1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Pool is no-op under race detector, so all these tests do not work.
//go:build !race
package sync_test
import (
"runtime"
"runtime/debug"
"sort"
. "sync"
"sync/atomic"
"testing"
"time"
)
func TestPool(t *testing.T) {
// disable GC so we can control when it happens.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
var p Pool
if p.Get() != nil {
t.Fatal("expected empty")
}
// Make sure that the goroutine doesn't migrate to another P
// between Put and Get calls.
Runtime_procPin()
p.Put("a")
p.Put("b")
if g := p.Get(); g != "a" {
t.Fatalf("got %#v; want a", g)
}
if g := p.Get(); g != "b" {
t.Fatalf("got %#v; want b", g)
}
if g := p.Get(); g != nil {
t.Fatalf("got %#v; want nil", g)
}
Runtime_procUnpin()
// Put in a large number of objects so they spill into
// stealable space.
for i := 0; i < 100; i++ {
p.Put("c")
}
// After one GC, the victim cache should keep them alive.
runtime.GC()
if g := p.Get(); g != "c" {
t.Fatalf("got %#v; want c after GC", g)
}
// A second GC should drop the victim cache.
runtime.GC()
if g := p.Get(); g != nil {
t.Fatalf("got %#v; want nil after second GC", g)
}
}
func TestPoolNew(t *testing.T) {
// disable GC so we can control when it happens.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
i := 0
p := Pool{
New: func() any {
i++
return i
},
}
if v := p.Get(); v != 1 {
t.Fatalf("got %v; want 1", v)
}
if v := p.Get(); v != 2 {
t.Fatalf("got %v; want 2", v)
}
// Make sure that the goroutine doesn't migrate to another P
// between Put and Get calls.
Runtime_procPin()
p.Put(42)
if v := p.Get(); v != 42 {
t.Fatalf("got %v; want 42", v)
}
Runtime_procUnpin()
if v := p.Get(); v != 3 {
t.Fatalf("got %v; want 3", v)
}
}
// Test that Pool does not hold pointers to previously cached resources.
func TestPoolGC(t *testing.T) {
testPool(t, true)
}
// Test that Pool releases resources on GC.
func TestPoolRelease(t *testing.T) {
testPool(t, false)
}
func testPool(t *testing.T, drain bool) {
t.Skip("gccgo imprecise GC breaks this test")
var p Pool
const N = 100
loop:
for try := 0; try < 3; try++ {
if try == 1 && testing.Short() {
break
}
var fin, fin1 uint32
for i := 0; i < N; i++ {
v := new(string)
runtime.SetFinalizer(v, func(vv *string) {
atomic.AddUint32(&fin, 1)
})
p.Put(v)
}
if drain {
for i := 0; i < N; i++ {
p.Get()
}
}
for i := 0; i < 5; i++ {
runtime.GC()
time.Sleep(time.Duration(i*100+10) * time.Millisecond)
// 1 pointer can remain on stack or elsewhere
if fin1 = atomic.LoadUint32(&fin); fin1 >= N-1 {
continue loop
}
}
t.Fatalf("only %v out of %v resources are finalized on try %v", fin1, N, try)
}
}
func TestPoolStress(t *testing.T) {
const P = 10
N := int(1e6)
if testing.Short() {
N /= 100
}
var p Pool
done := make(chan bool)
for i := 0; i < P; i++ {
go func() {
var v any = 0
for j := 0; j < N; j++ {
if v == nil {
v = 0
}
p.Put(v)
v = p.Get()
if v != nil && v.(int) != 0 {
t.Errorf("expect 0, got %v", v)
break
}
}
done <- true
}()
}
for i := 0; i < P; i++ {
<-done
}
}
func TestPoolDequeue(t *testing.T) {
testPoolDequeue(t, NewPoolDequeue(16))
}
func TestPoolChain(t *testing.T) {
testPoolDequeue(t, NewPoolChain())
}
func testPoolDequeue(t *testing.T, d PoolDequeue) {
const P = 10
var N int = 2e6
if testing.Short() {
N = 1e3
}
have := make([]int32, N)
var stop int32
var wg WaitGroup
record := func(val int) {
atomic.AddInt32(&have[val], 1)
if val == N-1 {
atomic.StoreInt32(&stop, 1)
}
}
// Start P-1 consumers.
