1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
|
/* 128 bit integer arithmetic.
*
* Not optimized for speed.
*
* Copyright: Copyright D Language Foundation 2022.
* License: $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
* Authors: Walter Bright
* Source: $(DRUNTIMESRC core/_int128.d)
*/
module core.int128;
nothrow:
@safe:
@nogc:
alias I = long;
alias U = ulong;
enum Ubits = uint(U.sizeof * 8);
version (X86_64) private enum Cent_alignment = 16;
else private enum Cent_alignment = (size_t.sizeof * 2);
align(Cent_alignment) struct Cent
{
version (LittleEndian)
{
U lo; // low 64 bits
U hi; // high 64 bits
}
else
{
U hi; // high 64 bits
U lo; // low 64 bits
}
}
enum Cent One = { lo:1 };
enum Cent Zero = { lo:0 };
enum Cent MinusOne = neg(One);
/*****************************
* Test against 0
* Params:
* c = Cent to test
* Returns:
* true if != 0
*/
pure
bool tst(Cent c)
{
return c.hi || c.lo;
}
/*****************************
* Complement
* Params:
* c = Cent to complement
* Returns:
* complemented value
*/
pure
Cent com(Cent c)
{
c.lo = ~c.lo;
c.hi = ~c.hi;
return c;
}
/*****************************
* Negate
* Params:
* c = Cent to negate
* Returns:
* negated value
*/
pure
Cent neg(Cent c)
{
if (c.lo == 0)
c.hi = -c.hi;
else
{
c.lo = -c.lo;
c.hi = ~c.hi;
}
return c;
}
/*****************************
* Increment
* Params:
* c = Cent to increment
* Returns:
* incremented value
*/
pure
Cent inc(Cent c)
{
return add(c, One);
}
/*****************************
* Decrement
* Params:
* c = Cent to decrement
* Returns:
* incremented value
*/
pure
Cent dec(Cent c)
{
return sub(c, One);
}
/*****************************
* Shift left one bit
* Params:
* c = Cent to shift
* Returns:
* shifted value
*/
pure
Cent shl1(Cent c)
{
c.hi = (c.hi << 1) | (cast(I)c.lo < 0);
c.lo <<= 1;
return c;
}
/*****************************
* Unsigned shift right one bit
* Params:
* c = Cent to shift
* Returns:
* shifted value
*/
pure
Cent shr1(Cent c)
{
c.lo = (c.lo >> 1) | ((c.hi & 1) << (Ubits - 1));
c.hi >>= 1;
return c;
}
/*****************************
* Arithmetic shift right one bit
* Params:
* c = Cent to shift
* Returns:
* shifted value
*/
pure
Cent sar1(Cent c)
{
c.lo = (c.lo >> 1) | ((c.hi & 1) << (Ubits - 1));
c.hi = cast(I)c.hi >> 1;
return c;
}
/*****************************
* Shift left n bits
* Params:
* c = Cent to shift
* n = number of bits to shift
* Returns:
* shifted value
*/
pure
Cent shl(Cent c, uint n)
{
if (n >= Ubits * 2)
return Zero;
if (n >= Ubits)
{
c.hi = c.lo << (n - Ubits);
c.lo = 0;
}
else
{
c.hi = ((c.hi << n) | (c.lo >> (Ubits - n - 1) >> 1));
c.lo = c.lo << n;
}
return c;
}
/*****************************
* Unsigned shift right n bits
* Params:
* c = Cent to shift
* n = number of bits to shift
* Returns:
* shifted value
*/
pure
Cent shr(Cent c, uint n)
{
if (n >= Ubits * 2)
return Zero;
if (n >= Ubits)
{
c.lo = c.hi >> (n - Ubits);
c.hi = 0;
}
else
{
c.lo = ((c.lo >> n) | (c.hi << (Ubits - n - 1) << 1));
c.hi = c.hi >> n;
}
return c;
}
/*****************************
* Arithmetic shift right n bits
* Params:
* c = Cent to shift
* n = number of bits to shift
* Returns:
* shifted value
*/
pure
Cent sar(Cent c, uint n)
{
const signmask = -(c.hi >> (Ubits - 1));
const signshift = (Ubits * 2) - n;
c = shr(c, n);
// Sign extend all bits beyond the precision of Cent.
