1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
|
/**
* The fiber module provides OS-indepedent lightweight threads aka fibers.
*
* Copyright: Copyright Sean Kelly 2005 - 2012.
* License: Distributed under the
* $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0).
* (See accompanying file LICENSE)
* Authors: Sean Kelly, Walter Bright, Alex Rønne Petersen, Martin Nowak
* Source: $(DRUNTIMESRC core/thread/fiber.d)
*/
/* NOTE: This file has been patched from the original DMD distribution to
* work with the GDC compiler.
*/
module core.thread.fiber;
import core.thread.osthread;
import core.thread.threadgroup;
import core.thread.types;
import core.thread.context;
///////////////////////////////////////////////////////////////////////////////
// Fiber Platform Detection
///////////////////////////////////////////////////////////////////////////////
version (GNU)
{
import gcc.builtins;
import gcc.config;
version (GNU_StackGrowsDown)
version = StackGrowsDown;
}
else
{
// this should be true for most architectures
version = StackGrowsDown;
}
version (Windows)
{
import core.stdc.stdlib : malloc, free;
import core.sys.windows.winbase;
import core.sys.windows.winnt;
}
private
{
version (D_InlineAsm_X86)
{
version (Windows)
version = AsmX86_Windows;
else version (Posix)
version = AsmX86_Posix;
version = AlignFiberStackTo16Byte;
}
else version (D_InlineAsm_X86_64)
{
version (Windows)
{
version = AsmX86_64_Windows;
version = AlignFiberStackTo16Byte;
}
else version (Posix)
{
version = AsmX86_64_Posix;
version = AlignFiberStackTo16Byte;
}
}
else version (X86)
{
version = AlignFiberStackTo16Byte;
version (CET)
{
// fiber_switchContext does not support shadow stack from
// Intel CET. So use ucontext implementation.
}
else
{
version = AsmExternal;
version (MinGW)
version = GNU_AsmX86_Windows;
else version (OSX)
version = AsmX86_Posix;
else version (Posix)
version = AsmX86_Posix;
}
}
else version (X86_64)
{
version = AlignFiberStackTo16Byte;
version (CET)
{
// fiber_switchContext does not support shadow stack from
// Intel CET. So use ucontext implementation.
}
else version (D_X32)
{
// let X32 be handled by ucontext swapcontext
}
else
{
version = AsmExternal;
version (MinGW)
version = GNU_AsmX86_64_Windows;
else version (OSX)
version = AsmX86_64_Posix;
else version (Posix)
version = AsmX86_64_Posix;
}
}
else version (PPC)
{
version (OSX)
{
version = AsmPPC_Darwin;
version = AsmExternal;
version = AlignFiberStackTo16Byte;
}
else version (Posix)
{
version = AsmPPC_Posix;
version = AsmExternal;
}
}
else version (PPC64)
{
version (OSX)
{
version = AsmPPC_Darwin;
version = AsmExternal;
version = AlignFiberStackTo16Byte;
}
else version (Posix)
{
version = AlignFiberStackTo16Byte;
}
}
else version (MIPS_O32)
{
version (Posix)
{
version = AsmMIPS_O32_Posix;
version = AsmExternal;
}
}
else version (AArch64)
{
version (Posix)
{
version = AsmAArch64_Posix;
version = AsmExternal;
version = AlignFiberStackTo16Byte;
}
}
else version (ARM)
{
version (Posix)
{
version = AsmARM_Posix;
version = AsmExternal;
}
}
else version (SPARC)
{
// NOTE: The SPARC ABI specifies only doubleword alignment.
version = AlignFiberStackTo16Byte;
}
else version (SPARC64)
{
version = AlignFiberStackTo16Byte;
}
version (Posix)
{
version (AsmX86_Windows) {} else
version (AsmX86_Posix) {} else
version (AsmX86_64_Windows) {} else
version (AsmX86_64_Posix) {} else
version (AsmExternal) {} else
{
// NOTE: The ucontext implementation requires architecture specific
// data definitions to operate so testing for it must be done
// by checking for the existence of ucontext_t rather than by
// a version identifier. Please note that this is considered
// an obsolescent feature according to the POSIX spec, so a
// custom solution is still preferred.
import core.sys.posix.ucontext;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Fiber Entry Point and Context Switch
///////////////////////////////////////////////////////////////////////////////
private
{
import core.atomic : atomicStore, cas, MemoryOrder;
import core.exception : onOutOfMemoryError;
import core.stdc.stdlib : abort;
extern (C) void fiber_entryPoint() nothrow
{
Fiber obj = Fiber.getThis();
assert( obj );
assert( Thread.getThis().m_curr is obj.m_ctxt );
atomicStore!(MemoryOrder.raw)(*cast(shared)&Thread.getThis().m_lock, false);
obj.m_ctxt.tstack = obj.m_ctxt.bstack;
obj.m_state = Fiber.State.EXEC;
try
{
obj.run();
}
catch ( Throwable t )
{
obj.m_unhandled = t;
}
static if ( __traits( compiles, ucontext_t ) )
obj.m_ucur = &obj.m_utxt;
obj.m_state = Fiber.State.TERM;
obj.switchOut();
}
// Look above the definition of 'class Fiber' for some information about the implementation of this routine
version (AsmExternal)
{
extern (C) void fiber_switchContext( void** oldp, void* newp ) nothrow @nogc;
version (AArch64)
extern (C) void fiber_trampoline() nothrow;
}
else
extern (C) void fiber_switchContext( void** oldp, void* newp ) nothrow @nogc
{
// NOTE: The data pushed and popped in this routine must match the
// default stack created by Fiber.initStack or the initial
// switch into a new context will fail.
version (AsmX86_Windows)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
push EBP;
mov EBP, ESP;
push EDI;
push ESI;
push EBX;
push dword ptr FS:[0];
push dword ptr FS:[4];
push dword ptr FS:[8];
push EAX;
// store oldp again with more accurate address
mov EAX, dword ptr 8[EBP];
mov [EAX], ESP;
// load newp to begin context switch
mov ESP, dword ptr 12[EBP];
// load saved state from new stack
pop EAX;
pop dword ptr FS:[8];
pop dword ptr FS:[4];
pop dword ptr FS:[0];
pop EBX;
pop ESI;
pop EDI;
pop EBP;
// 'return' to complete switch
pop ECX;
jmp ECX;
}
}
else version (AsmX86_64_Windows)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
// NOTE: When changing the layout of registers on the stack,
// make sure that the XMM registers are still aligned.
