1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
// Copyright (C) 2018-2022 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// { dg-do run }
// { dg-options "-pthread" }
// { dg-require-effective-target c++17 }
// { dg-require-effective-target pthread }
// { dg-require-gthreads "" }
#include <memory_resource>
#include <cstring>
#include <testsuite_allocator.h>
#include <testsuite_hooks.h>
void
test01()
{
__gnu_test::memory_resource test_mr;
{
std::pmr::synchronized_pool_resource r(&test_mr);
void* p1 = r.allocate(1, 1);
VERIFY( p1 != nullptr );
auto n = test_mr.number_of_active_allocations();
VERIFY( n > 0 );
// Ensure memory region can be written to (without corrupting heap!)
std::memset(p1, 0xff, 1);
void* p2 = r.allocate(1, 1);
VERIFY( p2 != nullptr );
VERIFY( p2 != p1 );
VERIFY( test_mr.number_of_active_allocations() == n );
std::memset(p1, 0xff, 1);
r.deallocate(p1, 1, 1);
// Returning single blocks to the pool doesn't return them upstream:
VERIFY( test_mr.number_of_active_allocations() == n );
r.deallocate(p2, 1, 1);
VERIFY( test_mr.number_of_active_allocations() == n );
}
VERIFY( test_mr.number_of_active_allocations() == 0 );
}
void
test02()
{
struct nullable_memory_resource : public std::pmr::memory_resource
{
void*
do_allocate(std::size_t bytes, std::size_t alignment) override
{ return upstream->allocate(bytes, alignment); }
void
do_deallocate(void* p, std::size_t bytes, std::size_t alignment) override
{ upstream->deallocate(p, bytes, alignment); }
bool
do_is_equal(const memory_resource& r) const noexcept override
{ return &r == this; }
std::pmr::memory_resource* upstream = std::pmr::get_default_resource();
};
nullable_memory_resource test_mr;
std::pmr::synchronized_pool_resource r(&test_mr);
void* p1 = r.allocate(8, 1);
VERIFY( p1 != nullptr );
std::memset(p1, 0xff, 8);
test_mr.upstream = nullptr;
void* p2 = r.allocate(8, 1); //should not need to replenish
VERIFY( p2 != nullptr );
VERIFY( p2 != p1 );
std::memset(p1, 0xff, 8);
r.deallocate(p1, 8, 1); // should not use upstream
r.deallocate(p2, 8, 1); // should not use upstream
// Destructor will return memory upstream, so restore the upstream resource:
test_mr.upstream = std::pmr::get_default_resource();
}
void
test03()
{
__gnu_test::memory_resource test_mr;
{
std::pmr::synchronized_pool_resource r({10, 16}, &test_mr);
std::size_t largest_pool = r.options().largest_required_pool_block;
void* p1 = r.allocate(2 * largest_pool);
VERIFY( p1 != nullptr );
const std::size_t n = test_mr.number_of_active_allocations();
// Allocation of pools + allocation of pmr::vector + oversize allocation:
VERIFY( n >= 1 );
std::memset(p1, 0xff, 2 * largest_pool);
void* p2 = r.allocate(3 * largest_pool);
VERIFY( p2 != nullptr );
VERIFY( p2 != p1 );
VERIFY( test_mr.number_of_active_allocations() == n + 1 );
std::memset(p2, 0xff, 3 * largest_pool);
r.deallocate(p1, 2 * largest_pool);
VERIFY( test_mr.number_of_active_allocations() == n );
r.deallocate(p2, 3 * largest_pool);
VERIFY( test_mr.number_of_active_allocations() == n - 1 );
}
VERIFY( test_mr.number_of_active_allocations() == 0 );
{
std::pmr::synchronized_pool_resource r({16, 16}, &test_mr);
(void) r.allocate(2);
(void) r.allocate(8);
(void) r.allocate(16);
(void) r.allocate(2);
(void) r.allocate(8);
(void) r.allocate(16);
(void) r.allocate(2 * r.options().largest_required_pool_block);
VERIFY( test_mr.number_of_active_allocations() != 0 );
// Destructor calls release()
}
VERIFY( test_mr.number_of_active_allocations() == 0 );
}
void
test04()
{
__gnu_test::memory_resource test_mr;
std::pmr::synchronized_pool_resource r({256, 256}, &test_mr);
// Check alignment
void* p1 = r.allocate(2, 64);
VERIFY( (std::uintptr_t)p1 % 64 == 0 );
void* p2 = r.allocate(2, 128);
VERIFY( (std::uintptr_t)p2 % 128 == 0 );
void* p3 = r.allocate(2, 256);
VERIFY( (std::uintptr_t)p3 % 256 == 0 );
const std::size_t largest_pool = r.options().largest_required_pool_block;
void* p4 = r.allocate(2 * largest_pool, 1024);
VERIFY( (std::uintptr_t)p4 % 1024 == 0 );
r.deallocate(p1, 2, 64);
r.deallocate(p2, 2, 128);
r.deallocate(p3, 2, 256);
r.deallocate(p4, 2 * largest_pool, 1024);
}
int
main()
{
test01();
test02();
test03();
test04();
}
|