrefix returns s without the provided leading prefix string.
// If s doesn't start with prefix, s is returned unchanged.
func TrimPrefix(s, prefix string) string {
if HasPrefix(s, prefix) {
return s[len(prefix):]
}
return s
}
// TrimSuffix returns s without the provided trailing suffix string.
// If s doesn't end with suffix, s is returned unchanged.
func TrimSuffix(s, suffix string) string {
if HasSuffix(s, suffix) {
return s[:len(s)-len(suffix)]
}
return s
}
// Replace returns a copy of the string s with the first n
// non-overlapping instances of old replaced by new.
// If old is empty, it matches at the beginning of the string
// and after each UTF-8 sequence, yielding up to k+1 replacements
// for a k-rune string.
// If n < 0, there is no limit on the number of replacements.
func Replace(s, old, new string, n int) string {
if old == new || n == 0 {
return s // avoid allocation
}
// Compute number of replacements.
if m := Count(s, old); m == 0 {
return s // avoid allocation
} else if n < 0 || m < n {
n = m
}
// Apply replacements to buffer.
var b Builder
b.Grow(len(s) + n*(len(new)-len(old)))
start := 0
for i := 0; i < n; i++ {
j := start
if len(old) == 0 {
if i > 0 {
_, wid := utf8.DecodeRuneInString(s[start:])
j += wid
}
} else {
j += Index(s[start:], old)
}
b.WriteString(s[start:j])
b.WriteString(new)
start = j + len(old)
}
b.WriteString(s[start:])
return b.String()
}
// ReplaceAll returns a copy of the string s with all
// non-overlapping instances of old replaced by new.
// If old is empty, it matches at the beginning of the string
// and after each UTF-8 sequence, yielding up to k+1 replacements
// for a k-rune string.
func ReplaceAll(s, old, new string) string {
return Replace(s, old, new, -1)
}
// EqualFold reports whether s and t, interpreted as UTF-8 strings,
// are equal under Unicode case-folding, which is a more general
// form of case-insensitivity.
func EqualFold(s, t string) bool {
for s != "" && t != "" {
// Extract first rune from each string.
var sr, tr rune
if s[0] < utf8.RuneSelf {
sr, s = rune(s[0]), s[1:]
} else {
r, size := utf8.DecodeRuneInString(s)
sr, s = r, s[size:]
}
if t[0] < utf8.RuneSelf {
tr, t = rune(t[0]), t[1:]
} else {
r, size := utf8.DecodeRuneInString(t)
tr, t = r, t[size:]
}
// If they match, keep going; if not, return false.
// Easy case.
if tr == sr {
continue
}
// Make sr < tr to simplify what follows.
if tr < sr {
tr, sr = sr, tr
}
// Fast check for ASCII.
if tr < utf8.RuneSelf {
// ASCII only, sr/tr must be upper/lower case
if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
continue
}
return false
}
// General case. SimpleFold(x) returns the next equivalent rune > x
// or wraps around to smaller values.
r := unicode.SimpleFold(sr)
for r != sr && r < tr {
r = unicode.SimpleFold(r)
}
if r == tr {
continue
}
return false
}
// One string is empty. Are both?
return s == t
}
// Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
func Index(s, substr string) int {
n := len(substr)
switch {
case n == 0:
return 0
case n == 1:
return IndexByte(s, substr[0])
case n == len(s):
if substr == s {
return 0
}
return -1
case n > len(s):
return -1
case n <= bytealg.MaxLen:
// Use brute force when s and substr both are small
if len(s) <= bytealg.MaxBruteForce {
return bytealg.IndexString(s, substr)
}
c0 := substr[0]
c1 := substr[1]
i := 0
t := len(s) - n + 1
fails := 0
for i < t {
if s[i] != c0 {
// IndexByte is faster than bytealg.IndexString, so use it as long as
// we're not getting lots of false positives.
o := IndexByte(s[i+1:t], c0)
if o < 0 {
return -1
}
i += o + 1
}
if s[i+1] == c1 && s[i:i+n] == substr {
return i
}
fails++
i++
// Switch to bytealg.IndexString when IndexByte produces too many false positives.
if fails > bytealg.Cutover(i) {
r := bytealg.IndexString(s[i:], substr)
if r >= 0 {
return r + i
}
return -1
}
}
return -1
}
c0 := substr[0]
c1 := substr[1]
i := 0
t := len(s) - n + 1
fails := 0
for i < t {
if s[i] != c0 {
o := IndexByte(s[i+1:t], c0)
if o < 0 {
return -1
}
i += o + 1
}
if s[i+1] == c1 && s[i:i+n] == substr {
return i
}
i++
fails++
if fails >= 4+i>>4 && i < t {
// See comment in ../bytes/bytes.go.
j := bytealg.IndexRabinKarp(s[i:], substr)
if j < 0 {
return -1
}
return i + j
}
}
return -1
}
// Cut slices s around the first instance of sep,
// returning the text before and after sep.
// The found result reports whether sep appears in s.
// If sep does not appear in s, cut returns s, "", false.
func Cut(s, sep string) (before, after string, found bool) {
if i := Index(s, sep); i >= 0 {
return s[:i], s[i+len(sep):], true
}
return s, "", false
}
|