if (n >= Ubits * 2)
{
c.hi = signmask;
c.lo = signmask;
}
else if (signshift >= Ubits * 2)
{
}
else if (signshift >= Ubits)
{
c.hi &= ~(U.max << (signshift - Ubits));
c.hi |= signmask << (signshift - Ubits);
}
else
{
c.hi = signmask;
c.lo &= ~(U.max << signshift);
c.lo |= signmask << signshift;
}
return c;
}
/*****************************
* Rotate left one bit
* Params:
* c = Cent to rotate
* Returns:
* rotated value
*/
pure
Cent rol1(Cent c)
{
int carry = cast(I)c.hi < 0;
c.hi = (c.hi << 1) | (cast(I)c.lo < 0);
c.lo = (c.lo << 1) | carry;
return c;
}
/*****************************
* Rotate right one bit
* Params:
* c = Cent to rotate
* Returns:
* rotated value
*/
pure
Cent ror1(Cent c)
{
int carry = c.lo & 1;
c.lo = (c.lo >> 1) | (cast(U)(c.hi & 1) << (Ubits - 1));
c.hi = (c.hi >> 1) | (cast(U)carry << (Ubits - 1));
return c;
}
/*****************************
* Rotate left n bits
* Params:
* c = Cent to rotate
* n = number of bits to rotate
* Returns:
* rotated value
*/
pure
Cent rol(Cent c, uint n)
{
n &= Ubits * 2 - 1;
Cent l = shl(c, n);
Cent r = shr(c, Ubits * 2 - n);
return or(l, r);
}
/*****************************
* Rotate right n bits
* Params:
* c = Cent to rotate
* n = number of bits to rotate
* Returns:
* rotated value
*/
pure
Cent ror(Cent c, uint n)
{
n &= Ubits * 2 - 1;
Cent r = shr(c, n);
Cent l = shl(c, Ubits * 2 - n);
return or(r, l);
}
/****************************
* And c1 & c2.
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* c1 & c2
*/
pure
Cent and(Cent c1, Cent c2)
{
const Cent ret = { lo:c1.lo & c2.lo, hi:c1.hi & c2.hi };
return ret;
}
/****************************
* Or c1 | c2.
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* c1 | c2
*/
pure
Cent or(Cent c1, Cent c2)
{
const Cent ret = { lo:c1.lo | c2.lo, hi:c1.hi | c2.hi };
return ret;
}
/****************************
* Xor c1 ^ c2.
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* c1 ^ c2
*/
pure
Cent xor(Cent c1, Cent c2)
{
const Cent ret = { lo:c1.lo ^ c2.lo, hi:c1.hi ^ c2.hi };
return ret;
}
/****************************
* Add c1 to c2.
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* c1 + c2
*/
pure
Cent add(Cent c1, Cent c2)
{
U r = cast(U)(c1.lo + c2.lo);
const Cent ret = { lo:r, hi:cast(U)(c1.hi + c2.hi + (r < c1.lo)) };
return ret;
}
/****************************
* Subtract c2 from c1.
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* c1 - c2
*/
pure
Cent sub(Cent c1, Cent c2)
{
return add(c1, neg(c2));
}
/****************************
* Multiply c1 * c2.
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* c1 * c2
*/
pure
Cent mul(Cent c1, Cent c2)
{
enum mulmask = (1UL << (Ubits / 2)) - 1;
enum mulshift = Ubits / 2;
// This algorithm splits the operands into 4 words, then computes and sums
// the partial products of each part.