// On function entry, the stack is guaranteed to not
// be aligned to 16 bytes because of the return address
// on the stack.
push RBP;
mov RBP, RSP;
push R12;
push R13;
push R14;
push R15;
push RDI;
push RSI;
// 7 registers = 56 bytes; stack is now aligned to 16 bytes
sub RSP, 160;
movdqa [RSP + 144], XMM6;
movdqa [RSP + 128], XMM7;
movdqa [RSP + 112], XMM8;
movdqa [RSP + 96], XMM9;
movdqa [RSP + 80], XMM10;
movdqa [RSP + 64], XMM11;
movdqa [RSP + 48], XMM12;
movdqa [RSP + 32], XMM13;
movdqa [RSP + 16], XMM14;
movdqa [RSP], XMM15;
push RBX;
xor RAX,RAX;
push qword ptr GS:[RAX];
push qword ptr GS:8[RAX];
push qword ptr GS:16[RAX];
// store oldp
mov [RCX], RSP;
// load newp to begin context switch
mov RSP, RDX;
// load saved state from new stack
pop qword ptr GS:16[RAX];
pop qword ptr GS:8[RAX];
pop qword ptr GS:[RAX];
pop RBX;
movdqa XMM15, [RSP];
movdqa XMM14, [RSP + 16];
movdqa XMM13, [RSP + 32];
movdqa XMM12, [RSP + 48];
movdqa XMM11, [RSP + 64];
movdqa XMM10, [RSP + 80];
movdqa XMM9, [RSP + 96];
movdqa XMM8, [RSP + 112];
movdqa XMM7, [RSP + 128];
movdqa XMM6, [RSP + 144];
add RSP, 160;
pop RSI;
pop RDI;
pop R15;
pop R14;
pop R13;
pop R12;
pop RBP;
// 'return' to complete switch
pop RCX;
jmp RCX;
}
}
else version (AsmX86_Posix)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
push EBP;
mov EBP, ESP;
push EDI;
push ESI;
push EBX;
push EAX;
// store oldp again with more accurate address
mov EAX, dword ptr 8[EBP];
mov [EAX], ESP;
// load newp to begin context switch
mov ESP, dword ptr 12[EBP];
// load saved state from new stack
pop EAX;
pop EBX;
pop ESI;
pop EDI;
pop EBP;
// 'return' to complete switch
pop ECX;
jmp ECX;
}
}
else version (AsmX86_64_Posix)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
push RBP;
mov RBP, RSP;
push RBX;
push R12;
push R13;
push R14;
push R15;
// store oldp
mov [RDI], RSP;
// load newp to begin context switch
mov RSP, RSI;
// load saved state from new stack
pop R15;
pop R14;
pop R13;
pop R12;
pop RBX;
pop RBP;
// 'return' to complete switch
pop RCX;
jmp RCX;
}
}
else static if ( __traits( compiles, ucontext_t ) )
{
Fiber cfib = Fiber.getThis();
void* ucur = cfib.m_ucur;
*oldp = &ucur;
swapcontext( **(cast(ucontext_t***) oldp),
*(cast(ucontext_t**) newp) );
}
else
static assert(0, "Not implemented");
}
}
///////////////////////////////////////////////////////////////////////////////
// Fiber
///////////////////////////////////////////////////////////////////////////////
/*
* Documentation of Fiber internals:
*
* The main routines to implement when porting Fibers to new architectures are
* fiber_switchContext and initStack. Some version constants have to be defined
* for the new platform as well, search for "Fiber Platform Detection and Memory Allocation".
*
* Fibers are based on a concept called 'Context'. A Context describes the execution
* state of a Fiber or main thread which is fully described by the stack, some
* registers and a return address at which the Fiber/Thread should continue executing.
* Please note that not only each Fiber has a Context, but each thread also has got a
* Context which describes the threads stack and state. If you call Fiber fib; fib.call
* the first time in a thread you switch from Threads Context into the Fibers Context.
* If you call fib.yield in that Fiber you switch out of the Fibers context and back
* into the Thread Context. (However, this is not always the case. You can call a Fiber
* from within another Fiber, then you switch Contexts between the Fibers and the Thread
* Context is not involved)
*
* In all current implementations the registers and the return address are actually
* saved on a Contexts stack.
*
* The fiber_switchContext routine has got two parameters:
* void** a: This is the _location_ where we have to store the current stack pointer,
* the stack pointer of the currently executing Context (Fiber or Thread).
* void* b: This is the pointer to the stack of the Context which we want to switch into.
* Note that we get the same pointer here as the one we stored into the void** a
* in a previous call to fiber_switchContext.
*
* In the simplest case, a fiber_switchContext rountine looks like this:
* fiber_switchContext:
* push {return Address}
* push {registers}
* copy {stack pointer} into {location pointed to by a}
* //We have now switch to the stack of a different Context!
* copy {b} into {stack pointer}
* pop {registers}
* pop {return Address}
* jump to {return Address}
*
* The GC uses the value returned in parameter a to scan the Fibers stack. It scans from
* the stack base to that value. As the GC dislikes false pointers we can actually optimize
* this a little: By storing registers which can not contain references to memory managed
* by the GC outside of the region marked by the stack base pointer and the stack pointer
* saved in fiber_switchContext we can prevent the GC from scanning them.
* Such registers are usually floating point registers and the return address. In order to
* implement this, we return a modified stack pointer from fiber_switchContext. However,
* we have to remember that when we restore the registers from the stack!
*
* --------------------------- <= Stack Base
* | Frame | <= Many other stack frames
* | Frame |
* |-------------------------| <= The last stack frame. This one is created by fiber_switchContext
* | registers with pointers |
* | | <= Stack pointer. GC stops scanning here
* | return address |
* |floating point registers |
* --------------------------- <= Real Stack End
*
* fiber_switchContext:
* push {registers with pointers}
* copy {stack pointer} into {location pointed to by a}
* push {return Address}
* push {Floating point registers}
* //We have now switch to the stack of a different Context!
* copy {b} into {stack pointer}
* //We now have to adjust the stack pointer to point to 'Real Stack End' so we can pop
* //the FP registers
* //+ or - depends on if your stack grows downwards or upwards
* {stack pointer} = {stack pointer} +- ({FPRegisters}.sizeof + {return address}.sizeof}
* pop {Floating point registers}
* pop {return Address}
* pop {registers with pointers}
* jump to {return Address}
*
* So the question now is which registers need to be saved? This depends on the specific
* architecture ABI of course, but here are some general guidelines:
* - If a register is callee-save (if the callee modifies the register it must saved and
* restored by the callee) it needs to be saved/restored in switchContext
* - If a register is caller-save it needn't be saved/restored. (Calling fiber_switchContext
* is a function call and the compiler therefore already must save these registers before
* calling fiber_switchContext)
* - Argument registers used for passing parameters to functions needn't be saved/restored
* - The return register needn't be saved/restored (fiber_switchContext hasn't got a return type)
* - All scratch registers needn't be saved/restored
* - The link register usually needn't be saved/restored (but sometimes it must be cleared -
* see below for details)
* - The frame pointer register - if it exists - is usually callee-save
* - All current implementations do not save control registers
*
* What happens on the first switch into a Fiber? We never saved a state for this fiber before,
* but the initial state is prepared in the initStack routine. (This routine will also be called
* when a Fiber is being resetted). initStack must produce exactly the same stack layout as the
* part of fiber_switchContext which saves the registers. Pay special attention to set the stack
* pointer correctly if you use the GC optimization mentioned before. the return Address saved in
* initStack must be the address of fiber_entrypoint.
