1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package time_test
import (
"errors"
"fmt"
"internal/testenv"
"math/rand"
"runtime"
"strings"
"sync"
"sync/atomic"
"testing"
. "time"
)
// Go runtime uses different Windows timers for time.Now and sleeping.
// These can tick at different frequencies and can arrive out of sync.
// The effect can be seen, for example, as time.Sleep(100ms) is actually
// shorter then 100ms when measured as difference between time.Now before and
// after time.Sleep call. This was observed on Windows XP SP3 (windows/386).
// windowsInaccuracy is to ignore such errors.
const windowsInaccuracy = 17 * Millisecond
func TestSleep(t *testing.T) {
const delay = 100 * Millisecond
go func() {
Sleep(delay / 2)
Interrupt()
}()
start := Now()
Sleep(delay)
delayadj := delay
if runtime.GOOS == "windows" {
delayadj -= windowsInaccuracy
}
duration := Now().Sub(start)
if duration < delayadj {
t.Fatalf("Sleep(%s) slept for only %s", delay, duration)
}
}
// Test the basic function calling behavior. Correct queueing
// behavior is tested elsewhere, since After and AfterFunc share
// the same code.
func TestAfterFunc(t *testing.T) {
i := 10
c := make(chan bool)
var f func()
f = func() {
i--
if i >= 0 {
AfterFunc(0, f)
Sleep(1 * Second)
} else {
c <- true
}
}
AfterFunc(0, f)
<-c
}
func TestAfterStress(t *testing.T) {
stop := uint32(0)
go func() {
for atomic.LoadUint32(&stop) == 0 {
runtime.GC()
// Yield so that the OS can wake up the timer thread,
// so that it can generate channel sends for the main goroutine,
// which will eventually set stop = 1 for us.
Sleep(Nanosecond)
}
}()
ticker := NewTicker(1)
for i := 0; i < 100; i++ {
<-ticker.C
}
ticker.Stop()
atomic.StoreUint32(&stop, 1)
}
func benchmark(b *testing.B, bench func(n int)) {
// Create equal number of garbage timers on each P before starting
// the benchmark.
var wg sync.WaitGroup
garbageAll := make([][]*Timer, runtime.GOMAXPROCS(0))
for i := range garbageAll {
wg.Add(1)
go func(i int) {
defer wg.Done()
garbage := make([]*Timer, 1<<15)
for j := range garbage {
garbage[j] = AfterFunc(Hour, nil)
}
garbageAll[i] = garbage
}(i)
}
wg.Wait()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
bench(1000)
}
})
b.StopTimer()
for _, garbage := range garbageAll {
for _, t := range garbage {
t.Stop()
}
}
}
func BenchmarkAfterFunc(b *testing.B) {
benchmark(b, func(n int) {
c := make(chan bool)
var f func()
f = func() {
n--
if n >= 0 {
AfterFunc(0, f)
} else {
c <- true
}
}
AfterFunc(0, f)
<-c
})
}
func BenchmarkAfter(b *testing.B) {
benchmark(b, func(n int) {
for i := 0; i < n; i++ {
<-After(1)
}
})
}
func BenchmarkStop(b *testing.B) {
benchmark(b, func(n int) {
for i := 0; i < n; i++ {
NewTimer(1 * Second).Stop()
}
})
}
func BenchmarkSimultaneousAfterFunc(b *testing.B) {
benchmark(b, func(n int) {
var wg sync.WaitGroup
wg.Add(n)
for i := 0; i < n; i++ {
AfterFunc(0, wg.Done)
}
wg.Wait()
})
}
func BenchmarkStartStop(b *testing.B) {
benchmark(b, func(n int) {
timers := make([]*Timer, n)
for i := 0; i < n; i++ {
timers[i] = AfterFunc(Hour, nil)
}
for i := 0; i < n; i++ {
timers[i].Stop()
}
})
}
func BenchmarkReset(b *testing.B) {
benchmark(b, func(n int) {
t := NewTimer(Hour)