const c2l0 = c2.lo & mulmask;
const c2l1 = c2.lo >> mulshift;
const c2h0 = c2.hi & mulmask;
const c2h1 = c2.hi >> mulshift;
const c1l0 = c1.lo & mulmask;
U r0 = c1l0 * c2l0;
U r1 = c1l0 * c2l1 + (r0 >> mulshift);
U r2 = c1l0 * c2h0 + (r1 >> mulshift);
U r3 = c1l0 * c2h1 + (r2 >> mulshift);
const c1l1 = c1.lo >> mulshift;
r1 = c1l1 * c2l0 + (r1 & mulmask);
r2 = c1l1 * c2l1 + (r2 & mulmask) + (r1 >> mulshift);
r3 = c1l1 * c2h0 + (r3 & mulmask) + (r2 >> mulshift);
const c1h0 = c1.hi & mulmask;
r2 = c1h0 * c2l0 + (r2 & mulmask);
r3 = c1h0 * c2l1 + (r3 & mulmask) + (r2 >> mulshift);
const c1h1 = c1.hi >> mulshift;
r3 = c1h1 * c2l0 + (r3 & mulmask);
const Cent ret = { lo:(r0 & mulmask) + (r1 & mulmask) * (mulmask + 1),
hi:(r2 & mulmask) + (r3 & mulmask) * (mulmask + 1) };
return ret;
}
/****************************
* Unsigned divide c1 / c2.
* Params:
* c1 = dividend
* c2 = divisor
* Returns:
* quotient c1 / c2
*/
pure
Cent udiv(Cent c1, Cent c2)
{
Cent modulus;
return udivmod(c1, c2, modulus);
}
/****************************
* Unsigned divide c1 / c2. The remainder after division is stored to modulus.
* Params:
* c1 = dividend
* c2 = divisor
* modulus = set to c1 % c2
* Returns:
* quotient c1 / c2
*/
pure
Cent udivmod(Cent c1, Cent c2, out Cent modulus)
{
//printf("udiv c1(%llx,%llx) c2(%llx,%llx)\n", c1.lo, c1.hi, c2.lo, c2.hi);
// Based on "Unsigned Doubleword Division" in Hacker's Delight
import core.bitop;
// Divides a 128-bit dividend by a 64-bit divisor.
// The result must fit in 64 bits.
static U udivmod128_64(Cent c1, U c2, out U modulus)
{
// We work in base 2^^32
enum base = 1UL << 32;
enum divmask = (1UL << (Ubits / 2)) - 1;
enum divshift = Ubits / 2;
// Check for overflow and divide by 0
if (c1.hi >= c2)
{
modulus = 0UL;
return ~0UL;
}
// Computes [num1 num0] / den
static uint udiv96_64(U num1, uint num0, U den)
{
// Extract both digits of the denominator
const den1 = cast(uint)(den >> divshift);
const den0 = cast(uint)(den & divmask);
// Estimate ret as num1 / den1, and then correct it
U ret = num1 / den1;
const t2 = (num1 % den1) * base + num0;
const t1 = ret * den0;
if (t1 > t2)
ret -= (t1 - t2 > den) ? 2 : 1;
return cast(uint)ret;
}
// Determine the normalization factor. We multiply c2 by this, so that its leading
// digit is at least half base. In binary this means just shifting left by the number
// of leading zeros, so that there's a 1 in the MSB.
// We also shift number by the same amount. This cannot overflow because c1.hi < c2.
const shift = (Ubits - 1) - bsr(c2);
c2 <<= shift;
U num2 = c1.hi;
num2 <<= shift;
num2 |= (c1.lo >> (-shift & 63)) & (-cast(I)shift >> 63);
c1.lo <<= shift;
// Extract the low digits of the numerator (after normalizing)
const num1 = cast(uint)(c1.lo >> divshift);
const num0 = cast(uint)(c1.lo & divmask);
// Compute q1 = [num2 num1] / c2
const q1 = udiv96_64(num2, num1, c2);
// Compute the true (partial) remainder
const rem = num2 * base + num1 - q1 * c2;
// Compute q0 = [rem num0] / c2
const q0 = udiv96_64(rem, num0, c2);
modulus = (rem * base + num0 - q0 * c2) >> shift;
return (cast(U)q1 << divshift) | q0;
}
// Special cases
if (!tst(c2))
{
// Divide by zero
modulus = Zero;
return com(modulus);
}
if (c1.hi == 0 && c2.hi == 0)
{
// Single precision divide
const Cent rem = { lo:c1.lo % c2.lo };
modulus = rem;
const Cent ret = { lo:c1.lo / c2.lo };
return ret;
}
if (c1.hi == 0)
{
// Numerator is smaller than the divisor
modulus = c1;
return Zero;
}
if (c2.hi == 0)
{
// Divisor is a 64-bit value, so we just need one 128/64 division.