*
* There's now a small but important difference between the first context switch into a fiber and
* further context switches. On the first switch, Fiber.call is used and the returnAddress in
* fiber_switchContext will point to fiber_entrypoint. The important thing here is that this jump
* is a _function call_, we call fiber_entrypoint by jumping before it's function prologue. On later
* calls, the user used yield() in a function, and therefore the return address points into a user
* function, after the yield call. So here the jump in fiber_switchContext is a _function return_,
* not a function call!
*
* The most important result of this is that on entering a function, i.e. fiber_entrypoint, we
* would have to provide a return address / set the link register once fiber_entrypoint
* returns. Now fiber_entrypoint does never return and therefore the actual value of the return
* address / link register is never read/used and therefore doesn't matter. When fiber_switchContext
* performs a _function return_ the value in the link register doesn't matter either.
* However, the link register will still be saved to the stack in fiber_entrypoint and some
* exception handling / stack unwinding code might read it from this stack location and crash.
* The exact solution depends on your architecture, but see the ARM implementation for a way
* to deal with this issue.
*
* The ARM implementation is meant to be used as a kind of documented example implementation.
* Look there for a concrete example.
*
* FIXME: fiber_entrypoint might benefit from a @noreturn attribute, but D doesn't have one.
*/
/**
* This class provides a cooperative concurrency mechanism integrated with the
* threading and garbage collection functionality. Calling a fiber may be
* considered a blocking operation that returns when the fiber yields (via
* Fiber.yield()). Execution occurs within the context of the calling thread
* so synchronization is not necessary to guarantee memory visibility so long
* as the same thread calls the fiber each time. Please note that there is no
* requirement that a fiber be bound to one specific thread. Rather, fibers
* may be freely passed between threads so long as they are not currently
* executing. Like threads, a new fiber thread may be created using either
* derivation or composition, as in the following example.
*
* Warning:
* Status registers are not saved by the current implementations. This means
* floating point exception status bits (overflow, divide by 0), rounding mode
* and similar stuff is set per-thread, not per Fiber!
*
* Warning:
* On ARM FPU registers are not saved if druntime was compiled as ARM_SoftFloat.
* If such a build is used on a ARM_SoftFP system which actually has got a FPU
* and other libraries are using the FPU registers (other code is compiled
* as ARM_SoftFP) this can cause problems. Druntime must be compiled as
* ARM_SoftFP in this case.
*
* Authors: Based on a design by Mikola Lysenko.
*/
class Fiber
{
///////////////////////////////////////////////////////////////////////////
// Initialization
///////////////////////////////////////////////////////////////////////////
version (Windows)
// exception handling walks the stack, invoking DbgHelp.dll which
// needs up to 16k of stack space depending on the version of DbgHelp.dll,
// the existence of debug symbols and other conditions. Avoid causing
// stack overflows by defaulting to a larger stack size
enum defaultStackPages = 8;
else version (OSX)
{
version (X86_64)
// libunwind on macOS 11 now requires more stack space than 16k, so
// default to a larger stack size. This is only applied to X86 as
// the PAGESIZE is still 4k, however on AArch64 it is 16k.
enum defaultStackPages = 8;
else
enum defaultStackPages = 4;
}
else
enum defaultStackPages = 4;
/**
* Initializes a fiber object which is associated with a static
* D function.
*
* Params:
* fn = The fiber function.
* sz = The stack size for this fiber.
* guardPageSize = size of the guard page to trap fiber's stack
* overflows. Beware that using this will increase
* the number of mmaped regions on platforms using mmap
* so an OS-imposed limit may be hit.
*
* In:
* fn must not be null.
*/
this( void function() fn, size_t sz = PAGESIZE * defaultStackPages,
size_t guardPageSize = PAGESIZE ) nothrow
in
{
assert( fn );
}
do
{
allocStack( sz, guardPageSize );
reset( fn );
}
/**
* Initializes a fiber object which is associated with a dynamic
* D function.
*
* Params:
* dg = The fiber function.
* sz = The stack size for this fiber.
* guardPageSize = size of the guard page to trap fiber's stack
* overflows. Beware that using this will increase
* the number of mmaped regions on platforms using mmap
* so an OS-imposed limit may be hit.
*
* In:
* dg must not be null.
*/
this( void delegate() dg, size_t sz = PAGESIZE * defaultStackPages,
size_t guardPageSize = PAGESIZE ) nothrow
in
{
assert( dg );
}
do
{
allocStack( sz, guardPageSize );
reset( dg );
}
/**
* Cleans up any remaining resources used by this object.
*/
~this() nothrow @nogc
{
// NOTE: A live reference to this object will exist on its associated
// stack from the first time its call() method has been called
// until its execution completes with State.TERM. Thus, the only
// times this dtor should be called are either if the fiber has
// terminated (and therefore has no active stack) or if the user
// explicitly deletes this object. The latter case is an error
// but is not easily tested for, since State.HOLD may imply that
// the fiber was just created but has never been run. There is
// not a compelling case to create a State.INIT just to offer a
// means of ensuring the user isn't violating this object's
// contract, so for now this requirement will be enforced by
// documentation only.
freeStack();
}
///////////////////////////////////////////////////////////////////////////
// General Actions
///////////////////////////////////////////////////////////////////////////
/**
* Transfers execution to this fiber object. The calling context will be
* suspended until the fiber calls Fiber.yield() or until it terminates
* via an unhandled exception.
*
* Params:
* rethrow = Rethrow any unhandled exception which may have caused this
* fiber to terminate.
*
* In:
* This fiber must be in state HOLD.
*
* Throws:
* Any exception not handled by the joined thread.
*
* Returns:
* Any exception not handled by this fiber if rethrow = false, null
* otherwise.
*/
// Not marked with any attributes, even though `nothrow @nogc` works
// because it calls arbitrary user code. Most of the implementation
// is already `@nogc nothrow`, but in order for `Fiber.call` to
// propagate the attributes of the user's function, the Fiber
// class needs to be templated.
final Throwable call( Rethrow rethrow = Rethrow.yes )
{
return rethrow ? call!(Rethrow.yes)() : call!(Rethrow.no);
}
/// ditto
final Throwable call( Rethrow rethrow )()
{
callImpl();
if ( m_unhandled )
{
Throwable t = m_unhandled;
m_unhandled = null;
static if ( rethrow )
throw t;
else
return t;
}
return null;
}
private void callImpl() nothrow @nogc
in
{
assert( m_state == State.HOLD );
}
do
{
Fiber cur = getThis();
static if ( __traits( compiles, ucontext_t ) )
m_ucur = cur ? &cur.m_utxt : &Fiber.sm_utxt;
setThis( this );
this.switchIn();
setThis( cur );
static if ( __traits( compiles, ucontext_t ) )
m_ucur = null;
// NOTE: If the fiber has terminated then the stack pointers must be
// reset. This ensures that the stack for this fiber is not
// scanned if the fiber has terminated. This is necessary to
// prevent any references lingering on the stack from delaying
// the collection of otherwise dead objects. The most notable
// being the current object, which is referenced at the top of
// fiber_entryPoint.
if ( m_state == State.TERM )
{
m_ctxt.tstack = m_ctxt.bstack;
}
}
/// Flag to control rethrow behavior of $(D $(LREF call))
enum Rethrow : bool { no, yes }
/**
* Resets this fiber so that it may be re-used, optionally with a
* new function/delegate. This routine should only be called for
* fibers that have terminated, as doing otherwise could result in
* scope-dependent functionality that is not executed.
