1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
// Written in the D programming language.
/**
* Builtin SIMD intrinsics
*
* Source: $(DRUNTIMESRC core/_simd.d)
*
* Copyright: Copyright Digital Mars 2012-2020
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors: $(HTTP digitalmars.com, Walter Bright),
* Source: $(DRUNTIMESRC core/_simd.d)
*/
module core.simd;
pure:
nothrow:
@safe:
@nogc:
/*******************************
* Create a vector type.
*
* Parameters:
* T = one of double[2], float[4], void[16], byte[16], ubyte[16],
* short[8], ushort[8], int[4], uint[4], long[2], ulong[2].
* For 256 bit vectors,
* one of double[4], float[8], void[32], byte[32], ubyte[32],
* short[16], ushort[16], int[8], uint[8], long[4], ulong[4]
*/
template Vector(T)
{
/* __vector is compiler magic, hide it behind a template.
* The compiler will reject T's that don't work.
*/
alias __vector(T) Vector;
}
/* Handy aliases
*/
static if (is(Vector!(void[8]))) alias Vector!(void[8]) void8; ///
static if (is(Vector!(double[1]))) alias Vector!(double[1]) double1; ///
static if (is(Vector!(float[2]))) alias Vector!(float[2]) float2; ///
static if (is(Vector!(byte[8]))) alias Vector!(byte[8]) byte8; ///
static if (is(Vector!(ubyte[8]))) alias Vector!(ubyte[8]) ubyte8; ///
static if (is(Vector!(short[4]))) alias Vector!(short[4]) short4; ///
static if (is(Vector!(ushort[4]))) alias Vector!(ushort[4]) ushort4; ///
static if (is(Vector!(int[2]))) alias Vector!(int[2]) int2; ///
static if (is(Vector!(uint[2]))) alias Vector!(uint[2]) uint2; ///
static if (is(Vector!(long[1]))) alias Vector!(long[1]) long1; ///
static if (is(Vector!(ulong[1]))) alias Vector!(ulong[1]) ulong1; ///
static if (is(Vector!(void[16]))) alias Vector!(void[16]) void16; ///
static if (is(Vector!(double[2]))) alias Vector!(double[2]) double2; ///
static if (is(Vector!(float[4]))) alias Vector!(float[4]) float4; ///
static if (is(Vector!(byte[16]))) alias Vector!(byte[16]) byte16; ///
static if (is(Vector!(ubyte[16]))) alias Vector!(ubyte[16]) ubyte16; ///
static if (is(Vector!(short[8]))) alias Vector!(short[8]) short8; ///
static if (is(Vector!(ushort[8]))) alias Vector!(ushort[8]) ushort8; ///
static if (is(Vector!(int[4]))) alias Vector!(int[4]) int4; ///
static if (is(Vector!(uint[4]))) alias Vector!(uint[4]) uint4; ///
static if (is(Vector!(long[2]))) alias Vector!(long[2]) long2; ///
static if (is(Vector!(ulong[2]))) alias Vector!(ulong[2]) ulong2; ///
static if (is(Vector!(void[32]))) alias Vector!(void[32]) void32; ///
static if (is(Vector!(double[4]))) alias Vector!(double[4]) double4; ///
static if (is(Vector!(float[8]))) alias Vector!(float[8]) float8; ///
static if (is(Vector!(byte[32]))) alias Vector!(byte[32]) byte32; ///
static if (is(Vector!(ubyte[32]))) alias Vector!(ubyte[32]) ubyte32; ///
static if (is(Vector!(short[16]))) alias Vector!(short[16]) short16; ///
static if (is(Vector!(ushort[16]))) alias Vector!(ushort[16]) ushort16; ///
static if (is(Vector!(int[8]))) alias Vector!(int[8]) int8; ///
static if (is(Vector!(uint[8]))) alias Vector!(uint[8]) uint8; ///
static if (is(Vector!(long[4]))) alias Vector!(long[4]) long4; ///
static if (is(Vector!(ulong[4]))) alias Vector!(ulong[4]) ulong4; ///
static if (is(Vector!(void[64]))) alias Vector!(void[64]) void64; ///
static if (is(Vector!(double[8]))) alias Vector!(double[8]) double8; ///
static if (is(Vector!(float[16]))) alias Vector!(float[16]) float16; ///
static if (is(Vector!(byte[64]))) alias Vector!(byte[64]) byte64; ///
static if (is(Vector!(ubyte[64]))) alias Vector!(ubyte[64]) ubyte64; ///
static if (is(Vector!(short[32]))) alias Vector!(short[32]) short32; ///
static if (is(Vector!(ushort[32]))) alias Vector!(ushort[32]) ushort32; ///
static if (is(Vector!(int[16]))) alias Vector!(int[16]) int16; ///
static if (is(Vector!(uint[16]))) alias Vector!(uint[16]) uint16; ///
static if (is(Vector!(long[8]))) alias Vector!(long[8]) long8; ///
static if (is(Vector!(ulong[8]))) alias Vector!(ulong[8]) ulong8; ///
version (D_SIMD)
{
/** XMM opcodes that conform to the following:
*
* opcode xmm1,xmm2/mem
*
* and do not have side effects (i.e. do not write to memory).