// If c1 / c2 would overflow, break c1 up into two halves.
const q1 = (c1.hi < c2.lo) ? 0 : (c1.hi / c2.lo);
if (q1)
c1.hi = c1.hi % c2.lo;
Cent rem;
const q0 = udivmod128_64(c1, c2.lo, rem.lo);
modulus = rem;
const Cent ret = { lo:q0, hi:q1 };
return ret;
}
// Full cent precision division.
// Here c2 >= 2^^64
// We know that c2.hi != 0, so count leading zeros is OK
// We have 0 <= shift <= 63
const shift = (Ubits - 1) - bsr(c2.hi);
// Normalize the divisor so its MSB is 1
// v1 = (c2 << shift) >> 64
U v1 = shl(c2, shift).hi;
// To ensure no overflow.
Cent u1 = shr1(c1);
// Get quotient from divide unsigned operation.
U rem_ignored;
const Cent q1 = { lo:udivmod128_64(u1, v1, rem_ignored) };
// Undo normalization and division of c1 by 2.
Cent quotient = shr(shl(q1, shift), 63);
// Make quotient correct or too small by 1
if (tst(quotient))
quotient = dec(quotient);
// Now quotient is correct.
// Compute rem = c1 - (quotient * c2);
Cent rem = sub(c1, mul(quotient, c2));
// Check if remainder is larger than the divisor
if (uge(rem, c2))
{
// Increment quotient
quotient = inc(quotient);
// Subtract c2 from remainder
rem = sub(rem, c2);
}
modulus = rem;
//printf("quotient "); print(quotient);
//printf("modulus "); print(modulus);
return quotient;
}
/****************************
* Signed divide c1 / c2.
* Params:
* c1 = dividend
* c2 = divisor
* Returns:
* quotient c1 / c2
*/
pure
Cent div(Cent c1, Cent c2)
{
Cent modulus;
return divmod(c1, c2, modulus);
}
/****************************
* Signed divide c1 / c2. The remainder after division is stored to modulus.
* Params:
* c1 = dividend
* c2 = divisor
* modulus = set to c1 % c2
* Returns:
* quotient c1 / c2
*/
pure
Cent divmod(Cent c1, Cent c2, out Cent modulus)
{
/* Muck about with the signs so we can use the unsigned divide
*/
if (cast(I)c1.hi < 0)
{
if (cast(I)c2.hi < 0)
{
Cent r = udivmod(neg(c1), neg(c2), modulus);
modulus = neg(modulus);
return r;
}
Cent r = neg(udivmod(neg(c1), c2, modulus));
modulus = neg(modulus);
return r;
}
else if (cast(I)c2.hi < 0)
{
return neg(udivmod(c1, neg(c2), modulus));
}
else
return udivmod(c1, c2, modulus);
}
/****************************
* If c1 > c2 unsigned
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* true if c1 > c2
*/
pure
bool ugt(Cent c1, Cent c2)
{
return (c1.hi == c2.hi) ? (c1.lo > c2.lo) : (c1.hi > c2.hi);
}
/****************************
* If c1 >= c2 unsigned
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* true if c1 >= c2
*/
pure
bool uge(Cent c1, Cent c2)
{
return !ugt(c2, c1);
}
/****************************
* If c1 < c2 unsigned
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* true if c1 < c2
*/
pure
bool ult(Cent c1, Cent c2)
{
return ugt(c2, c1);
}
/****************************
* If c1 <= c2 unsigned
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* true if c1 <= c2
*/
pure