* Stack-based classes, for example, may not be cleaned up
* properly if a fiber is reset before it has terminated.
*
* In:
* This fiber must be in state TERM or HOLD.
*/
final void reset() nothrow @nogc
in
{
assert( m_state == State.TERM || m_state == State.HOLD );
}
do
{
m_ctxt.tstack = m_ctxt.bstack;
m_state = State.HOLD;
initStack();
m_unhandled = null;
}
/// ditto
final void reset( void function() fn ) nothrow @nogc
{
reset();
m_call = fn;
}
/// ditto
final void reset( void delegate() dg ) nothrow @nogc
{
reset();
m_call = dg;
}
///////////////////////////////////////////////////////////////////////////
// General Properties
///////////////////////////////////////////////////////////////////////////
/// A fiber may occupy one of three states: HOLD, EXEC, and TERM.
enum State
{
/** The HOLD state applies to any fiber that is suspended and ready to
be called. */
HOLD,
/** The EXEC state will be set for any fiber that is currently
executing. */
EXEC,
/** The TERM state is set when a fiber terminates. Once a fiber
terminates, it must be reset before it may be called again. */
TERM
}
/**
* Gets the current state of this fiber.
*
* Returns:
* The state of this fiber as an enumerated value.
*/
final @property State state() const @safe pure nothrow @nogc
{
return m_state;
}
///////////////////////////////////////////////////////////////////////////
// Actions on Calling Fiber
///////////////////////////////////////////////////////////////////////////
/**
* Forces a context switch to occur away from the calling fiber.
*/
static void yield() nothrow @nogc
{
Fiber cur = getThis();
assert( cur, "Fiber.yield() called with no active fiber" );
assert( cur.m_state == State.EXEC );
static if ( __traits( compiles, ucontext_t ) )
cur.m_ucur = &cur.m_utxt;
cur.m_state = State.HOLD;
cur.switchOut();
cur.m_state = State.EXEC;
}
/**
* Forces a context switch to occur away from the calling fiber and then
* throws obj in the calling fiber.
*
* Params:
* t = The object to throw.
*
* In:
* t must not be null.
*/
static void yieldAndThrow( Throwable t ) nothrow @nogc
in
{
assert( t );
}
do
{
Fiber cur = getThis();
assert( cur, "Fiber.yield() called with no active fiber" );
assert( cur.m_state == State.EXEC );
static if ( __traits( compiles, ucontext_t ) )
cur.m_ucur = &cur.m_utxt;
cur.m_unhandled = t;
cur.m_state = State.HOLD;
cur.switchOut();
cur.m_state = State.EXEC;
}
///////////////////////////////////////////////////////////////////////////
// Fiber Accessors
///////////////////////////////////////////////////////////////////////////
/**
* Provides a reference to the calling fiber or null if no fiber is
* currently active.
*
* Returns:
* The fiber object representing the calling fiber or null if no fiber
* is currently active within this thread. The result of deleting this object is undefined.
*/
static Fiber getThis() @safe nothrow @nogc
{
version (GNU) pragma(inline, false);
return sm_this;
}
///////////////////////////////////////////////////////////////////////////
// Static Initialization
///////////////////////////////////////////////////////////////////////////
version (Posix)
{
static this()
{
static if ( __traits( compiles, ucontext_t ) )
{
int status = getcontext( &sm_utxt );
assert( status == 0 );
}
}
}
private:
//
// Fiber entry point. Invokes the function or delegate passed on
// construction (if any).
//
final void run()
{
m_call();
}
//
// Standard fiber data
//
Callable m_call;
bool m_isRunning;
Throwable m_unhandled;
State m_state;
private:
///////////////////////////////////////////////////////////////////////////
// Stack Management
///////////////////////////////////////////////////////////////////////////
//
// Allocate a new stack for this fiber.
//
final void allocStack( size_t sz, size_t guardPageSize ) nothrow
in
{
assert( !m_pmem && !m_ctxt );
}
do
{
// adjust alloc size to a multiple of PAGESIZE
sz += PAGESIZE - 1;
sz -= sz % PAGESIZE;
// NOTE: This instance of Thread.Context is dynamic so Fiber objects
// can be collected by the GC so long as no user level references
// to the object exist. If m_ctxt were not dynamic then its
// presence in the global context list would be enough to keep
// this object alive indefinitely. An alternative to allocating
// room for this struct explicitly would be to mash it into the
// base of the stack being allocated below. However, doing so
// requires too much special logic to be worthwhile.
m_ctxt = new StackContext;
version (Windows)
{
// reserve memory for stack
m_pmem = VirtualAlloc( null,
sz + guardPageSize,
MEM_RESERVE,
PAGE_NOACCESS );
if ( !m_pmem )
onOutOfMemoryError();
version (StackGrowsDown)
{
void* stack = m_pmem + guardPageSize;
void* guard = m_pmem;
void* pbase = stack + sz;
}
else
{
void* stack = m_pmem;
void* guard = m_pmem + sz;
void* pbase = stack;
}
// allocate reserved stack segment
stack = VirtualAlloc( stack,
sz,
MEM_COMMIT,
PAGE_READWRITE );
if ( !stack )
onOutOfMemoryError();
if (guardPageSize)
{
// allocate reserved guard page
guard = VirtualAlloc( guard,
guardPageSize,
MEM_COMMIT,
PAGE_READWRITE | PAGE_GUARD );
if ( !guard )
onOutOfMemoryError();
}
m_ctxt.bstack = pbase;
m_ctxt.tstack = pbase;
m_size = sz;
}
else
{
version (Posix) import core.sys.posix.sys.mman; // mmap, MAP_ANON
static if ( __traits( compiles, ucontext_t ) )
{
// Stack size must be at least the minimum allowable by the OS.
if (sz < MINSIGSTKSZ)
sz = MINSIGSTKSZ;
}
static if ( __traits( compiles, mmap ) )
{
// Allocate more for the memory guard
sz += guardPageSize;
int mmap_flags = MAP_PRIVATE | MAP_ANON;
version (OpenBSD)
mmap_flags |= MAP_STACK;
m_pmem = mmap( null,
sz,
PROT_READ | PROT_WRITE,
mmap_flags,
-1,
0 );
if ( m_pmem == MAP_FAILED )
m_pmem = null;
}
else static if ( __traits( compiles, valloc ) )
{
m_pmem = valloc( sz );
}
else static if ( __traits( compiles, malloc ) )
{
m_pmem = malloc( sz );
}
else
{
m_pmem = null;
}
if ( !m_pmem )
onOutOfMemoryError();
version (StackGrowsDown)
{
m_ctxt.bstack = m_pmem + sz;
m_ctxt.tstack = m_pmem + sz;
void* guard = m_pmem;
}
else
{
m_ctxt.bstack = m_pmem;
m_ctxt.tstack = m_pmem;
void* guard = m_pmem + sz - guardPageSize;
}
m_size = sz;
static if ( __traits( compiles, mmap ) )
{
if (guardPageSize)
{
// protect end of stack
if ( mprotect(guard, guardPageSize, PROT_NONE) == -1 )
abort();
}
}
else
{
// Supported only for mmap allocated memory - results are
// undefined if applied to memory not obtained by mmap
}
}
Thread.add( m_ctxt );
}
//
// Free this fiber's stack.