*/
enum XMM
{
ADDSS = 0xF30F58,
ADDSD = 0xF20F58,
ADDPS = 0x000F58,
ADDPD = 0x660F58,
PADDB = 0x660FFC,
PADDW = 0x660FFD,
PADDD = 0x660FFE,
PADDQ = 0x660FD4,
SUBSS = 0xF30F5C,
SUBSD = 0xF20F5C,
SUBPS = 0x000F5C,
SUBPD = 0x660F5C,
PSUBB = 0x660FF8,
PSUBW = 0x660FF9,
PSUBD = 0x660FFA,
PSUBQ = 0x660FFB,
MULSS = 0xF30F59,
MULSD = 0xF20F59,
MULPS = 0x000F59,
MULPD = 0x660F59,
PMULLW = 0x660FD5,
DIVSS = 0xF30F5E,
DIVSD = 0xF20F5E,
DIVPS = 0x000F5E,
DIVPD = 0x660F5E,
PAND = 0x660FDB,
POR = 0x660FEB,
UCOMISS = 0x000F2E,
UCOMISD = 0x660F2E,
XORPS = 0x000F57,
XORPD = 0x660F57,
// Use STO and LOD instead of MOV to distinguish the direction
// (Destination is first operand, Source is second operand)
STOSS = 0xF30F11, /// MOVSS xmm1/m32, xmm2
STOSD = 0xF20F11, /// MOVSD xmm1/m64, xmm2
STOAPS = 0x000F29, /// MOVAPS xmm2/m128, xmm1
STOAPD = 0x660F29, /// MOVAPD xmm2/m128, xmm1
STODQA = 0x660F7F, /// MOVDQA xmm2/m128, xmm1
STOD = 0x660F7E, /// MOVD reg/mem64, xmm 66 0F 7E /r
STOQ = 0x660FD6, /// MOVQ xmm2/m64, xmm1
LODSS = 0xF30F10, /// MOVSS xmm1, xmm2/m32
LODSD = 0xF20F10, /// MOVSD xmm1, xmm2/m64
LODAPS = 0x000F28, /// MOVAPS xmm1, xmm2/m128
LODAPD = 0x660F28, /// MOVAPD xmm1, xmm2/m128
LODDQA = 0x660F6F, /// MOVDQA xmm1, xmm2/m128
LODD = 0x660F6E, /// MOVD xmm, reg/mem64 66 0F 6E /r
LODQ = 0xF30F7E, /// MOVQ xmm1, xmm2/m64
LODDQU = 0xF30F6F, /// MOVDQU xmm1, xmm2/mem128 F3 0F 6F /r
STODQU = 0xF30F7F, /// MOVDQU xmm1/mem128, xmm2 F3 0F 7F /r
MOVDQ2Q = 0xF20FD6, /// MOVDQ2Q mmx, xmm F2 0F D6 /r
MOVHLPS = 0x0F12, /// MOVHLPS xmm1, xmm2 0F 12 /r
LODHPD = 0x660F16, /// MOVHPD xmm1, m64
STOHPD = 0x660F17, /// MOVHPD mem64, xmm1 66 0F 17 /r
LODHPS = 0x0F16, /// MOVHPS xmm1, m64
STOHPS = 0x0F17, /// MOVHPS m64, xmm1
MOVLHPS = 0x0F16, /// MOVLHPS xmm1, xmm2
LODLPD = 0x660F12, /// MOVLPD xmm1, m64
STOLPD = 0x660F13, /// MOVLPD m64, xmm1
LODLPS = 0x0F12, /// MOVLPS xmm1, m64
STOLPS = 0x0F13, /// MOVLPS m64, xmm1
MOVMSKPD = 0x660F50, /// MOVMSKPD reg, xmm
MOVMSKPS = 0x0F50, /// MOVMSKPS reg, xmm
MOVNTDQ = 0x660FE7, /// MOVNTDQ m128, xmm1
MOVNTI = 0x0FC3, /// MOVNTI m32, r32
MOVNTPD = 0x660F2B, /// MOVNTPD m128, xmm1
MOVNTPS = 0x0F2B, /// MOVNTPS m128, xmm1
MOVNTQ = 0x0FE7, /// MOVNTQ m64, mm