for i := 0; i < n; i++ {
t.Reset(Hour)
}
t.Stop()
})
}
func BenchmarkSleep(b *testing.B) {
benchmark(b, func(n int) {
var wg sync.WaitGroup
wg.Add(n)
for i := 0; i < n; i++ {
go func() {
Sleep(Nanosecond)
wg.Done()
}()
}
wg.Wait()
})
}
func TestAfter(t *testing.T) {
const delay = 100 * Millisecond
start := Now()
end := <-After(delay)
delayadj := delay
if runtime.GOOS == "windows" {
delayadj -= windowsInaccuracy
}
if duration := Now().Sub(start); duration < delayadj {
t.Fatalf("After(%s) slept for only %d ns", delay, duration)
}
if min := start.Add(delayadj); end.Before(min) {
t.Fatalf("After(%s) expect >= %s, got %s", delay, min, end)
}
}
func TestAfterTick(t *testing.T) {
const Count = 10
Delta := 100 * Millisecond
if testing.Short() {
Delta = 10 * Millisecond
}
t0 := Now()
for i := 0; i < Count; i++ {
<-After(Delta)
}
t1 := Now()
d := t1.Sub(t0)
target := Delta * Count
if d < target*9/10 {
t.Fatalf("%d ticks of %s too fast: took %s, expected %s", Count, Delta, d, target)
}
if !testing.Short() && d > target*30/10 {
t.Fatalf("%d ticks of %s too slow: took %s, expected %s", Count, Delta, d, target)
}
}
func TestAfterStop(t *testing.T) {
// We want to test that we stop a timer before it runs.
// We also want to test that it didn't run after a longer timer.
// Since we don't want the test to run for too long, we don't
// want to use lengthy times. That makes the test inherently flaky.
// So only report an error if it fails five times in a row.
var errs []string
logErrs := func() {
for _, e := range errs {
t.Log(e)
}
}
for i := 0; i < 5; i++ {
AfterFunc(100*Millisecond, func() {})
t0 := NewTimer(50 * Millisecond)
c1 := make(chan bool, 1)
t1 := AfterFunc(150*Millisecond, func() { c1 <- true })
c2 := After(200 * Millisecond)
if !t0.Stop() {
errs = append(errs, "failed to stop event 0")
continue
}
if !t1.Stop() {
errs = append(errs, "failed to stop event 1")
continue
}
<-c2
select {
case <-t0.C:
errs = append(errs, "event 0 was not stopped")
continue
case <-c1:
errs = append(errs, "event 1 was not stopped")
continue
default:
}
if t1.Stop() {
errs = append(errs, "Stop returned true twice")
continue
}
// Test passed, so all done.
if len(errs) > 0 {
t.Logf("saw %d errors, ignoring to avoid flakiness", len(errs))
logErrs()
}
return
}
t.Errorf("saw %d errors", len(errs))
logErrs()
}
func TestAfterQueuing(t *testing.T) {
// This test flakes out on some systems,
// so we'll try it a few times before declaring it a failure.
const attempts = 5
err := errors.New("!=nil")
for i := 0; i < attempts && err != nil; i++ {
delta := Duration(20+i*50) * Millisecond
if err = testAfterQueuing(delta); err != nil {
t.Logf("attempt %v failed: %v", i, err)
}
}
if err != nil {
t.Fatal(err)
}
}
// For gccgo omit 0 for now because it can take too long to start the
var slots = []int{5, 3, 6, 6, 6, 1, 1, 2, 7, 9, 4, 8 /*0*/}
type afterResult struct {
slot int
t Time
}
func await(slot int, result chan<- afterResult, ac <-chan Time) {
result <- afterResult{slot, <-ac}
}
func testAfterQueuing(delta Duration) error {
// make the result channel buffered because we don't want
// to depend on channel queueing semantics that might
// possibly change in the future.