//
final void freeStack() nothrow @nogc
in
{
assert( m_pmem && m_ctxt );
}
do
{
// NOTE: m_ctxt is guaranteed to be alive because it is held in the
// global context list.
Thread.slock.lock_nothrow();
scope(exit) Thread.slock.unlock_nothrow();
Thread.remove( m_ctxt );
version (Windows)
{
VirtualFree( m_pmem, 0, MEM_RELEASE );
}
else
{
import core.sys.posix.sys.mman; // munmap
static if ( __traits( compiles, mmap ) )
{
munmap( m_pmem, m_size );
}
else static if ( __traits( compiles, valloc ) )
{
free( m_pmem );
}
else static if ( __traits( compiles, malloc ) )
{
free( m_pmem );
}
}
m_pmem = null;
m_ctxt = null;
}
//
// Initialize the allocated stack.
// Look above the definition of 'class Fiber' for some information about the implementation of this routine
//
final void initStack() nothrow @nogc
in
{
assert( m_ctxt.tstack && m_ctxt.tstack == m_ctxt.bstack );
assert( cast(size_t) m_ctxt.bstack % (void*).sizeof == 0 );
}
do
{
void* pstack = m_ctxt.tstack;
scope( exit ) m_ctxt.tstack = pstack;
void push( size_t val ) nothrow
{
version (StackGrowsDown)
{
pstack -= size_t.sizeof;
*(cast(size_t*) pstack) = val;
}
else
{
pstack += size_t.sizeof;
*(cast(size_t*) pstack) = val;
}
}
// NOTE: On OS X the stack must be 16-byte aligned according
// to the IA-32 call spec. For x86_64 the stack also needs to
// be aligned to 16-byte according to SysV AMD64 ABI.
version (AlignFiberStackTo16Byte)
{
version (StackGrowsDown)
{
pstack = cast(void*)(cast(size_t)(pstack) - (cast(size_t)(pstack) & 0x0F));
}
else
{
pstack = cast(void*)(cast(size_t)(pstack) + (cast(size_t)(pstack) & 0x0F));
}
}
version (AsmX86_Windows)
{
version (StackGrowsDown) {} else static assert( false );
// On Windows Server 2008 and 2008 R2, an exploit mitigation
// technique known as SEHOP is activated by default. To avoid
// hijacking of the exception handler chain, the presence of a
// Windows-internal handler (ntdll.dll!FinalExceptionHandler) at
// its end is tested by RaiseException. If it is not present, all
// handlers are disregarded, and the program is thus aborted
// (see http://blogs.technet.com/b/srd/archive/2009/02/02/
// preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx).
// For new threads, this handler is installed by Windows immediately
// after creation. To make exception handling work in fibers, we
// have to insert it for our new stacks manually as well.
//
// To do this, we first determine the handler by traversing the SEH
// chain of the current thread until its end, and then construct a
// registration block for the last handler on the newly created
// thread. We then continue to push all the initial register values
// for the first context switch as for the other implementations.
//
// Note that this handler is never actually invoked, as we install
// our own one on top of it in the fiber entry point function.
// Thus, it should not have any effects on OSes not implementing
// exception chain verification.
alias fp_t = void function(); // Actual signature not relevant.
static struct EXCEPTION_REGISTRATION
{
EXCEPTION_REGISTRATION* next; // sehChainEnd if last one.
fp_t handler;
}
enum sehChainEnd = cast(EXCEPTION_REGISTRATION*) 0xFFFFFFFF;
__gshared static fp_t finalHandler = null;
if ( finalHandler is null )
{
static EXCEPTION_REGISTRATION* fs0() nothrow
{
asm pure nothrow @nogc
{
naked;
mov EAX, FS:[0];
ret;
}
}
auto reg = fs0();
while ( reg.next != sehChainEnd ) reg = reg.next;
// Benign races are okay here, just to avoid re-lookup on every
// fiber creation.
finalHandler = reg.handler;
}
// When linking with /safeseh (supported by LDC, but not DMD)
// the exception chain must not extend to the very top
// of the stack, otherwise the exception chain is also considered
// invalid. Reserving additional 4 bytes at the top of the stack will
// keep the EXCEPTION_REGISTRATION below that limit
size_t reserve = EXCEPTION_REGISTRATION.sizeof + 4;
pstack -= reserve;
*(cast(EXCEPTION_REGISTRATION*)pstack) =
EXCEPTION_REGISTRATION( sehChainEnd, finalHandler );
auto pChainEnd = pstack;
push( cast(size_t) &fiber_entryPoint ); // EIP
push( cast(size_t) m_ctxt.bstack - reserve ); // EBP
push( 0x00000000 ); // EDI
push( 0x00000000 ); // ESI
push( 0x00000000 ); // EBX
push( cast(size_t) pChainEnd ); // FS:[0]
push( cast(size_t) m_ctxt.bstack ); // FS:[4]
push( cast(size_t) m_ctxt.bstack - m_size ); // FS:[8]
push( 0x00000000 ); // EAX
}
else version (AsmX86_64_Windows)
{
// Using this trampoline instead of the raw fiber_entryPoint
// ensures that during context switches, source and destination
// stacks have the same alignment. Otherwise, the stack would need
// to be shifted by 8 bytes for the first call, as fiber_entryPoint
// is an actual function expecting a stack which is not aligned
// to 16 bytes.
static void trampoline()
{
asm pure nothrow @nogc
{
naked;
sub RSP, 32; // Shadow space (Win64 calling convention)
call fiber_entryPoint;
xor RCX, RCX; // This should never be reached, as
jmp RCX; // fiber_entryPoint must never return.