bool ule(Cent c1, Cent c2)
{
return !ugt(c1, c2);
}
/****************************
* If c1 > c2 signed
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* true if c1 > c2
*/
pure
bool gt(Cent c1, Cent c2)
{
return (c1.hi == c2.hi)
? (c1.lo > c2.lo)
: (cast(I)c1.hi > cast(I)c2.hi);
}
/****************************
* If c1 >= c2 signed
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* true if c1 >= c2
*/
pure
bool ge(Cent c1, Cent c2)
{
return !gt(c2, c1);
}
/****************************
* If c1 < c2 signed
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* true if c1 < c2
*/
pure
bool lt(Cent c1, Cent c2)
{
return gt(c2, c1);
}
/****************************
* If c1 <= c2 signed
* Params:
* c1 = operand 1
* c2 = operand 2
* Returns:
* true if c1 <= c2
*/
pure
bool le(Cent c1, Cent c2)
{
return !gt(c1, c2);
}
/*******************************************************/
version (unittest)
{
version (none)
{
import core.stdc.stdio;
@trusted
void print(Cent c)
{
printf("%lld, %lld\n", cast(ulong)c.lo, cast(ulong)c.hi);
printf("x%llx, x%llx\n", cast(ulong)c.lo, cast(ulong)c.hi);
}
}
}
unittest
{
const Cent C0 = Zero;
const Cent C1 = One;
const Cent C2 = { lo:2 };
const Cent C3 = { lo:3 };
const Cent C5 = { lo:5 };
const Cent C10 = { lo:10 };
const Cent C20 = { lo:20 };
const Cent C30 = { lo:30 };
const Cent C100 = { lo:100 };
const Cent Cm1 = neg(One);
const Cent Cm3 = neg(C3);
const Cent Cm10 = neg(C10);
const Cent C3_1 = { lo:1, hi:3 };
const Cent C3_2 = { lo:2, hi:3 };
const Cent C4_8 = { lo:8, hi:4 };
const Cent C5_0 = { lo:0, hi:5 };
const Cent C7_1 = { lo:1, hi:7 };
const Cent C7_9 = { lo:9, hi:7 };
const Cent C9_3 = { lo:3, hi:9 };
const Cent C10_0 = { lo:0, hi:10 };
const Cent C10_1 = { lo:1, hi:10 };
const Cent C10_3 = { lo:3, hi:10 };
const Cent C11_3 = { lo:3, hi:11 };
const Cent C20_0 = { lo:0, hi:20 };
const Cent C90_30 = { lo:30, hi:90 };
const Cent Cm10_0 = inc(com(C10_0)); // Cent(lo=0, hi=-10);
const Cent Cm10_1 = inc(com(C10_1)); // Cent(lo=-1, hi=-11);
const Cent Cm10_3 = inc(com(C10_3)); // Cent(lo=-3, hi=-11);
const Cent Cm20_0 = inc(com(C20_0)); // Cent(lo=0, hi=-20);
enum Cent Cs_3 = { lo:3, hi:I.min };
const Cent Cbig_1 = { lo:0xa3ccac1832952398, hi:0xc3ac542864f652f8 };
const Cent Cbig_2 = { lo:0x5267b85f8a42fc20, hi:0 };
const Cent Cbig_3 = { lo:0xf0000000ffffffff, hi:0 };
/************************/
assert( ugt(C1, C0) );
assert( ult(C1, C2) );
assert( uge(C1, C0) );
assert( ule(C1, C2) );
assert( !ugt(C0, C1) );
assert( !ult(C2, C1) );
assert( !uge(C0, C1) );
assert( !ule(C2, C1) );
assert( !ugt(C1, C1) );
assert( !ult(C1, C1) );
assert( uge(C1, C1) );
assert( ule(C2, C2) );
assert( ugt(C10_3, C10_1) );
assert( ugt(C11_3, C10_3) );
assert( !ugt(C9_3, C10_3) );
assert( !ugt(C9_3, C9_3) );
assert( gt(C2, C1) );
assert( !gt(C1, C2) );
assert( !gt(C1, C1) );
assert( gt(C0, Cm1) );