MOVQ2DQ = 0xF30FD6, /// MOVQ2DQ
LODUPD = 0x660F10, /// MOVUPD xmm1, xmm2/m128
STOUPD = 0x660F11, /// MOVUPD xmm2/m128, xmm1
LODUPS = 0x0F10, /// MOVUPS xmm1, xmm2/m128
STOUPS = 0x0F11, /// MOVUPS xmm2/m128, xmm1
PACKSSDW = 0x660F6B,
PACKSSWB = 0x660F63,
PACKUSWB = 0x660F67,
PADDSB = 0x660FEC,
PADDSW = 0x660FED,
PADDUSB = 0x660FDC,
PADDUSW = 0x660FDD,
PANDN = 0x660FDF,
PCMPEQB = 0x660F74,
PCMPEQD = 0x660F76,
PCMPEQW = 0x660F75,
PCMPGTB = 0x660F64,
PCMPGTD = 0x660F66,
PCMPGTW = 0x660F65,
PMADDWD = 0x660FF5,
PSLLW = 0x660FF1,
PSLLD = 0x660FF2,
PSLLQ = 0x660FF3,
PSRAW = 0x660FE1,
PSRAD = 0x660FE2,
PSRLW = 0x660FD1,
PSRLD = 0x660FD2,
PSRLQ = 0x660FD3,
PSUBSB = 0x660FE8,
PSUBSW = 0x660FE9,
PSUBUSB = 0x660FD8,
PSUBUSW = 0x660FD9,
PUNPCKHBW = 0x660F68,
PUNPCKHDQ = 0x660F6A,
PUNPCKHWD = 0x660F69,
PUNPCKLBW = 0x660F60,
PUNPCKLDQ = 0x660F62,
PUNPCKLWD = 0x660F61,
PXOR = 0x660FEF,
ANDPD = 0x660F54,
ANDPS = 0x0F54,
ANDNPD = 0x660F55,
ANDNPS = 0x0F55,
CMPPS = 0x0FC2,
CMPPD = 0x660FC2,
CMPSD = 0xF20FC2,
CMPSS = 0xF30FC2,
COMISD = 0x660F2F,
COMISS = 0x0F2F,
CVTDQ2PD = 0xF30FE6,
CVTDQ2PS = 0x0F5B,
CVTPD2DQ = 0xF20FE6,
CVTPD2PI = 0x660F2D,
CVTPD2PS = 0x660F5A,
CVTPI2PD = 0x660F2A,
CVTPI2PS = 0x0F2A,
CVTPS2DQ = 0x660F5B,
CVTPS2PD = 0x0F5A,
CVTPS2PI = 0x0F2D,
CVTSD2SI = 0xF20F2D,
CVTSD2SS = 0xF20F5A,
CVTSI2SD = 0xF20F2A,
CVTSI2SS = 0xF30F2A,
CVTSS2SD = 0xF30F5A,
CVTSS2SI = 0xF30F2D,
CVTTPD2PI = 0x660F2C,
CVTTPD2DQ = 0x660FE6,
CVTTPS2DQ = 0xF30F5B,
CVTTPS2PI = 0x0F2C,
CVTTSD2SI = 0xF20F2C,
CVTTSS2SI = 0xF30F2C,
MASKMOVDQU = 0x660FF7,
MASKMOVQ = 0x0FF7,
MAXPD = 0x660F5F,
MAXPS = 0x0F5F,
MAXSD = 0xF20F5F,
MAXSS = 0xF30F5F,
MINPD = 0x660F5D,
MINPS = 0x0F5D,
MINSD = 0xF20F5D,
MINSS = 0xF30F5D,
ORPD = 0x660F56,
ORPS = 0x0F56,
PAVGB = 0x660FE0,
PAVGW = 0x660FE3,
PMAXSW = 0x660FEE,
//PINSRW = 0x660FC4,
PMAXUB = 0x660FDE,
PMINSW = 0x660FEA,
PMINUB = 0x660FDA,
//PMOVMSKB = 0x660FD7,
PMULHUW = 0x660FE4,
PMULHW = 0x660FE5,
PMULUDQ = 0x660FF4,
PSADBW = 0x660FF6,
PUNPCKHQDQ = 0x660F6D,
PUNPCKLQDQ = 0x660F6C,
RCPPS = 0x0F53,
RCPSS = 0xF30F53,
RSQRTPS = 0x0F52,
RSQRTSS = 0xF30F52,
SQRTPD = 0x660F51,
SHUFPD = 0x660FC6,
SHUFPS = 0x0FC6,
SQRTPS = 0x0F51,
SQRTSD = 0xF20F51,
SQRTSS = 0xF30F51,
UNPCKHPD = 0x660F15,