}
}
push( cast(size_t) &trampoline ); // RIP
push( 0x00000000_00000000 ); // RBP
push( 0x00000000_00000000 ); // R12
push( 0x00000000_00000000 ); // R13
push( 0x00000000_00000000 ); // R14
push( 0x00000000_00000000 ); // R15
push( 0x00000000_00000000 ); // RDI
push( 0x00000000_00000000 ); // RSI
push( 0x00000000_00000000 ); // XMM6 (high)
push( 0x00000000_00000000 ); // XMM6 (low)
push( 0x00000000_00000000 ); // XMM7 (high)
push( 0x00000000_00000000 ); // XMM7 (low)
push( 0x00000000_00000000 ); // XMM8 (high)
push( 0x00000000_00000000 ); // XMM8 (low)
push( 0x00000000_00000000 ); // XMM9 (high)
push( 0x00000000_00000000 ); // XMM9 (low)
push( 0x00000000_00000000 ); // XMM10 (high)
push( 0x00000000_00000000 ); // XMM10 (low)
push( 0x00000000_00000000 ); // XMM11 (high)
push( 0x00000000_00000000 ); // XMM11 (low)
push( 0x00000000_00000000 ); // XMM12 (high)
push( 0x00000000_00000000 ); // XMM12 (low)
push( 0x00000000_00000000 ); // XMM13 (high)
push( 0x00000000_00000000 ); // XMM13 (low)
push( 0x00000000_00000000 ); // XMM14 (high)
push( 0x00000000_00000000 ); // XMM14 (low)
push( 0x00000000_00000000 ); // XMM15 (high)
push( 0x00000000_00000000 ); // XMM15 (low)
push( 0x00000000_00000000 ); // RBX
push( 0xFFFFFFFF_FFFFFFFF ); // GS:[0]
version (StackGrowsDown)
{
push( cast(size_t) m_ctxt.bstack ); // GS:[8]
push( cast(size_t) m_ctxt.bstack - m_size ); // GS:[16]
}
else
{
push( cast(size_t) m_ctxt.bstack ); // GS:[8]
push( cast(size_t) m_ctxt.bstack + m_size ); // GS:[16]
}
}
else version (AsmX86_Posix)
{
push( 0x00000000 ); // Return address of fiber_entryPoint call
push( cast(size_t) &fiber_entryPoint ); // EIP
push( cast(size_t) m_ctxt.bstack ); // EBP
push( 0x00000000 ); // EDI
push( 0x00000000 ); // ESI
push( 0x00000000 ); // EBX
push( 0x00000000 ); // EAX
}
else version (AsmX86_64_Posix)
{
push( 0x00000000_00000000 ); // Return address of fiber_entryPoint call
push( cast(size_t) &fiber_entryPoint ); // RIP
push( cast(size_t) m_ctxt.bstack ); // RBP
push( 0x00000000_00000000 ); // RBX
push( 0x00000000_00000000 ); // R12
push( 0x00000000_00000000 ); // R13
push( 0x00000000_00000000 ); // R14
push( 0x00000000_00000000 ); // R15
}
else version (AsmPPC_Posix)
{
version (StackGrowsDown)
{
pstack -= int.sizeof * 5;
}
else
{
pstack += int.sizeof * 5;
}
push( cast(size_t) &fiber_entryPoint ); // link register
push( 0x00000000 ); // control register
push( 0x00000000 ); // old stack pointer
// GPR values
version (StackGrowsDown)
{
pstack -= int.sizeof * 20;
}
else
{
pstack += int.sizeof * 20;
}
assert( (cast(size_t) pstack & 0x0f) == 0 );
}
else version (AsmPPC_Darwin)
{
version (StackGrowsDown) {}
else static assert(false, "PowerPC Darwin only supports decrementing stacks");
uint wsize = size_t.sizeof;
// linkage + regs + FPRs + VRs
uint space = 8 * wsize + 20 * wsize + 18 * 8 + 12 * 16;
(cast(ubyte*)pstack - space)[0 .. space] = 0;
pstack -= wsize * 6;
*cast(size_t*)pstack = cast(size_t) &fiber_entryPoint; // LR
pstack -= wsize * 22;
// On Darwin PPC64 pthread self is in R13 (which is reserved).
// At present, it is not safe to migrate fibers between threads, but if that
// changes, then updating the value of R13 will also need to be handled.
version (PPC64)
*cast(size_t*)(pstack + wsize) = cast(size_t) Thread.getThis().m_addr;
assert( (cast(size_t) pstack & 0x0f) == 0 );
}
else version (AsmMIPS_O32_Posix)
{
version (StackGrowsDown) {}
else static assert(0);
/* We keep the FP registers and the return address below
* the stack pointer, so they don't get scanned by the
* GC. The last frame before swapping the stack pointer is
* organized like the following.
*
* |-----------|<= frame pointer
* | $gp |
* | $s0-8 |
* |-----------|<= stack pointer
* | $ra |
* | align(8) |
* | $f20-30 |
* |-----------|
*
*/
enum SZ_GP = 10 * size_t.sizeof; // $gp + $s0-8
enum SZ_RA = size_t.sizeof; // $ra
version (MIPS_HardFloat)
{
enum SZ_FP = 6 * 8; // $f20-30
enum ALIGN = -(SZ_FP + SZ_RA) & (8 - 1);
}
else
{
enum SZ_FP = 0;
enum ALIGN = 0;
}
enum BELOW = SZ_FP + ALIGN + SZ_RA;
enum ABOVE = SZ_GP;
enum SZ = BELOW + ABOVE;
(cast(ubyte*)pstack - SZ)[0 .. SZ] = 0;
pstack -= ABOVE;
*cast(size_t*)(pstack - SZ_RA) = cast(size_t)&fiber_entryPoint;
}
else version (AsmAArch64_Posix)
{
// Like others, FP registers and return address (lr) are kept
// below the saved stack top (tstack) to hide from GC scanning.
// fiber_switchContext expects newp sp to look like this:
// 19: x19
// ...
// 9: x29 (fp) <-- newp tstack
// 8: x30 (lr) [&fiber_entryPoint]
// 7: d8
// ...
// 0: d15
version (StackGrowsDown) {}
else
static assert(false, "Only full descending stacks supported on AArch64");
// Only need to set return address (lr). Everything else is fine
// zero initialized.
pstack -= size_t.sizeof * 11; // skip past x19-x29
push(cast(size_t) &fiber_trampoline); // see threadasm.S for docs
pstack += size_t.sizeof; // adjust sp (newp) above lr
}
else version (AsmARM_Posix)
{
/* We keep the FP registers and the return address below
* the stack pointer, so they don't get scanned by the
* GC. The last frame before swapping the stack pointer is
* organized like the following.
*
* | |-----------|<= 'frame starts here'
* | | fp | (the actual frame pointer, r11 isn't
* | | r10-r4 | updated and still points to the previous frame)
* | |-----------|<= stack pointer
* | | lr |
* | | 4byte pad |
* | | d15-d8 |(if FP supported)
* | |-----------|
* Y
* stack grows down: The pointer value here is smaller than some lines above
*/
// frame pointer can be zero, r10-r4 also zero initialized
version (StackGrowsDown)
pstack -= int.sizeof * 8;
else
static assert(false, "Only full descending stacks supported on ARM");
// link register
push( cast(size_t) &fiber_entryPoint );
/*
* We do not push padding and d15-d8 as those are zero initialized anyway
* Position the stack pointer above the lr register
*/
pstack += int.sizeof * 1;
}
else version (GNU_AsmX86_Windows)
{
version (StackGrowsDown) {} else static assert( false );
// Currently, MinGW doesn't utilize SEH exceptions.