for i := 1; i < P; i++ {
wg.Add(1)
go func() {
fail := 0
for atomic.LoadInt32(&stop) == 0 {
val, ok := d.PopTail()
if ok {
fail = 0
record(val.(int))
} else {
// Speed up the test by
// allowing the pusher to run.
if fail++; fail%100 == 0 {
runtime.Gosched()
}
}
}
wg.Done()
}()
}
// Start 1 producer.
nPopHead := 0
wg.Add(1)
go func() {
for j := 0; j < N; j++ {
for !d.PushHead(j) {
// Allow a popper to run.
runtime.Gosched()
}
if j%10 == 0 {
val, ok := d.PopHead()
if ok {
nPopHead++
record(val.(int))
}
}
}
wg.Done()
}()
wg.Wait()
// Check results.
for i, count := range have {
if count != 1 {
t.Errorf("expected have[%d] = 1, got %d", i, count)
}
}
// Check that at least some PopHeads succeeded. We skip this
// check in short mode because it's common enough that the
// queue will stay nearly empty all the time and a PopTail
// will happen during the window between every PushHead and
// PopHead.
if !testing.Short() && nPopHead == 0 {
t.Errorf("popHead never succeeded")
}
}
func BenchmarkPool(b *testing.B) {
var p Pool
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
p.Put(1)
p.Get()
}
})
}
func BenchmarkPoolOverflow(b *testing.B) {
var p Pool
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
for b := 0; b < 100; b++ {
p.Put(1)
}
for b := 0; b < 100; b++ {
p.Get()
}
}
})
}
// Simulate object starvation in order to force Ps to steal objects
// from other Ps.
func BenchmarkPoolStarvation(b *testing.B) {
var p Pool
count := 100
// Reduce number of putted objects by 33 %. It creates objects starvation
// that force P-local storage to steal objects from other Ps.
countStarved := count - int(float32(count)*0.33)
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
for b := 0; b < countStarved; b++ {
p.Put(1)
}
for b := 0; b < count; b++ {
p.Get()
}
}
})
}
var globalSink any
func BenchmarkPoolSTW(b *testing.B) {
// Take control of GC.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
var mstats runtime.MemStats
var pauses []uint64
var p Pool
for i := 0; i < b.N; i++ {
// Put a large number of items into a pool.
const N = 100000
var item any = 42
for i := 0; i < N; i++ {
p.Put(item)
}
// Do a GC.
runtime.GC()
// Record pause time.
runtime.ReadMemStats(&mstats)
pauses = append(pauses, mstats.PauseNs[(mstats.NumGC+255)%256])
}
// Get pause time stats.
sort.Slice(pauses, func(i, j int) bool { return pauses[i] < pauses[j] })
var total uint64
for _, ns := range pauses {
total += ns
}
// ns/op for this benchmark is average STW time.
b.ReportMetric(float64(total)/float64(b.N), "ns/op")
b.ReportMetric(float64(pauses[len(pauses)*95/100]), "p95-ns/STW")
b.ReportMetric(float64(pauses[len(pauses)*50/100]), "p50-ns/STW")
}
func BenchmarkPoolExpensiveNew(b *testing.B) {
// Populate a pool with items that are expensive to construct
// to stress pool cleanup and subsequent reconstruction.
// Create a ballast so the GC has a non-zero heap size and
// runs at reasonable times.
globalSink = make([]byte, 8<<20)
defer func() { globalSink = nil }()
// Create a pool that's "expensive" to fill.
var p Pool
var nNew uint64
p.New = func() any {
atomic.AddUint64(&nNew, 1)
time.Sleep(time.Millisecond)
return 42
}
var mstats1, mstats2 runtime.MemStats
runtime.ReadMemStats(&mstats1)
b.RunParallel(func(pb *testing.PB) {
// Simulate 100X the number of goroutines having items
// checked out from the Pool simultaneously.
items := make([]any, 100)
var sink []byte
for pb.Next() {
// Stress the pool.
for i := range items {
items[i] = p.Get()
// Simulate doing some work with this
// item checked out.
sink = make([]byte, 32<<10)
}
for i, v := range items {
p.Put(v)
items[i] = nil
}
}
_ = sink
})
runtime.ReadMemStats(&mstats2)
b.ReportMetric(float64(mstats2.NumGC-mstats1.NumGC)/float64(b.N), "GCs/op")
b.ReportMetric(float64(nNew)/float64(b.N), "New/op")
}
|