assert( gt(Cm1, neg(C10)));
assert( !gt(Cm1, Cm1) );
assert( !gt(Cm1, C0) );
assert( !lt(C2, C1) );
assert( !le(C2, C1) );
assert( ge(C2, C1) );
assert(neg(C10_0) == Cm10_0);
assert(neg(C10_1) == Cm10_1);
assert(neg(C10_3) == Cm10_3);
assert(add(C7_1,C3_2) == C10_3);
assert(sub(C1,C2) == Cm1);
assert(inc(C3_1) == C3_2);
assert(dec(C3_2) == C3_1);
assert(shl(C10,0) == C10);
assert(shl(C10,Ubits) == C10_0);
assert(shl(C10,1) == C20);
assert(shl(C10,Ubits * 2) == C0);
assert(shr(C10_0,0) == C10_0);
assert(shr(C10_0,Ubits) == C10);
assert(shr(C10_0,Ubits - 1) == C20);
assert(shr(C10_0,Ubits + 1) == C5);
assert(shr(C10_0,Ubits * 2) == C0);
assert(sar(C10_0,0) == C10_0);
assert(sar(C10_0,Ubits) == C10);
assert(sar(C10_0,Ubits - 1) == C20);
assert(sar(C10_0,Ubits + 1) == C5);
assert(sar(C10_0,Ubits * 2) == C0);
assert(sar(Cm1,Ubits * 2) == Cm1);
assert(shl1(C10) == C20);
assert(shr1(C10_0) == C5_0);
assert(sar1(C10_0) == C5_0);
assert(sar1(Cm1) == Cm1);
Cent modulus;
assert(udiv(C10,C2) == C5);
assert(udivmod(C10,C2, modulus) == C5); assert(modulus == C0);
assert(udivmod(C10,C3, modulus) == C3); assert(modulus == C1);
assert(udivmod(C10,C0, modulus) == Cm1); assert(modulus == C0);
assert(udivmod(C2,C90_30, modulus) == C0); assert(modulus == C2);
assert(udiv(mul(C90_30, C2), C2) == C90_30);
assert(udiv(mul(C90_30, C2), C90_30) == C2);
assert(div(C10,C3) == C3);
assert(divmod( C10, C3, modulus) == C3); assert(modulus == C1);
assert(divmod(Cm10, C3, modulus) == Cm3); assert(modulus == Cm1);
assert(divmod( C10, Cm3, modulus) == Cm3); assert(modulus == C1);
assert(divmod(Cm10, Cm3, modulus) == C3); assert(modulus == Cm1);
assert(divmod(C2, C90_30, modulus) == C0); assert(modulus == C2);
assert(div(mul(C90_30, C2), C2) == C90_30);
assert(div(mul(C90_30, C2), C90_30) == C2);
const Cent Cb1divb2 = { lo:0x4496aa309d4d4a2f, hi:U.max };
const Cent Cb1modb2 = { lo:0xd83203d0fdc799b8, hi:U.max };
assert(divmod(Cbig_1, Cbig_2, modulus) == Cb1divb2);
assert(modulus == Cb1modb2);
const Cent Cb1udivb2 = { lo:0x5fe0e9bace2bedad, hi:2 };
const Cent Cb1umodb2 = { lo:0x2c923125a68721f8, hi:0 };
assert(udivmod(Cbig_1, Cbig_2, modulus) == Cb1udivb2);
assert(modulus == Cb1umodb2);
const Cent Cb1divb3 = { lo:0xbfa6c02b5aff8b86, hi:U.max };
const Cent Cb1udivb3 = { lo:0xd0b7d13b48cb350f, hi:0 };
assert(div(Cbig_1, Cbig_3) == Cb1divb3);
assert(udiv(Cbig_1, Cbig_3) == Cb1udivb3);
assert(mul(Cm10, C1) == Cm10);
assert(mul(C1, Cm10) == Cm10);
assert(mul(C9_3, C10) == C90_30);
assert(mul(Cs_3, C10) == C30);
assert(mul(Cm10, Cm10) == C100);
assert(mul(C20_0, Cm1) == Cm20_0);
assert( or(C4_8, C3_1) == C7_9);
assert(and(C4_8, C7_9) == C4_8);
assert(xor(C4_8, C7_9) == C3_1);
assert(rol(Cm1, 1) == Cm1);
assert(ror(Cm1, 45) == Cm1);
assert(rol(ror(C7_9, 5), 5) == C7_9);
assert(rol(C7_9, 1) == rol1(C7_9));
assert(ror(C7_9, 1) == ror1(C7_9));
}
|