// See DMD AsmX86_Windows If this code ever becomes fails and SEH is used.
push( 0x00000000 ); // Return address of fiber_entryPoint call
push( cast(size_t) &fiber_entryPoint ); // EIP
push( 0x00000000 ); // EBP
push( 0x00000000 ); // EDI
push( 0x00000000 ); // ESI
push( 0x00000000 ); // EBX
push( 0xFFFFFFFF ); // FS:[0] - Current SEH frame
push( cast(size_t) m_ctxt.bstack ); // FS:[4] - Top of stack
push( cast(size_t) m_ctxt.bstack - m_size ); // FS:[8] - Bottom of stack
push( 0x00000000 ); // EAX
}
else version (GNU_AsmX86_64_Windows)
{
push( 0x00000000_00000000 ); // Return address of fiber_entryPoint call
push( cast(size_t) &fiber_entryPoint ); // RIP
push( 0x00000000_00000000 ); // RBP
push( 0x00000000_00000000 ); // RBX
push( 0x00000000_00000000 ); // R12
push( 0x00000000_00000000 ); // R13
push( 0x00000000_00000000 ); // R14
push( 0x00000000_00000000 ); // R15
push( 0xFFFFFFFF_FFFFFFFF ); // GS:[0] - Current SEH frame
version (StackGrowsDown)
{
push( cast(size_t) m_ctxt.bstack ); // GS:[8] - Top of stack
push( cast(size_t) m_ctxt.bstack - m_size ); // GS:[16] - Bottom of stack
}
else
{
push( cast(size_t) m_ctxt.bstack ); // GS:[8] - Top of stack
push( cast(size_t) m_ctxt.bstack + m_size ); // GS:[16] - Bottom of stack
}
}
else static if ( __traits( compiles, ucontext_t ) )
{
getcontext( &m_utxt );
m_utxt.uc_stack.ss_sp = m_pmem;
m_utxt.uc_stack.ss_size = m_size;
makecontext( &m_utxt, &fiber_entryPoint, 0 );
// NOTE: If ucontext is being used then the top of the stack will
// be a pointer to the ucontext_t struct for that fiber.
push( cast(size_t) &m_utxt );
}
else
static assert(0, "Not implemented");
}
StackContext* m_ctxt;
size_t m_size;
void* m_pmem;
static if ( __traits( compiles, ucontext_t ) )
{
// NOTE: The static ucontext instance is used to represent the context
// of the executing thread.
static ucontext_t sm_utxt = void;
ucontext_t m_utxt = void;
ucontext_t* m_ucur = null;
}
else static if (GNU_Enable_CET)
{
// When libphobos was built with --enable-cet, these fields need to
// always be present in the Fiber class layout.
import core.sys.posix.ucontext;
static ucontext_t sm_utxt = void;
ucontext_t m_utxt = void;
ucontext_t* m_ucur = null;
}
private:
///////////////////////////////////////////////////////////////////////////
// Storage of Active Fiber
///////////////////////////////////////////////////////////////////////////
//
// Sets a thread-local reference to the current fiber object.
//
static void setThis( Fiber f ) nothrow @nogc
{
sm_this = f;
}
static Fiber sm_this;
private:
///////////////////////////////////////////////////////////////////////////
// Context Switching
///////////////////////////////////////////////////////////////////////////
//
// Switches into the stack held by this fiber.
//
final void switchIn() nothrow @nogc
{
Thread tobj = Thread.getThis();
void** oldp = &tobj.m_curr.tstack;
void* newp = m_ctxt.tstack;
// NOTE: The order of operations here is very important. The current
// stack top must be stored before m_lock is set, and pushContext
// must not be called until after m_lock is set. This process
// is intended to prevent a race condition with the suspend
// mechanism used for garbage collection. If it is not followed,
// a badly timed collection could cause the GC to scan from the
// bottom of one stack to the top of another, or to miss scanning
// a stack that still contains valid data. The old stack pointer
// oldp will be set again before the context switch to guarantee
// that it points to exactly the correct stack location so the
// successive pop operations will succeed.
*oldp = getStackTop();
atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, true);
tobj.pushContext( m_ctxt );
fiber_switchContext( oldp, newp );
// NOTE: As above, these operations must be performed in a strict order
// to prevent Bad Things from happening.
tobj.popContext();
atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, false);
tobj.m_curr.tstack = tobj.m_curr.bstack;
}
//
// Switches out of the current stack and into the enclosing stack.
//
final void switchOut() nothrow @nogc
{
Thread tobj = Thread.getThis();
void** oldp = &m_ctxt.tstack;
void* newp = tobj.m_curr.within.tstack;
// NOTE: The order of operations here is very important. The current
// stack top must be stored before m_lock is set, and pushContext
// must not be called until after m_lock is set. This process
// is intended to prevent a race condition with the suspend
// mechanism used for garbage collection. If it is not followed,
// a badly timed collection could cause the GC to scan from the
// bottom of one stack to the top of another, or to miss scanning
// a stack that still contains valid data. The old stack pointer
// oldp will be set again before the context switch to guarantee
// that it points to exactly the correct stack location so the
// successive pop operations will succeed.
*oldp = getStackTop();
atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, true);
fiber_switchContext( oldp, newp );
// NOTE: As above, these operations must be performed in a strict order
// to prevent Bad Things from happening.
// NOTE: If use of this fiber is multiplexed across threads, the thread
// executing here may be different from the one above, so get the
// current thread handle before unlocking, etc.
tobj = Thread.getThis();
atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, false);
tobj.m_curr.tstack = tobj.m_curr.bstack;
}
}
///
unittest {
int counter;
class DerivedFiber : Fiber
{
this()
{
super( &run );
}
private :
void run()
{
counter += 2;
}
}
void fiberFunc()
{
counter += 4;
Fiber.yield();
counter += 8;
}
// create instances of each type
Fiber derived = new DerivedFiber();
Fiber composed = new Fiber( &fiberFunc );
assert( counter == 0 );
derived.call();
assert( counter == 2, "Derived fiber increment." );
composed.call();
assert( counter == 6, "First composed fiber increment." );
counter += 16;
assert( counter == 22, "Calling context increment." );
composed.call();
assert( counter == 30, "Second composed fiber increment." );
// since each fiber has run to completion, each should have state TERM
assert( derived.state == Fiber.State.TERM );
assert( composed.state == Fiber.State.TERM );
}
version (CoreUnittest)
{
class TestFiber : Fiber
{
this()
{
super(&run);
}
void run()
{
foreach (i; 0 .. 1000)
{
sum += i;
Fiber.yield();
}
}
enum expSum = 1000 * 999 / 2;
size_t sum;
}
void runTen()
{
TestFiber[10] fibs;
foreach (ref fib; fibs)
fib = new TestFiber();
bool cont;
do {
cont = false;
foreach (fib; fibs) {
if (fib.state == Fiber.State.HOLD)
{
fib.call();
cont |= fib.state != Fiber.State.TERM;
}
}
} while (cont);
foreach (fib; fibs)
{
assert(fib.sum == TestFiber.expSum);
}
}
}
// Single thread running separate fibers
unittest
{
runTen();
}
// Multiple threads running separate fibers
unittest
{
auto group = new ThreadGroup();
foreach (_; 0 .. 4)
{
group.create(&runTen);
}
group.joinAll();
}
// Multiple threads running shared fibers
version (PPC) version = UnsafeFiberMigration;
version (PPC64) version = UnsafeFiberMigration;
version (OSX)
{
version (X86) version = UnsafeFiberMigration;
version (X86_64) version = UnsafeFiberMigration;
}
version (UnsafeFiberMigration)
{
// XBUG: core.thread fibers are supposed to be safe to migrate across
// threads, however, there is a problem: GCC always assumes that the
// address of thread-local variables don't change while on a given stack.
// In consequence, migrating fibers between threads currently is an unsafe
// thing to do, and will break on some targets (possibly PR26461).