result := make(chan afterResult, len(slots))
t0 := Now()
for _, slot := range slots {
go await(slot, result, After(Duration(slot)*delta))
}
var order []int
var times []Time
for range slots {
r := <-result
order = append(order, r.slot)
times = append(times, r.t)
}
for i := range order {
if i > 0 && order[i] < order[i-1] {
return fmt.Errorf("After calls returned out of order: %v", order)
}
}
for i, t := range times {
dt := t.Sub(t0)
target := Duration(order[i]) * delta
if dt < target-delta/2 || dt > target+delta*10 {
return fmt.Errorf("After(%s) arrived at %s, expected [%s,%s]", target, dt, target-delta/2, target+delta*10)
}
}
return nil
}
func TestTimerStopStress(t *testing.T) {
if testing.Short() {
return
}
for i := 0; i < 100; i++ {
go func(i int) {
timer := AfterFunc(2*Second, func() {
t.Errorf("timer %d was not stopped", i)
})
Sleep(1 * Second)
timer.Stop()
}(i)
}
Sleep(3 * Second)
}
func TestSleepZeroDeadlock(t *testing.T) {
// Sleep(0) used to hang, the sequence of events was as follows.
// Sleep(0) sets G's status to Gwaiting, but then immediately returns leaving the status.
// Then the goroutine calls e.g. new and falls down into the scheduler due to pending GC.
// After the GC nobody wakes up the goroutine from Gwaiting status.
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(4))
c := make(chan bool)
go func() {
for i := 0; i < 100; i++ {
runtime.GC()
}
c <- true
}()
for i := 0; i < 100; i++ {
Sleep(0)
tmp := make(chan bool, 1)
tmp <- true
<-tmp
}
<-c
}
func testReset(d Duration) error {
t0 := NewTimer(2 * d)
Sleep(d)
if !t0.Reset(3 * d) {
return errors.New("resetting unfired timer returned false")
}
Sleep(2 * d)
select {
case <-t0.C:
return errors.New("timer fired early")
default:
}
Sleep(2 * d)
select {
case <-t0.C:
default:
return errors.New("reset timer did not fire")
}
if t0.Reset(50 * Millisecond) {
return errors.New("resetting expired timer returned true")
}
return nil
}
func TestReset(t *testing.T) {
// We try to run this test with increasingly larger multiples
// until one works so slow, loaded hardware isn't as flaky,
// but without slowing down fast machines unnecessarily.
const unit = 25 * Millisecond
tries := []Duration{
1 * unit,
3 * unit,
7 * unit,
15 * unit,
}
var err error
for _, d := range tries {
err = testReset(d)
if err == nil {
t.Logf("passed using duration %v", d)
return
}
}
t.Error(err)
}
// Test that sleeping (via Sleep or Timer) for an interval so large it
// overflows does not result in a short sleep duration. Nor does it interfere
// with execution of other timers. If it does, timers in this or subsequent
// tests may not fire.
func TestOverflowSleep(t *testing.T) {
const big = Duration(int64(1<<63 - 1))
go func() {
Sleep(big)
// On failure, this may return after the test has completed, so
// we need to panic instead.
panic("big sleep returned")
}()
select {
case <-After(big):
t.Fatalf("big timeout fired")
case <-After(25 * Millisecond):
// OK
}
const neg = Duration(-1 << 63)
Sleep(neg) // Returns immediately.
select {
case <-After(neg):
// OK
case <-After(1 * Second):
t.Fatalf("negative timeout didn't fire")
}
}
// Test that a panic while deleting a timer does not leave
// the timers mutex held, deadlocking a ticker.Stop in a defer.
func TestIssue5745(t *testing.T) {
ticker := NewTicker(Hour)
defer func() {
// would deadlock here before the fix due to
// lock taken before the segfault.
ticker.Stop()
if r := recover(); r == nil {
t.Error("Expected panic, but none happened.")
}
}()
// cause a panic due to a segfault
var timer *Timer
timer.Stop()
t.Error("Should be unreachable.")
}
func TestOverflowPeriodRuntimeTimer(t *testing.T) {
// This may hang forever if timers are broken. See comment near
// the end of CheckRuntimeTimerOverflow in internal_test.go.