UNPCKHPS = 0x0F15,
UNPCKLPD = 0x660F14,
UNPCKLPS = 0x0F14,
PSHUFD = 0x660F70,
PSHUFHW = 0xF30F70,
PSHUFLW = 0xF20F70,
PSHUFW = 0x0F70,
PSLLDQ = 0x07660F73,
PSRLDQ = 0x03660F73,
//PREFETCH = 0x0F18,
// SSE3 Pentium 4 (Prescott)
ADDSUBPD = 0x660FD0,
ADDSUBPS = 0xF20FD0,
HADDPD = 0x660F7C,
HADDPS = 0xF20F7C,
HSUBPD = 0x660F7D,
HSUBPS = 0xF20F7D,
MOVDDUP = 0xF20F12,
MOVSHDUP = 0xF30F16,
MOVSLDUP = 0xF30F12,
LDDQU = 0xF20FF0,
MONITOR = 0x0F01C8,
MWAIT = 0x0F01C9,
// SSSE3
PALIGNR = 0x660F3A0F,
PHADDD = 0x660F3802,
PHADDW = 0x660F3801,
PHADDSW = 0x660F3803,
PABSB = 0x660F381C,
PABSD = 0x660F381E,
PABSW = 0x660F381D,
PSIGNB = 0x660F3808,
PSIGND = 0x660F380A,
PSIGNW = 0x660F3809,
PSHUFB = 0x660F3800,
PMADDUBSW = 0x660F3804,
PMULHRSW = 0x660F380B,
PHSUBD = 0x660F3806,
PHSUBW = 0x660F3805,
PHSUBSW = 0x660F3807,
// SSE4.1
BLENDPD = 0x660F3A0D,
BLENDPS = 0x660F3A0C,
BLENDVPD = 0x660F3815,
BLENDVPS = 0x660F3814,
DPPD = 0x660F3A41,
DPPS = 0x660F3A40,
EXTRACTPS = 0x660F3A17,
INSERTPS = 0x660F3A21,
MPSADBW = 0x660F3A42,
PBLENDVB = 0x660F3810,
PBLENDW = 0x660F3A0E,
PEXTRD = 0x660F3A16,
PEXTRQ = 0x660F3A16,
PINSRB = 0x660F3A20,
PINSRD = 0x660F3A22,
PINSRQ = 0x660F3A22,
MOVNTDQA = 0x660F382A,
PACKUSDW = 0x660F382B,
PCMPEQQ = 0x660F3829,
PEXTRB = 0x660F3A14,
PHMINPOSUW = 0x660F3841,
PMAXSB = 0x660F383C,
PMAXSD = 0x660F383D,
PMAXUD = 0x660F383F,
PMAXUW = 0x660F383E,
PMINSB = 0x660F3838,
PMINSD = 0x660F3839,
PMINUD = 0x660F383B,
PMINUW = 0x660F383A,
PMOVSXBW = 0x660F3820,
PMOVSXBD = 0x660F3821,
PMOVSXBQ = 0x660F3822,
PMOVSXWD = 0x660F3823,
PMOVSXWQ = 0x660F3824,
PMOVSXDQ = 0x660F3825,
PMOVZXBW = 0x660F3830,
PMOVZXBD = 0x660F3831,
PMOVZXBQ = 0x660F3832,
PMOVZXWD = 0x660F3833,
PMOVZXWQ = 0x660F3834,
PMOVZXDQ = 0x660F3835,
PMULDQ = 0x660F3828,
PMULLD = 0x660F3840,
PTEST = 0x660F3817,
ROUNDPD = 0x660F3A09,
ROUNDPS = 0x660F3A08,
ROUNDSD = 0x660F3A0B,
ROUNDSS = 0x660F3A0A,
// SSE4.2
PCMPESTRI = 0x660F3A61,
PCMPESTRM = 0x660F3A60,
PCMPISTRI = 0x660F3A63,
PCMPISTRM = 0x660F3A62,
PCMPGTQ = 0x660F3837,
//CRC32
// SSE4a (AMD only)
// EXTRQ,INSERTQ,MOVNTSD,MOVNTSS
// POPCNT and LZCNT (have their own CPUID bits)
POPCNT = 0xF30FB8,
// LZCNT
}
/**
* Generate two operand instruction with XMM 128 bit operands.