}
else
{
version = FiberMigrationUnittest;
}
version (FiberMigrationUnittest)
unittest
{
shared bool[10] locks;
TestFiber[10] fibs;
void runShared()
{
bool cont;
do {
cont = false;
foreach (idx; 0 .. 10)
{
if (cas(&locks[idx], false, true))
{
if (fibs[idx].state == Fiber.State.HOLD)
{
fibs[idx].call();
cont |= fibs[idx].state != Fiber.State.TERM;
}
locks[idx] = false;
}
else
{
cont = true;
}
}
} while (cont);
}
foreach (ref fib; fibs)
{
fib = new TestFiber();
}
auto group = new ThreadGroup();
foreach (_; 0 .. 4)
{
group.create(&runShared);
}
group.joinAll();
foreach (fib; fibs)
{
assert(fib.sum == TestFiber.expSum);
}
}
// Test exception handling inside fibers.
unittest
{
enum MSG = "Test message.";
string caughtMsg;
(new Fiber({
try
{
throw new Exception(MSG);
}
catch (Exception e)
{
caughtMsg = e.msg;
}
})).call();
assert(caughtMsg == MSG);
}
unittest
{
int x = 0;
(new Fiber({
x++;
})).call();
assert( x == 1 );
}
nothrow unittest
{
new Fiber({}).call!(Fiber.Rethrow.no)();
}
unittest
{
new Fiber({}).call(Fiber.Rethrow.yes);
new Fiber({}).call(Fiber.Rethrow.no);
}
unittest
{
enum MSG = "Test message.";
try
{
(new Fiber(function() {
throw new Exception( MSG );
})).call();
assert( false, "Expected rethrown exception." );
}
catch ( Throwable t )
{
assert( t.msg == MSG );
}
}
// Test exception chaining when switching contexts in finally blocks.
unittest
{
static void throwAndYield(string msg) {
try {
throw new Exception(msg);
} finally {
Fiber.yield();
}
}
static void fiber(string name) {
try {
try {
throwAndYield(name ~ ".1");
} finally {
throwAndYield(name ~ ".2");
}
} catch (Exception e) {
assert(e.msg == name ~ ".1");
assert(e.next);
assert(e.next.msg == name ~ ".2");
assert(!e.next.next);
}
}
auto first = new Fiber(() => fiber("first"));
auto second = new Fiber(() => fiber("second"));
first.call();
second.call();
first.call();
second.call();
first.call();
second.call();
assert(first.state == Fiber.State.TERM);
assert(second.state == Fiber.State.TERM);
}
// Test Fiber resetting
unittest
{
static string method;
static void foo()
{
method = "foo";
}
void bar()
{
method = "bar";
}
static void expect(Fiber fib, string s)
{
assert(fib.state == Fiber.State.HOLD);
fib.call();
assert(fib.state == Fiber.State.TERM);
assert(method == s); method = null;
}
auto fib = new Fiber(&foo);
expect(fib, "foo");
fib.reset();
expect(fib, "foo");
fib.reset(&foo);
expect(fib, "foo");
fib.reset(&bar);
expect(fib, "bar");
fib.reset(function void(){method = "function";});
expect(fib, "function");
fib.reset(delegate void(){method = "delegate";});
expect(fib, "delegate");
}
// Test unsafe reset in hold state
unittest
{
auto fib = new Fiber(function {ubyte[2048] buf = void; Fiber.yield();}, 4096);
foreach (_; 0 .. 10)
{
fib.call();
assert(fib.state == Fiber.State.HOLD);
fib.reset();
}
}
// stress testing GC stack scanning
unittest
{
import core.memory;
import core.time : dur;
static void unreferencedThreadObject()
{
static void sleep() { Thread.sleep(dur!"msecs"(100)); }
auto thread = new Thread(&sleep).start();
}
unreferencedThreadObject();
GC.collect();
static class Foo
{
this(int value)
{
_value = value;
}
int bar()
{
return _value;
}
int _value;
}
static void collect()
{
auto foo = new Foo(2);
assert(foo.bar() == 2);
GC.collect();
Fiber.yield();
GC.collect();
assert(foo.bar() == 2);
}
auto fiber = new Fiber(&collect);
fiber.call();
GC.collect();
fiber.call();
// thread reference
auto foo = new Foo(2);
void collect2()
{
assert(foo.bar() == 2);
GC.collect();
Fiber.yield();
GC.collect();
assert(foo.bar() == 2);
}
fiber = new Fiber(&collect2);
fiber.call();
GC.collect();
fiber.call();
static void recurse(size_t cnt)
{
--cnt;
Fiber.yield();
if (cnt)
{
auto fib = new Fiber(() { recurse(cnt); });
fib.call();
GC.collect();
fib.call();
}
}
fiber = new Fiber(() { recurse(20); });
fiber.call();
}
version (AsmX86_64_Windows)
{
// Test Windows x64 calling convention
unittest
{
void testNonvolatileRegister(alias REG)()
{
auto zeroRegister = new Fiber(() {
mixin("asm pure nothrow @nogc { naked; xor "~REG~", "~REG~"; ret; }");
});
long after;
mixin("asm pure nothrow @nogc { mov "~REG~", 0xFFFFFFFFFFFFFFFF; }");
zeroRegister.call();
mixin("asm pure nothrow @nogc { mov after, "~REG~"; }");
assert(after == -1);
}
void testNonvolatileRegisterSSE(alias REG)()
{
auto zeroRegister = new Fiber(() {
mixin("asm pure nothrow @nogc { naked; xorpd "~REG~", "~REG~"; ret; }");
});
long[2] before = [0xFFFFFFFF_FFFFFFFF, 0xFFFFFFFF_FFFFFFFF], after;
mixin("asm pure nothrow @nogc { movdqu "~REG~", before; }");
zeroRegister.call();
mixin("asm pure nothrow @nogc { movdqu after, "~REG~"; }");
assert(before == after);
}
testNonvolatileRegister!("R12")();
testNonvolatileRegister!("R13")();
testNonvolatileRegister!("R14")();
testNonvolatileRegister!("R15")();
testNonvolatileRegister!("RDI")();
testNonvolatileRegister!("RSI")();
testNonvolatileRegister!("RBX")();
testNonvolatileRegisterSSE!("XMM6")();
testNonvolatileRegisterSSE!("XMM7")();
testNonvolatileRegisterSSE!("XMM8")();
testNonvolatileRegisterSSE!("XMM9")();
testNonvolatileRegisterSSE!("XMM10")();
testNonvolatileRegisterSSE!("XMM11")();
testNonvolatileRegisterSSE!("XMM12")();
testNonvolatileRegisterSSE!("XMM13")();
testNonvolatileRegisterSSE!("XMM14")();
testNonvolatileRegisterSSE!("XMM15")();
}
}
version (D_InlineAsm_X86_64)
{
unittest
{
void testStackAlignment()
{
void* pRSP;
asm pure nothrow @nogc
{
mov pRSP, RSP;
}
assert((cast(size_t)pRSP & 0xF) == 0);
}
auto fib = new Fiber(&testStackAlignment);
fib.call();
}
}
|