CheckRuntimeTimerPeriodOverflow()
}
func checkZeroPanicString(t *testing.T) {
e := recover()
s, _ := e.(string)
if want := "called on uninitialized Timer"; !strings.Contains(s, want) {
t.Errorf("panic = %v; want substring %q", e, want)
}
}
func TestZeroTimerResetPanics(t *testing.T) {
defer checkZeroPanicString(t)
var tr Timer
tr.Reset(1)
}
func TestZeroTimerStopPanics(t *testing.T) {
defer checkZeroPanicString(t)
var tr Timer
tr.Stop()
}
// Test that zero duration timers aren't missed by the scheduler. Regression test for issue 44868.
func TestZeroTimer(t *testing.T) {
if testing.Short() {
t.Skip("-short")
}
for i := 0; i < 1000000; i++ {
s := Now()
ti := NewTimer(0)
<-ti.C
if diff := Since(s); diff > 2*Second {
t.Errorf("Expected time to get value from Timer channel in less than 2 sec, took %v", diff)
}
}
}
// Test that rapidly moving a timer earlier doesn't cause it to get dropped.
// Issue 47329.
func TestTimerModifiedEarlier(t *testing.T) {
if runtime.GOOS == "plan9" && runtime.GOARCH == "arm" {
testenv.SkipFlaky(t, 50470)
}
past := Until(Unix(0, 0))
count := 1000
fail := 0
for i := 0; i < count; i++ {
timer := NewTimer(Hour)
for j := 0; j < 10; j++ {
if !timer.Stop() {
<-timer.C
}
timer.Reset(past)
}
deadline := NewTimer(10 * Second)
defer deadline.Stop()
now := Now()
select {
case <-timer.C:
if since := Since(now); since > 8*Second {
t.Errorf("timer took too long (%v)", since)
fail++
}
case <-deadline.C:
t.Error("deadline expired")
}
}
if fail > 0 {
t.Errorf("%d failures", fail)
}
}
// Test that rapidly moving timers earlier and later doesn't cause
// some of the sleep times to be lost.
// Issue 47762
func TestAdjustTimers(t *testing.T) {
var rnd = rand.New(rand.NewSource(Now().UnixNano()))
timers := make([]*Timer, 100)
states := make([]int, len(timers))
indices := rnd.Perm(len(timers))
for len(indices) != 0 {
var ii = rnd.Intn(len(indices))
var i = indices[ii]
var timer = timers[i]
var state = states[i]
states[i]++
switch state {
case 0:
timers[i] = NewTimer(0)
case 1:
<-timer.C // Timer is now idle.
// Reset to various long durations, which we'll cancel.
case 2:
if timer.Reset(1 * Minute) {
panic("shouldn't be active (1)")
}
case 4:
if timer.Reset(3 * Minute) {
panic("shouldn't be active (3)")
}
case 6:
if timer.Reset(2 * Minute) {
panic("shouldn't be active (2)")
}
// Stop and drain a long-duration timer.
case 3, 5, 7:
if !timer.Stop() {
t.Logf("timer %d state %d Stop returned false", i, state)
<-timer.C
}
// Start a short-duration timer we expect to select without blocking.
case 8:
if timer.Reset(0) {
t.Fatal("timer.Reset returned true")
}
case 9:
now := Now()
<-timer.C
dur := Since(now)
if dur > 750*Millisecond {
t.Errorf("timer %d took %v to complete", i, dur)
}
// Timer is done. Swap with tail and remove.
case 10:
indices[ii] = indices[len(indices)-1]
indices = indices[:len(indices)-1]
}
}
}
// Benchmark timer latency when the thread that creates the timer is busy with
// other work and the timers must be serviced by other threads.
// https://golang.org/issue/38860
func BenchmarkParallelTimerLatency(b *testing.B) {
gmp := runtime.GOMAXPROCS(0)
if gmp < 2 || runtime.NumCPU() < gmp {
b.Skip("skipping with GOMAXPROCS < 2 or NumCPU < GOMAXPROCS")
}
// allocate memory now to avoid GC interference later.
timerCount := gmp - 1
stats := make([]struct {
sum float64
max Duration
count int64
_ [5]int64 // cache line padding
}, timerCount)
// Ensure the time to start new threads to service timers will not pollute
// the results.
warmupScheduler(gmp)
// Note that other than the AfterFunc calls this benchmark is measuring it
// avoids using any other timers. In particular, the main goroutine uses
// doWork to spin for some durations because up through Go 1.15 if all
// threads are idle sysmon could leave deep sleep when we wake.