*
* This is a compiler magic function - it doesn't behave like
* regular D functions.
*
* Parameters:
* opcode = any of the XMM opcodes; it must be a compile time constant
* op1 = first operand
* op2 = second operand
* Returns:
* result of opcode
*/
pure @safe void16 __simd(XMM opcode, void16 op1, void16 op2);
///
unittest
{
float4 a;
a = cast(float4)__simd(XMM.PXOR, a, a);
}
/**
* Unary SIMD instructions.
*/
pure @safe void16 __simd(XMM opcode, void16 op1);
pure @safe void16 __simd(XMM opcode, double d); ///
pure @safe void16 __simd(XMM opcode, float f); ///
///
unittest
{
float4 a;
a = cast(float4)__simd(XMM.LODSS, a);
}
/****
* For instructions:
* CMPPD, CMPSS, CMPSD, CMPPS,
* PSHUFD, PSHUFHW, PSHUFLW,
* BLENDPD, BLENDPS, DPPD, DPPS,
* MPSADBW, PBLENDW,
* ROUNDPD, ROUNDPS, ROUNDSD, ROUNDSS
* Parameters:
* opcode = any of the above XMM opcodes; it must be a compile time constant
* op1 = first operand
* op2 = second operand
* imm8 = third operand; must be a compile time constant
* Returns:
* result of opcode
*/
pure @safe void16 __simd(XMM opcode, void16 op1, void16 op2, ubyte imm8);
///
unittest
{
float4 a;
a = cast(float4)__simd(XMM.CMPPD, a, a, 0x7A);
}
/***
* For instructions with the imm8 version:
* PSLLD, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLQ, PSRLW,
* PSRLDQ, PSLLDQ
* Parameters:
* opcode = any of the XMM opcodes; it must be a compile time constant
* op1 = first operand
* imm8 = second operand; must be a compile time constant
* Returns:
* result of opcode
*/
pure @safe void16 __simd_ib(XMM opcode, void16 op1, ubyte imm8);
///
unittest
{
float4 a;
a = cast(float4) __simd_ib(XMM.PSRLQ, a, 0x7A);
}
/*****
* For "store" operations of the form:
* op1 op= op2
* such as MOVLPS.
* Returns:
* op2
* These cannot be marked as pure, as semantic() doesn't check them.
*/
@safe void16 __simd_sto(XMM opcode, void16 op1, void16 op2);
@safe void16 __simd_sto(XMM opcode, double op1, void16 op2); ///
@safe void16 __simd_sto(XMM opcode, float op1, void16 op2); ///
@safe void16 __simd_sto(XMM opcode, void16 op1, long op2); ///
///
unittest
{
void16 a;
float f = 1;
double d = 1;
cast(void)__simd_sto(XMM.STOUPS, a, a);
cast(void)__simd_sto(XMM.STOUPS, f, a);
cast(void)__simd_sto(XMM.STOUPS, d, a);
}
/* The following use overloading to ensure correct typing.
* Compile with inlining on for best performance.
*/
pure @safe short8 pcmpeq()(short8 v1, short8 v2)
{
return cast(short8)__simd(XMM.PCMPEQW, v1, v2);
}
pure @safe ushort8 pcmpeq()(ushort8 v1, ushort8 v2)
{
return cast(ushort8)__simd(XMM.PCMPEQW, v1, v2);
}
/*********************
* Emit prefetch instruction.