// Ensure sysmon is in deep sleep.
doWork(30 * Millisecond)
b.ResetTimer()
const delay = Millisecond
var wg sync.WaitGroup
var count int32
for i := 0; i < b.N; i++ {
wg.Add(timerCount)
atomic.StoreInt32(&count, 0)
for j := 0; j < timerCount; j++ {
j := j
expectedWakeup := Now().Add(delay)
AfterFunc(delay, func() {
late := Since(expectedWakeup)
if late < 0 {
late = 0
}
stats[j].count++
stats[j].sum += float64(late.Nanoseconds())
if late > stats[j].max {
stats[j].max = late
}
atomic.AddInt32(&count, 1)
for atomic.LoadInt32(&count) < int32(timerCount) {
// spin until all timers fired
}
wg.Done()
})
}
for atomic.LoadInt32(&count) < int32(timerCount) {
// spin until all timers fired
}
wg.Wait()
// Spin for a bit to let the other scheduler threads go idle before the
// next round.
doWork(Millisecond)
}
var total float64
var samples float64
max := Duration(0)
for _, s := range stats {
if s.max > max {
max = s.max
}
total += s.sum
samples += float64(s.count)
}
b.ReportMetric(0, "ns/op")
b.ReportMetric(total/samples, "avg-late-ns")
b.ReportMetric(float64(max.Nanoseconds()), "max-late-ns")
}
// Benchmark timer latency with staggered wakeup times and varying CPU bound
// workloads. https://golang.org/issue/38860
func BenchmarkStaggeredTickerLatency(b *testing.B) {
gmp := runtime.GOMAXPROCS(0)
if gmp < 2 || runtime.NumCPU() < gmp {
b.Skip("skipping with GOMAXPROCS < 2 or NumCPU < GOMAXPROCS")
}
const delay = 3 * Millisecond
for _, dur := range []Duration{300 * Microsecond, 2 * Millisecond} {
b.Run(fmt.Sprintf("work-dur=%s", dur), func(b *testing.B) {
for tickersPerP := 1; tickersPerP < int(delay/dur)+1; tickersPerP++ {
tickerCount := gmp * tickersPerP
b.Run(fmt.Sprintf("tickers-per-P=%d", tickersPerP), func(b *testing.B) {
// allocate memory now to avoid GC interference later.
stats := make([]struct {
sum float64
max Duration
count int64
_ [5]int64 // cache line padding
}, tickerCount)
// Ensure the time to start new threads to service timers
// will not pollute the results.
warmupScheduler(gmp)
b.ResetTimer()
var wg sync.WaitGroup
wg.Add(tickerCount)
for j := 0; j < tickerCount; j++ {
j := j
doWork(delay / Duration(gmp))
expectedWakeup := Now().Add(delay)
ticker := NewTicker(delay)
go func(c int, ticker *Ticker, firstWake Time) {
defer ticker.Stop()
for ; c > 0; c-- {
<-ticker.C
late := Since(expectedWakeup)
if late < 0 {
late = 0
}
stats[j].count++
stats[j].sum += float64(late.Nanoseconds())
if late > stats[j].max {
stats[j].max = late
}
expectedWakeup = expectedWakeup.Add(delay)
doWork(dur)
}
wg.Done()
}(b.N, ticker, expectedWakeup)
}
wg.Wait()
var total float64
var samples float64
max := Duration(0)
for _, s := range stats {
if s.max > max {
max = s.max
}
total += s.sum
samples += float64(s.count)
}
b.ReportMetric(0, "ns/op")
b.ReportMetric(total/samples, "avg-late-ns")
b.ReportMetric(float64(max.Nanoseconds()), "max-late-ns")
})
}
})
}
}
// warmupScheduler ensures the scheduler has at least targetThreadCount threads
// in its thread pool.
func warmupScheduler(targetThreadCount int) {
var wg sync.WaitGroup
var count int32
for i := 0; i < targetThreadCount; i++ {
wg.Add(1)
go func() {
atomic.AddInt32(&count, 1)
for atomic.LoadInt32(&count) < int32(targetThreadCount) {
// spin until all threads started
}
// spin a bit more to ensure they are all running on separate CPUs.
doWork(Millisecond)
wg.Done()
}()
}
wg.Wait()
}
func doWork(dur Duration) {
start := Now()
for Since(start) < dur {
}
}
|