* Params:
* address = address to be prefetched
* writeFetch = true for write fetch, false for read fetch
* locality = 0..3 (0 meaning least local, 3 meaning most local)
* Note:
* The Intel mappings are:
* $(TABLE
* $(THEAD writeFetch, locality, Instruction)
* $(TROW false, 0, prefetchnta)
* $(TROW false, 1, prefetch2)
* $(TROW false, 2, prefetch1)
* $(TROW false, 3, prefetch0)
* $(TROW true, 0, prefetchw)
* $(TROW true, 1, prefetchw)
* $(TROW true, 2, prefetchw)
* $(TROW true, 3, prefetchw)
* )
*/
void prefetch(bool writeFetch, ubyte locality)(const(void)* address)
{
static if (writeFetch)
__prefetch(address, 4);
else static if (locality < 4)
__prefetch(address, 3 - locality);
else
static assert(0, "0..3 expected for locality");
}
private void __prefetch(const(void*) address, ubyte encoding);
/*************************************
* Load unaligned vector from address.
* This is a compiler intrinsic.
* Params:
* p = pointer to vector
* Returns:
* vector
*/
V loadUnaligned(V)(const V* p)
if (is(V == void16) ||
is(V == byte16) ||
is(V == ubyte16) ||
is(V == short8) ||
is(V == ushort8) ||
is(V == int4) ||
is(V == uint4) ||
is(V == long2) ||
is(V == ulong2) ||
is(V == double2) ||
is(V == float4))
{
pragma(inline, true);
static if (is(V == double2))
return cast(V)__simd(XMM.LODUPD, *cast(const void16*)p);
else static if (is(V == float4))
return cast(V)__simd(XMM.LODUPS, *cast(const void16*)p);
else
return cast(V)__simd(XMM.LODDQU, *cast(const void16*)p);
}
@system
unittest
{
// Memory to load into the vector:
// Should have enough data to test all 16-byte alignments, and still
// have room for a 16-byte vector
ubyte[32] data;
foreach (i; 0..data.length)
{
data[i] = cast(ubyte)i;
}
// to test all alignments from 1 ~ 16
foreach (i; 0..16)
{
ubyte* d = &data[i];
void test(T)()
{
// load the data
T v = loadUnaligned(cast(T*)d);
// check that the data was loaded correctly
ubyte* ptrToV = cast(ubyte*)&v;
foreach (j; 0..T.sizeof)
{
assert(ptrToV[j] == d[j]);
}
}
test!void16();
test!byte16();
test!ubyte16();
test!short8();
test!ushort8();
test!int4();
test!uint4();
test!long2();
test!ulong2();
test!double2();
test!float4();
}
}
/*************************************
* Store vector to unaligned address.
* This is a compiler intrinsic.
* Params:
* p = pointer to vector
* value = value to store
* Returns:
* value
*/
V storeUnaligned(V)(V* p, V value)
if (is(V == void16) ||
is(V == byte16) ||
is(V == ubyte16) ||
is(V == short8) ||
is(V == ushort8) ||
is(V == int4) ||
is(V == uint4) ||
is(V == long2) ||
is(V == ulong2) ||
is(V == double2) ||
is(V == float4))
{
pragma(inline, true);
static if (is(V == double2))
return cast(V)__simd_sto(XMM.STOUPD, *cast(void16*)p, value);
else static if (is(V == float4))
return cast(V)__simd_sto(XMM.STOUPS, *cast(void16*)p, value);
else
return cast(V)__simd_sto(XMM.STODQU, *cast(void16*)p, value);
}
@system
unittest
{
// Memory to store the vector to:
// Should have enough data to test all 16-byte alignments, and still
// have room for a 16-byte vector
ubyte[32] data;
// to test all alignments from 1 ~ 16
foreach (i; 0..16)
{
ubyte* d = &data[i];
void test(T)()
{
T v;
// populate v` with data
ubyte* ptrToV = cast(ubyte*)&v;
foreach (j; 0..T.sizeof)
{
ptrToV[j] = cast(ubyte)j;
}
// store `v` to location pointed to by `d`
storeUnaligned(cast(T*)d, v);
// check that the the data was stored correctly
foreach (j; 0..T.sizeof)
{
assert(ptrToV[j] == d[j]);
}
}
test!void16();
test!byte16();
test!ubyte16();
test!short8();
test!ushort8();
test!int4();
test!uint4();
test!long2();
test!ulong2();
test!double2();
test!float4();
}
}
}
|